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Abstract

Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic

greenhouse gases. SCIAMACHY on ENVISAT is the first satellite instrument whose

measurements are sensitive to concentration changes of the two gases at all altitude

levels down to the Earth’s surface where the source/sink signals are largest. We5

have processed three years (2003–2005) of SCIAMACHY near-infrared nadir mea-

surements to simultaneously retrieve vertical columns of CO2 (from the 1.58µm ab-

sorption band), CH4 (1.66µm) and oxygen (O2 A-band at 0.76µm) using the scientific

retrieval algorithm WFM-DOAS. We show that the latest version of WFM-DOAS, ver-

sion 1.0, which is used for this study, has been significantly improved with respect to10

its accuracy compared to the previous versions while essentially maintaining its high

processing speed (∼1 minute per orbit, corresponding to ∼6000 single measurements,

and per gas on a standard PC). The greenhouse gas columns are converted to dry

air column-averaged mole fractions, denoted XCO2 (in ppm) and XCH4 (in ppb), by

dividing the greenhouse gas columns by simultaneously retrieved dry air columns. For15

XCO2 dry air columns are obtained from the retrieved O2 columns. For XCH4 dry

air columns are obtained from the retrieved CO2 columns because of better cancel-

lation of light path related errors compared to using O2 columns retrieved from the

spectrally distant O2 A-band. Here we focus on a discussion of the XCO2 data set.

The XCH4 data set is discussed in a separate paper (Part 2). In order to assess the20

quality of the retrieved XCO2 we present comparisons with Fourier Transform Spec-

troscopy (FTS) XCO2 measurements at two northern hemispheric mid-latitude ground

stations. To assess the quality globally, we present detailed comparisons with global

XCO2 fields obtained from NOAA’s CO2 assimilation system CarbonTracker. For the

Northern Hemisphere we find good agreement with the reference data for the CO225

seasonal cycle and the CO2 annual increase. For the Southern Hemisphere, where

significantly less data are available for averaging compared to the Northern Hemi-

sphere, the CO2 annual increase is also in good agreement with CarbonTracker but
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the amplitude and phase of the seasonal cycle show systematic differences up to a few

ppm arising partially from the O2 normalization. The retrieved XCO2 regional pattern

at monthly resolution over various regions show clear corrrelations with CarbonTracker

but also significant differences. Typically the retrieved variability is about 4 ppm (1%

of 380 ppm) higher but depending on time and location differences can reach or even5

exceed 8 ppm. Based on the error analysis and on the comparison with the reference

data we conclude that the XCO2 data set can be characterized by a single measure-

ment retrieval precision (random error) of 1–2%, a systematic low bias of about 1.5%,

and by a relative accuracy of about 1–2% for monthly averages at a spatial resolution

of about 7
◦×7

◦
. When averaging the SCIAMACHY XCO2 over all three years we find10

reasonable correlation with EDGAR anthropogenic CO2 emissions for Germany, The

Netherlands and Belgium indicating that regionally elevated CO2 arising from regional

anthropogenic CO2 emissions can be detected from space.

1 Introduction

The atmospheric greenhouse gas carbon dioxide (CO2) has increased significantly15

since pre-industrial times primarily as a result of fossil fuel combustion, land use

change, cement production, and biomass burning, thus perturbing the natural global

carbon cycle. Increasing CO2 is predicted to result in a warmer climate with adverse

consequences, such as rising sea levels and an increase of extreme weather condi-

tions (IPCC, 2001, 2007). The reliable prediction of future atmospheric CO2 levels20

and the associated global climate change requires an adequate understanding of the

CO2 sources and sinks. Unfortunately, this understanding has significant gaps and

uncertainties are large (see, e.g., Stephens et al., 2007).

The current knowledge of the carbon dioxide surface fluxes is limited for example

by the sparseness of the ground-based network with a lack of high-frequency surface25

observations in continental regions particularly outside North America and Europe.

Theoretical studies have shown that satellite measurements of CO2 in combination with
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models have the potential to significantly reduce CO2 surface flux uncertainties (Rayner

and O’Brien, 2001; Houweling et al., 2004). Existing satellite instruments whose mea-

surements are sensitive to atmospheric CO2 either measure radiances in the thermal

infrared (TIR) spectral region such as HIRS (Chédin et al., 2002, 2003) and AIRS (En-

gelen et al., 2004; Engelen and McNally, 2005; Aumann et al., 2005; Strow et al., 2006)5

or SCIAMACHY in the near-infrared (NIR) / short wave infrared (SWIR) spectral region

(Buchwitz et al., 2005a,b, 2006a, 2007b; Houweling et al., 2005; Bösch et al., 2006;

Barkley et al., 2006a,b,c, 2007). Note that in this paper NIR and SWIR are commonly

referred to as NIR. Whereas the TIR nadir measurements are primarily sensitive to

middle to upper tropospheric CO2, the NIR nadir measurements are sensitive to all10

altitude levels, including the boundary layer, which permits the retrieval of CO2 total

columns. High sensitivity to CO2 concentration variations near the Earth’s surface is

important in order to get information on regional CO2 sources and sinks. SCIAMACHY

is the first and currently only satellite instrument which measures reflected solar radi-

ation in the NIR spectral region covering important absorption bands of CO2 (as well15

as CH4 and O2). For the near future other satellite missions are planned, most notably

OCO (Crisp et al., 2004) and GOSAT (Hamazaki et al., 2004), which will also perform

nadir observations in the NIR spectral region to retrieve CO2.

As topographic features and surface pressure changes impact on the CO2 total col-

umn, a more useful quantity for inverse modeling is the column-averaged dry air mole20

fraction of CO2, denoted XCO2, being defined as the total column of carbon dioxide

divided by the dry air column. Dry air columns can be estimated by the simultane-

ous measurement of molecular oxygen (O2) which is a well mixed gas with accurately

known mole fraction exhibiting negligible (relative) variability. As CO2 is a long-lived

gas, the amount of the increase or decrease of its column-averaged mole fraction, as25

a result of a source or sink, is determined primarily by the strength and the spatial size

of the source or sink and atmospheric transport. Although point sources such as the

plumes from chimneys have large mole fractions locally, at the grid sizes of typical mod-

els or at the spatial resolution of the SCIAMACHY nadir measurements, sources and
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sinks only result in small changes of the column-averaged mole fractions on top of a

large background. In order to determine such changes well, the resultant requirements

on the accuracy and precision of the measurements of the column-averaged dry air

mole fractions from space are demanding, being of the order of 1% or better (Rayner

and O’Brien, 2001; Houweling et al., 2004; Miller et al., 2007; Chevallier et al., 2007).5

Inverse modeling to obtain surface fluxes of carbon dioxide globally using the highly

precise and accurate surface observations mostly based on weekly sampling relies on

various assumptions (e.g., assumed flux pattern and uncertainties) and is currently typ-

ically restricted to large spatial scales (continents, ocean basins) due to the sparseness

of the surface network (Bousquet et al., 1999; Gurney et al., 2002; Rödenbeck et al.,10

2003; Patra et al., 2006). In addition, attempts have been made for selected regions to

better constrain the regional fluxes using continuous high-frequency CO2 in-situ obser-

vations (Derwent et al., 2002; Peylin et al., 2005). As pointed out by Peylin et al. (2005),

these regional results also depend critically on several assumptions used such as re-

quired smoothness, initial conditions, and the global flux field. As described above,15

inverse modeling of the CO2 sources and sinks using satellite derived CO2 columns

has the potential to improve this situation but until now has not been undertaken due

to lack of satellite data with sufficient quality.

In this manuscript, the first multi-year global dry air column-averaged CO2 data set

from SCIAMACHY is presented and discussed. A short first discussion of this data set20

has already been given in Buchwitz et al. (2007b) focussing on northern hemispheric

large scale CO2 features such as the seasonal cycle and the annual increase. The re-

trieval technique, called Weighting Function Modified DOAS, WFM-DOAS, developed

at the University of Bremen for the retrieval of trace gases from SCIAMACHY has been

described elsewhere (Buchwitz et al., 2000b; Buchwitz and Burrows, 2004; Buchwitz25

et al., 2005a,b). Other groups have developed somewhat different approaches to re-

trieve XCO2 or CO2 columns from SCIAMACHY. For example the column-averaged

mole fractions retrieved using the computationally much more expensive Full Spectral

Initiation WFM-DOAS (FSI/WFM-DOAS) algorithm (Barkley et al., 2006a,b,c, 2007) are
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obtained by normalizing the retrieved CO2 column with surface pressure from meteo-

rological analysis and not, as done here, by normalizing with simultaneously measured

O2. Houweling et al. (2005), using another algorithm for the retrieval of CO2 column

amounts from SCIAMACHY data, have identified problems due to aerosols especially

when there are strong desert dust storms. Here we show that normalizing with mea-5

sured O2 reduces dust storm aerosol related errors. On the other hand we also show

that normalizing with measured O2 is not unproblematic under all conditions because

of the different sensitivity of the radiances in the spectral regions used for CO2 and O2

column retrieval.

This manuscript is organized as follows: In Sect. 2 the SCIAMACHY instrument10

and its measurement principle are introduced and explained. This is followed by a

description of the WFM-DOAS retrieval algorithm in Sect. 3 and an error analysis in

Sect. 4. The new SCIAMACHY multi-year carbon dioxide data set is discussed in

Sect. 5. Conclusions are given in Sect. 6.

2 The SCIAMACHY instrument15

SCIAMACHY, which is a multi-national (Germany, The Netherlands, Belgium) contri-

bution to the European environmental satellite ENVISAT, is a grating spectrometer that

measures reflected, backscattered and transmitted solar radiation upwelling from the

top of the atmosphere (Burrows et al., 1990; Burrows and Chance, 1991; Burrows et al.,

1995; Bovensmann et al., 1999). The spectral region from 214 nm to 1750 nm is mea-20

sured contiguously in six channels, and there are two additional channels covering the

regions 1940–2040 and 2265–2380 nm (see Fig. 1). Each spectral channel comprises

a grating focusing optics and a 1024 element monolithic diode array of the appropriate

material. In addition, SCIAMACHY has 7 broad band channels, the Polarization Mon-

itoring Devices (PMD), which monitor the upwelling radiation polarized with respect to25

the instrument plane at high spatial resolution providing sub-pixel information used in

this study to identify cloud contaminated ground pixels.
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ENVISAT was launched into a sun synchronous orbit in descending node having an

equator crossing time of 10:00 a.m. local time. During every orbit calibration mea-

surements are made during the eclipse, followed by a solar occultation and limb at-

mospheric measurement. On the Earth’s day side SCIAMACHY performs alternate

nadir and limb observations. These measurements can be inverted to obtain a large5

number of atmospheric data products (Bovensmann et al., 1999). Of relevance to this

study are the column amounts of CO2 and O2. As a result of SCIAMACHY’s observa-

tion of greenhouse gas overtone absorptions in the near-infrared/short wave infrared

(NIR/SWIR) solar backscattered spectrum, SCIAMACHY is the first satellite instrument

that yields the vertical columns of CO2 with high sensitivity down to the Earth’s surface10

(Buchwitz et al., 2005a). As the integration time for the detectors is optimized around

an orbit, the horizontal resolution of the nadir measurements depends on orbital posi-

tion and spectral interval, but is typically 60 km across track times 30 km along track for

the spectral fitting windows used in this study.

Overall, the in-flight optical performance of SCIAMACHY is very similar to that pre-15

dicted from the pre-flight on ground characterization and calibration activities. One ex-

ception is a time dependent optical throughput variation in the SCIAMACHY NIR/SWIR

channel 7, which has many resolved CO2 absorption features, and channel 8, which

has many CH4 absorption features. This results from the in-flight deposition of ice on

the detectors. As ice absorbs and scatters at these wavelengths this adversely affects20

the trace gas retrieval by reducing the signal to noise and changing the instrument slit

function (Gloudemans et al., 2005; Buchwitz et al., 2005b). As shown in Fig. 1, the

WFM-DOAS version 1.0 results presented in this manuscript have been derived us-

ing CO2 absorption features in channel 6 (1000–1750 nm) and O2 A-band absorption

in channel 4 (605–805 nm), which are not affected by an ice-layer, as their detectors25

operate at higher temperatures.
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3 WFM-DOAS retrieval algorithm

The retrieval of a long-lived and therefore relatively well-mixed gas such as carbon

dioxide is challenging as only the small variations on top of a large background yield

information on their surface sources and sinks. The retrieval algorithm has therefore to

be accurate and, in addition, sufficiently fast to process the large amounts of data pro-5

duced by SCIAMACHY. At the University of Bremen the Weighting Function Modified

Differential Optical Absorption Spectroscopy (WFM-DOAS) retrieval technique (Buch-

witz et al., 2000b) has been developed for the retrieval of trace gases and optimized for

the retrieval of CO2, CH4 and O2. The results for methane are discussed in Schneising

et al. (2008) (Part 2). The algorithm has been described in detail elsewhere (Buchwitz10

et al., 2000b; Buchwitz and Burrows, 2004; Buchwitz et al., 2005a,b). We therefore

focus on a discussion of the main differences between the current version 1.0, which

has been used to generate the data set discussed in this manuscript, and the previous

version 0.4 (Buchwitz et al., 2005a,b; Dils et al., 2006a; Warneke et al., 2005).

3.1 Retrieval of vertical columns15

WFM-DOAS is a least-squares method based on scaling (or shifting) pre-selected at-

mospheric vertical profiles. The fit parameters for the trace gases yield directly the

desired vertical columns. The logarithm of a linearized radiative transfer model plus a

low-order polynomial P is fitted to the logarithm of the ratio of the measured nadir ra-

diance and solar irradiance spectrum, i.e., the observed sun-normalized radiance Iobs
.20

The least-squares WFM-DOAS equation can be written as follows (the fit parameter

vectors or vector components are indicated by a hat):

m
∑

i=1

(

ln Iobs
i

− ln Imod
i

(V̂, â)
)2

≡ ‖RES‖
2 → min. (1)
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where the linearized radiative transfer model is given by

ln Imod
i

(V̂, â) = ln Imod
i

(V̄) (2)

+

J
∑

j=1

∂ ln Imod
i

∂Vj

∣

∣

∣

∣

∣

∣

V̄j

× (V̂j − V̄j ) + Pi (â).

Index i refers to the center wavelength λi of detector pixel number i . The compo-

nents of vectors V , denoted Vj , are the vertical columns of all trace gases which have5

absorption lines in the selected spectral fitting window (interfering gas for the CO2 fit

is H2O; for the CH4 fit interfering gases are H2O and CO2). The fit parameters are

the desired trace gas vertical columns V̂j and the polynomial coefficients which are the

components of vector â. An additional fit parameter also used (but for simplicity omitted

in the equations given here) is the shift (in Kelvin) of a pre-selected temperature pro-10

file. This fit parameter has been added in order to take the temperature dependence

of the trace gas absorption cross-sections into account. The fit parameter values are

determined by minimising (in a linear least-squares sense) the difference between ob-

servation (ln Iobs
i ) and WFM-DOAS model (ln Imod

i ), i.e. the “length” of fit residuum vec-

tor RES (with components RESi ) for all spectral points λi simultaneously. A derivative15

with respect to a vertical column refers to the change of the top-of-atmosphere radi-

ance caused by a change (here: scaling) of a pre-selected trace gas vertical profile.

The WFM-DOAS reference spectra are the logarithm of the sun-normalized radiance

and its derivatives. They are computed with a radiative transfer model (Buchwitz et al.,

2000a) for assumed (e.g. climatological) “mean” columns V̄. Multiple scattering is fully20

taken into account. The least-squares problem can also be expressed in the following

vector/matrix notation: Minimize ‖y−A x‖
2

with respect to x. The solution is x̂=CxA
T
y

where Cx≡(A
T
A)

−1
is the covariance matrix of solution x̂. The errors of the retrieved

columns are estimated as follows (Press et al., 1992): σV̂j
=

√

(Cx)jj×
∑

i RES2
i
/(m−n),

where (Cx)jj is the j -th diagonal element of the covariance matrix, m is the number of25
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spectral points in the fitting window and n is the number of linear fit parameters.

In order to avoid time-consuming on-line radiative transfer simulations, a fast look-

up table scheme has been implemented. The pre-computed spectral radiances and

their derivatives (e.g., with respect to trace gas concentration and temperature profile

changes) depend on solar zenith angle, surface elevation (pressure), surface albedo,5

and water vapour amount (to consider possible non-linearities caused by the high

variability of atmospheric water vapour). For carbon dioxide a single (constant) ver-

tical profile is used for the retrieval to avoid that the measurements are influenced by

variations artificially introduced by the retrieval method. These profiles (CO2 mixing

ratio, temperature, pressure) along with the vertical column averaging kernels, can10

be obtained from the WFM-DOAS web site http://www.iup.uni-bremen.de/sciamachy/

NIR NADIR WFM DOAS/index.html. The CO2 columns are retrieved using a small

spectral fitting window in the near infrared (1558–1594 nm) located in SCIAMACHY

channel 6, whereas oxygen, retrieved in order to derive the column-averaged CO2 dry

air mole fraction, is retrieved from a spectrally distant fitting window (755–775 nm, O215

A-band) in SCIAMACHY channel 4. As an example, Fig. 2 shows the year 2003 aver-

age of the total columns of both gases (for a detailed discussion see Sect. 5).

The main differences between the previous version, version 0.4, and the new version,

version 1.0, are the following:

(i) Better consideration of albedo variability: The surface albedo is specifically re-20

trieved in each fitting window separately to consider its wavelength dependence in com-

bination with an extended look-up table. The wavelength dependent surface albedo re-

trieval is based on comparing the measured sun-normalized radiance at selected wave-

lengths, in a transparent region of each fitting window where no significant gaseous or

particulate absorptions occur, to pre-calculated radiances for different surface albedos.25

The retrieved surface albedo is used to account for the dependence of the top-of-

atmosphere radiance on the surface albedo. In comparison, for computational sim-

plicity, the previous WFM-DOAS versions used a constant wavelength independent

surface albedo of 0.1. The extended look-up table includes surface albedos of 0.03,
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0.1, and 0.3 and an interpolation/extrapolation scheme is used to obtain the radiance

and its derivatives for the retrieved surface albedo in each fitting window.

(ii) Better consideration of surface elevation changes: An extended look-up table

scheme for surface elevation (pressure) has been implemented. The previous versions

of WFM-DOAS used pre-calculated radiances and derivatives for surface elevations5

of 0 km, 1 km, 2 km, and 3 km in combination with a simple next neighbour approach.

Now an extended data base covering also an altitude of 4 km is used in combination

with an interpolation/extrapolation scheme to determine the radiance and its derivatives

appropriate for the average surface elevation (pressure) of each ground scene. This

significantly reduces the associated error of the retrieved columns (as discussed in10

detail below) which could be as large as a few percent in version 0.4 (Buchwitz et al.,

2005a).

(iii) Improved spectroscopy: Update of the spectroscopic data to HITRAN 2004

(Rothman et al., 2005). The previous version was based on the line parameters for

CO2, O2, and H2O described in HITRAN 2000/2001 (Rothman et al., 2003).15

(iv) Improved calibration: Usage of newly calibrated Level 1-Files (spectra) version 5.

The SCIAMACHY Level 1 product is a geophysical product, describing the measured

spectral radiance in units of photons/s/cm
2
/nm/steradiant as a function of wavelength

in units of nanometers. Our previous versions data products were based on the Level 1

version 4 data product. One significant error had been identified in the previous WFM-20

DOAS data product due to calibration problems of the version 4 spectra (Buchwitz et

al., 2006a): systematically underestimated CO2 columns which have been corrected

to first order by scaling with the constant factor 1.27. Using the new Level 1 product

this source of error is now negligible.

Another problem of XCO2 v0.4 were systematically overestimated O2 columns which25

have been corrected by scaling with the constant factor 0.85. The scaling factors for the

CO2 and O2 columns used in the previous WFM-DOAS version 0.4 XCO2 data product

were chosen such that the CO2 and O2 columns were within experimental error close

to their expected value of about 8×10
21

molecules/cm
2

and 4.5×10
24

molecules/cm
2
,

5487

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/5477/2008/acpd-8-5477-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/5477/2008/acpd-8-5477-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 5477–5536, 2008

Greenhouse gases

from satellite –

Part 1: CO2

O. Schneising et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

respectively, for cloud-free scenes with a surface elevation corresponding to sea level.

The need for an O2 column scaling factor was removed by the improved treatment

of surface albedo in WFM-DOAS version 1.0. In the previous version 0.4 a con-

stant albedo of 0.1 was assumed and a surface spectral reflectance weighting function

(derivative) was included for the O2 column fit to minimize errors related to the vari-5

ability of the surface spectral reflectance. The new approach removes the need for a

weighting function for surface albedo in WFMDv1.0. The new version WFM-DOAS 1.0

yields the expected values for the CO2 and O2 columns without scaling.

3.2 Computation of column-averaged CO2 dry air mole fractions

For carbon dioxide we derive column-averaged dry air mole fractions by normalizing10

the CO2 columns with the simultaneously retrieved oxygen columns retrieved from the

O2 A-band. Oxygen is an accurate proxy for the air column because its mole fraction

is well known and has negligibly small variations. The column-averaged mole fraction

XCO2 is computed as follows:

XCO2 =
CO

col
2

(Ocol
2
/Omf

2
)
, (3)15

where CO
col
2 is the retrieved absolute CO2 column (in molecules/cm

2
), O

col
2 is the

retrieved absolute O2 column (in molecules/cm
2
), and O

mf
2 is the assumed (column-

averaged) mole fraction of O2 used to convert the O2 column into a corresponding dry

air column and is equal to 0.2095. The resulting XCO2 for the time period 2003–2005

is shown in Fig. 3 and will be discussed in Sect. 5.20

3.3 Quality flags

In order to separate out ground scenes affected by clouds or poor spectral fits, quality

flags marking successful measurements are set for each single measurement (i.e., for

each observed ground scene).

5488

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/5477/2008/acpd-8-5477-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/5477/2008/acpd-8-5477-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 5477–5536, 2008

Greenhouse gases

from satellite –

Part 1: CO2

O. Schneising et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

For the column-averaged dry air mole fraction of carbon dioxide, measurements sat-

isfying the following criteria are classified as being good by the WFM-DOAS retrieval

and are subsequently used for the analysis described in this manuscript:

– The root-mean-square (RMS) of the fit residuum (relative difference between

measurement and model after the fit) in the CO2 fitting window has to be less5

than 0.25%.

– The RMS of the fit residuum in the O2 fitting window has to be less than 2%.

– The CO2 column fit error has to be less than 2.5%.

– The observed scene has to be nearly cloud free. Cloud contaminated ground

scenes are identified using a threshold algorithm based on sub-pixel information10

provided by the SCIAMACHY Polarization Measurement Device (PMD) channel 1

detecting enhanced backscatter in the UV as described in Buchwitz et al. (2005a).

In addition it is required that the retrieved O2 column has to be larger than 90%

of the assumed a-priori O2 column (determined from surface elevation and the

known mixing ratio of O2).15

– The SZA has to be less than 75
◦
.

– The ground pixel must be over land (as the signal-to-noise ratio is typically signif-

icantly worse over water).

– The ground pixel must be a forward scan pixel (as the horizontal resolution of the

backward scan pixel is four times larger (typically 240 km across track compared20

to 60 km for the forward scan).

– The surface elevation has to be less than 5 km as higher altitudes are not covered

by the current look-up table.

In addition, we filter for strong aerosol contamination as will be described in the next

section.25
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3.4 Aerosol filtering

Unaccounted variability of aerosols and clouds (including cirrus) in the retrieval is an

important error source for CO2 measurements from space (Tolton and Plouffe, 2001;

O’Brien and Rayner, 2002; Kuang et al., 2002; Dufour and Bréon, 2003; Buchwitz and

Burrows, 2004; Buchwitz et al., 2005a; Christi and Stephens, 2004; Mao and Kawa,5

2004; Houweling et al., 2005; van Diedenhoven et al., 2005; Barkley et al., 2006a; Aben

et al., 2006; Bril et al., 2007) as aerosols are highly variable and their optical proper-

ties (e.g., vertical profiles of phase function, extinction and scattering coefficients) are

not known for each scene observed from satellite. This results in aerosol and clouds

related errors which may be difficult to quantify. Figure 4 illustrates that unrealistically10

enhanced values appearing in the retrieved CO2 mole fraction are correlated with en-

hanced levels of absorbing aerosols as retrieved by Earth Probe/TOMS (Herman et al.,

1997) obtained from http://toms.gsfc.nasa.gov/. Aerosol types detected by the TOMS

AAI include desert dust, smoke and volcanic ash located at least 2 km above the sur-

face. During June 2003 the Absorbing Aerosol Index (AAI) is high over the Sahara due15

to desert dust storms. During this month the SCIAMACHY carbon dioxide data product

also shows high values and good correlation with the aerosol index. During Novem-

ber AAI is low and the SCIAMACHY XCO2 is not enhanced. This comparison shows

that the retrieved carbon dioxide mole fraction can exhibit large (few percent) errors in

case of strong desert dust storms. To remove aerosol contaminated retrieved XCO220

for cases of high aerosol load, primarily over deserts (mainly Sahara), we apply an

additional quality criterion for the global analysis of XCO2 by rejecting ground scenes

where the TOMS aerosol index is greater than a specific threshold. Figure 5 illustrates

the AAI filtering.

In this context it is interesting to investigate whether the effect of overestimated CO225

mole fractions in case of strong desert dust storms is dominated by errors of the CO2

or the O2 column. Figure 6 shows the XCO2 data product over the Sahara obtained

using the simultaneously retrieved O2 column compared to that derived using model
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O2 columns computed from surface pressure obtained from meteorological analysis:

O2(mod) =
p(mod)

1013hPa
· 4.51 · 1024

molec

cm2
(4)

Assuming that the computed oxygen column obtained from meteorological (ECMWF)

surface pressure is accurate, it can be concluded that the enhanced CO2/O2(mod) ratio

over the Sahara must be due to an (at least relative to the surrounding areas) overes-5

timated CO2 column, which is consistent with the findings of Houweling et al. (2005)

who showed by simulated retrievals that aerosol-induced path length enhancements

can explain unrealistically enhanced carbon dioxide columns in the presence of desert

dust.

Figure 6 additionally shows that the CO2 column error cancels partially when com-10

puting the ratio with the measured O2 columns. Therefore it can be concluded that

aerosols due to strong desert dust storms are causing an overestimation of both the

CO2 and O2 columns but affecting CO2 to a greater extent so that the errors do not

cancel completely in XCO2. As can be seen, the CO2 field is smoothest (and probably

most realistic) if the aerosol filter is applied and if the retrieved CO2 is normalized using15

the retrieved O2 columns due to better cancellation of errors when the retrieved O2 is

used to compute XCO2. We therefore conclude that the XCO2 shown in the bottom left

panel is the most accurate of the four XCO2 data sets shown here.

As WFM-DOAS v1.0 uses a single constant aerosol scenario and aerosol variability

is only accounted for to first order by the inclusion of a low order polynomial in the20

WFM-DOAS fit, this behavior is not unexpected (Buchwitz and Burrows, 2004; Buch-

witz et al., 2005a). Other groups use somewhat different but also highly simplified

approaches to deal with aerosol variability. For example in FSI/WFM-DOAS (Barkley

et al., 2006a,b,c, 2007) three “climatological” aerosol scenarios (maritime, rural, and

urban) are used (instead of one as in WFM-DOAS) depending on the location of the25

satellite footprint. This approach is not considered to be superior compared to our ap-

proach as it also does not take aerosol variability fully into account and might introduce
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additional complications such as discontinuities of the retrieved CO2 near cities and

coast lines.

Future studies will show to what extent aerosol related errors can be reduced by

taking aerosol variability better into account in the radiative transfer used to determine

XCO2 but at present we only identify aerosols and filter the data to remove strongly5

aerosol contaminated scenes.

4 Error analysis

The retrieved carbon dioxide and oxygen vertical columns exhibit a random error due

to instrument noise depending on the signal-to-noise ratio and thus on surface albedo

and characteristics of the detector of the respective channel. This results in a single10

measurement precision of about ∼1% for the retrieved CO2 columns and because of

the much better signal-to-noise ratio in the O2 A band spectral region (around 760 nm;

SCIAMACHY channel 4) in a considerably smaller random error of the O2 column of

about ∼0.3%. Hence, the upper bound of the theoretical precision of the XCO2 can

be estimated to be slightly larger than 1% using radiative transfer simulations and the15

instrument’s signal-to-noise performance. To estimate the single ground pixel retrieval

precision of the real in-orbit measurements we determined for several locations daily

standard deviations of the retrieved XCO2 (because of the orbit geometry this basically

corresponds to the standard deviation of all the data from a single overpass at around

10:00 a.m. local time). We averaged the daily standard deviations determined from20

all the SCIAMACHY XCO2 retrievals at a given location for all days where at least 10

measurements pass the quality filter in a radius of 350 km around that location. This

average XCO2 standard deviation can be interpreted as an upper limit of the single

ground pixel retrieval precision (as it is also influenced by the variability of atmospheric

CO2). This analysis was performed for Park Falls (USA), Bremen (Germany), and25

Darwin (Australia) providing a consistent estimate of the precision error of about 5–

6 ppm, respectively, which corresponds approximately to 1.5% and is therewith close
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to the expected theoretical value.

In addition to instrument noise there are several other error sources such as errors

resulting from the variability of temperature and water vapour profiles, aerosols, clouds,

and surface spectral reflectivity. Most of these errors were already quantified for earlier

versions of WFM-DOAS (Buchwitz and Burrows, 2004; Buchwitz et al., 2005a). Be-5

cause of the improved albedo treatment in version 1.0, with albedo retrieval and the

extended look-up table interpolation/extrapolation method, the albedo related XCO2

errors shown in Table 1, which could be as large as a few percent in the previous ver-

sion, are now significantly reduced and essentially negligible (absolute value .0.1%)

for typical albedos assumed to be wavelength independent in a given spectral fitting10

window. Table 2 shows the retrieval errors for different natural surface types taking

the full spectral albedo dependence (also within the small spectral fitting windows) into

account. As can be seen, the retrieval errors are well below one percent for typical

surfaces with the exception of snow where the very high albedo (close to 1) in the O2

fitting window leads to a somewhat higher error. However, snow- and ice-covered sur-15

faces are typically filtered out as a side-effect of the PMD cloud detection. Otherwise

an observable XCO2 underestimation would be expected. The albedo related errors for

surface types with albedos higher than 0.3 in at least one fitting window can be further

reduced by adding additional albedos to the reference spectra in the future.

The XCO2 retrieval error due to surface elevation (mean surface pressure) variations20

(e.g., along the orbit) is also considerably reduced due to the better consideration of

surface elevation changes dropping for example from 2.5% in version 0.4 for a surface

elevation of 400 m (Buchwitz et al., 2005a) to 0.3% in version 1.0 by using the new

altitude interpolation/extrapolation scheme.

To estimate the retrieval error due to aerosols several aerosol scenarios have been25

defined (see Tables 3 and 4), the default scenario used for the look-up table gen-

eration being characterized as follows: Maritime aerosol in the boundary layer (BL),

tropospheric visibility and humidity 23 km and 80%, respectively, background strato-

spheric, and normal mesospheric conditions. Besides the rather extreme scenario
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with strongly enhanced aerosol in the boundary layer (urban aerosol in the BL with

visibility of only 2 km and relative humidity of 99%), three additional more typical sce-

narios are considered (using Mie phase function instead of the Henyey-Greenstein

parameterization used for the LUT default scenario): (i) “OPAC background” consists

of continental relatively clean aerosol in the BL and the free troposphere (99.998%5

water soluble), (ii) “OPAC continental” has continental polluted aerosol in the bound-

ary layer (31.399% water soluble and 68.6% soot) and continental average aerosol

(45.79% water soluble and 54.2% soot) in the free troposphere, and (iii) “OPAC desert”

consists of desert aerosol (93.19% mineral – nucleation mode – and 6.81% mineral

–accumulation mode–) in the boundary layer and the continental clean aerosol type in10

the free troposphere. For these three scenarios the sensitivity to aerosols is less than

1%. However, in extreme situations (e.g., very high boundary layer aerosol) the error

can be as high as about 5% because the sensitivity in the O2 A-band is significantly

larger than in the NIR in these cases. Therefore strongly aerosol contaminated scenes

are filtered out as described in Sect. 3.4.15

In order to examine the sensitivity to the variability of temperature, pressure, and

trace gas vertical profiles, simulated spectra for several model atmospheres (extracted

from MODTRAN; Berk et al., 1998) have been generated while the WFM-DOAS look-

up table is based on the US Standard Atmosphere. The analysed atmospheres differ

from the US Standard Atmosphere with respect to temperature, pressure and water20

vapour profiles; the resulting retrieval errors are shown in Table 5. As can be seen, the

XCO2 errors are less than 1% for all cases.

The investigation of errors resulting from profile variability has been extended fo-

cussing on an error analysis relevant for the CO2 seasonal cycle. To specify the errors

originating from unconsidered variability of temperature and trace gas profiles (WFM-25

DOAS uses a single profile in each case for the retrieval), simulated spectra have been

generated using ECMWF temperature and water vapour profiles as well as carbon

dioxide profiles from NOAA’s CarbonTracker model (described below). Park Falls was

chosen as a reference location for this study because it is representative for northern
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hemispheric mid-latitudes and because the choice of this site is helpful in estimating

the error of the retrieved XCO2 seasonal cycle when comparing with the Park Falls FTS

(see Sect. 5).

As one can see in Fig. 8, the CO2 and O2 vertical column errors due to temperature

profile variability cancel to a large extent when calculating the CO2 to O2 column ratio,5

i.e., the CO2 mole fraction, because both absorption bands respond similar to temper-

ature changes. The water vapour profile related error is negligible because the spectral

fitting windows have been selected such that interference with water vapour absorption

is small. Additionally a weighting function (radiance derivative) for water absorption is

included in the CO2 fit and an iteration regarding water vapour is implemented in the10

algorithm further minimizing this error. From the three error sources investigated, the

dominating error is the carbon dioxide vertical profile variability error which is about

0.8% peak-to-peak. When all three error sources are considered together, the total

XCO2 retrieval error is 1.0% peak-to-peak. These findings are consistent with a similar

error analysis for WFM-DOAS performed by Barkley et al. (2006a) restricted to CO215

total column retrieval. The CO2 mixing ratio profile variability error has been defined as

the deviation of the retrieved XCO2 from the true XCO2. When the retrieved XCO2 is

compared with global models or when the retrieved XCO2 is used for inverse modelling,

this error can be reduced by applying the known SCIAMACHY CO2 column retrieval av-

eraging kernels (which characterizes the altitude sensitivity of the CO2 measurements)20

to the model CO2 vertical profiles. The remaining error is the so called smoothing error

which can be estimated when the uncertainty of the model profile is known (typically

this is done by using an estimate of the covariance matrix of the model profile).

5 Discussion of the multi-year XCO2 data set

All SCIAMACHY spectra (Level 1b version 5 converted to Level 1c using the standard25

calibration) for the years 2003, 2004, and 2005 which have been made available by

ESA/DLR, have been processed using the improved retrieval algorithm WFM-DOAS
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version 1.0.

5.1 CO2 yearly averages and annual increase

Figure 2 shows, as an example, the CO2 and O2 total column annual averages for

the year 2003. It can be seen that the spatial variations are very similar (r=0.98)

because both gases are long-lived and therefore well mixed in the atmosphere; hence5

the columns are primarily reflecting Earth’s topography. The small CO2 source and

sink signals we are primarily interested in are hidden in the tiny differences between

the CO2 columns and the O2 columns. These signals can be made visible by computing

XCO2, i.e., the column-averaged dry air mole fraction of CO2, which is the ratio of the

CO2 column and the dry air column. The dry air column is obtained by dividing the O210

column (shown in the bottom panel) by 0.2095, which is the mixing ratio of O2 in dry

air. The corresponding SCIAMACHY XCO2 for 2003 is shown in Fig. 3. For all three

quantities derived from SCIAMACHY, the CO2 and O2 columns and XCO2, the same

filtering criteria have been applied.

The resulting annual composite averages for XCO2, which meet the classification15

“good” defined above, are shown in Fig. 3 (left hand side panels). A significant part

of the CO2 spatial variations shown in Fig. 3 result from the irregular sampling of the

SCIAMACHY XCO2. For example, the mid and high latitudes of the Northern Hemi-

sphere are strongly weighted towards late spring, summer, and early autumn, where

CO2 is known to be much lower than for the (true) yearly average. This uneven weight-20

ing is due to the significantly higher cloud cover in winter but also because of larger

solar zenith angles and snow coverage. As a result, most of the measurements in win-

ter are automatically filtered out by the implemented quality filtering scheme. To assess

the quality of the measured WFM-DOAS CO2 mole fractions globally we performed a

comparison with the XCO2 obtained from the global CO2 assimilation system Carbon-25

Tracker (Peters et al., 2007). The corresponding CarbonTracker XCO2 is shown in the

right hand side panels of Fig. 3.

CarbonTracker has been developed by NOAA ESRL in cooperation with many part-
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ners. CarbonTracker (see also http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/) is

a reanalysis of the recent global surface fluxes of carbon dioxide, as estimated from

a large set of atmospheric CO2 mole fractions produced via a data assimilation sys-

tem. The underlying atmospheric transport model TM5 (Krol et al., 2005) is driven

by meteorological data from ECMWF. The CarbonTracker XCO2 field as used for this5

study has been sampled in space and time as the SCIAMACHY satellite instrument

measures. The SCIAMACHY altitude sensitivity has been taken into account by ap-

plying the SCIAMACHY CO2 column averaging kernels (Buchwitz et al., 2005a) to the

CarbonTracker CO2 vertical profiles (the difference between applying or not applying

the SCIAMACHY averaging kernels is quite small, typically less than 1 ppm). Con-10

cerning the accuracy of CarbonTracker, NOAA’s comparison to about 14,000 indepen-

dent aircraft profiles sampled mostly over North America shows agreement within one

standard deviation of ±1.9 ppm over multiple years, distributed as ±1.5 ppm in winter,

and ±2.7 ppm in summer; biases are within 0.5 ppm in each season and nearly zero

for the multiyear average (Wouter Peters, NOAA, personal communication; see also15

the CarbonTracker product evaluations website http://www.esrl.noaa.gov/gmd/ccgg/

carbontracker/profiles.php showing agreeement within typically ±4 ppm). For all com-

parisons with CarbonTracker the SCIAMACHY CO2 data have been scaled by a con-

stant factor of 1.015 to compensate a small systematic bias between the two data sets,

which is, however, uncritical for application in inverse modelling as constant biases can20

be relatively easy corrected, especially if they are known.

As can be seen in Fig. 3, the CO2 pattern as retrieved from SCIAMACHY are similar

for all years but shifted upwards from one year to the next due to a general quite

homogeneous increase of the retrieved CO2 with time (see also discussion in Sect. 5).

This can also be seen in the CarbonTracker XCO2. The observed CO2 increase is25

also demonstrated by the linear fits shown in Fig. 10 which are almost identical to

CarbonTracker, and amount to about 1.0% from the beginning of 2003 to the end of

2005. In this context it is important to point out, as already explained earlier, that

no a-priori information is used about increasing CO2 in the retrieval procedure. A
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more quantitative discussion of this is given in Buchwitz et al. (2007b). The main

difference between the SCIAMACHY XCO2 and the CarbonTracker XCO2 is that the

retrieved XCO2 spatial pattern are about a factor of two more variable (about ±12 ppm

for SCIAMACHY compared to about ±6 ppm for CarbonTracker).

5.2 CO2 seasonal cycle5

To validate the retrieved XCO2 data, the SCIAMACHY WFM-DOAS version 1.0 XCO2

has been compared with Fourier Transform Spectrometer (FTS) measurements per-

formed at Park Falls, Wisconsin, USA (Washenfelder et al., 2006) (obtained from

http://www.tccon.caltech.edu/) and at Bremen, Germany (Macatangay et al., 2008
1
)

Figure 9 shows the comparison between the FTS and SCIAMACHY data sets for both10

locations based on monthly averages. For the XCO2 data from SCIAMACHY a radius

of 350 km around the measurement site has been selected and the monthly compos-

ite is made of XCO2 data classified as ’good’, which fall within this region. The data

are plotted as anomalies, i.e., with SCIAMACHY and FTS mean values subtracted (on

average the SCIAMACHY data are about 1–2% lower than FTS; the exact biases are15

given in Fig. 9, see d%). To maximize the number of SCIAMACHY data points we used

a slightly relaxed WFM-DOAS quality criterion (allowing an O2 fit residuum RMS up to

0.025 instead of the standard value of 0.02). As can be seen, despite the larger scatter

of the single measurement of SCIAMACHY XCO2, which is on average about 9 ppm,

good agreement is obtained for the monthly composite averages with respect to the20

amplitude and the phase of the seasonal cycle of CO2 over Park Falls. The correlation

coefficient between the two data sets is 0.94. For the standard quality filtering with

somewhat less data points available for comparison, the correlation coefficient is 0.88.

The agreement with the FTS in Bremen is somewhat worse (r=0.73) most likely be-

1
Macatangay, R., Warneke, T., Gerbig, C., Körner, S., Heimann, M., and Notholt, J.: Spatial

Variability of Column Averaged VMRs of CO2 over Bremen, Germany, manuscript in prepara-

tion, 2008.
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cause of the larger variability of the atmospheric CO2 in northern Germany, with many

local sources compared to Park Falls. Assuming that the time dependence of the total

peak-to-peak XCO2 measurement error from the error analysis in Sect. 4 is perfectly

correlated with the CO2 seasonal cycle, which is not exactly the case, the upper bound

of the error of the amplitude of the measured CO2 seasonal cycle due to the examined5

error sources is estimated to be 0.5% or 2 ppm (half of the total XCO2 peak-to-peak

measurement error determined in Sect. 4).

Similar results have been reported recently for a comparison of SCIAMACHY CO2

retrieved using FSI/WFM-DOAS (Barkley et al., 2007) with the Park Falls FTS data.

Based on a comparison of daily data, Barkley et al. (2007) report correlation coef-10

ficients in the range 0.36–0.73 (their Table 1) depending on spatial collocation with

typically higher correlation for the more relaxed spatial collocation limits. For monthly

mean data Barkley et al. (2007) also report a correlation coefficient of 0.94 as found

here for WFM-DOAS. Similar remarks apply to the 1–2% low bias of the SCIAMACHY

XCO2 relative to the Park Falls FTS. Furthermore, also the scatter of the single ground15

pixel XCO2 retrievals of the two independently generated SCIAMACHY data sets is

similar (on average about 9 ppm).

A hemispheric comparison of the WFM-DOAS version 1.0 XCO2 with CarbonTracker

based on daily data is shown in Fig. 10. As can be seen, the retrieved XCO2 sea-

sonal cycle over the Northern Hemisphere shows good agreement with CarbonTracker20

(r=0.86). The northern hemispheric amplitude of the seasonal cycle retrieved by SCIA-

MACHY (6 ppm) is however somewhat larger than for CarbonTracker (4 ppm).

The seasonal variation, as measured by SCIAMACHY, is however significantly differ-

ent for the Southern Hemisphere concerning both amplitude (4–5 ppm for SCIAMACHY

compared to 1–2 ppm for CarbonTracker) as well as phase. Olsen et al. (2004) report25

a seasonal amplitude of ∼3 ppm for southern hemispheric Africa and South America

derived from independent model simulations. Figure 10 shows that the SCIAMACHY

XCO2 over the Southern Hemisphere is significantly noisier (larger scatter of the daily

means) compared to the Northern Hemisphere. This is because of the smaller (ice
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and snow free) landmass in the Southern Hemisphere, to which the SCIAMACHY data

are restricted, resulting in less data available for averaging. This may contribute to the

larger differences to CarbonTracker over the Southern Hemisphere compared to the

Northern Hemisphere but probably cannot explain the significantly different seasonal

cycles. Figure 11 shows the column amounts of SCIAMACHY carbon dioxide and oxy-5

gen in comparison to CarbonTracker (computed from surface pressure and CO2 mole

fraction). The deviations from CarbonTracker of the column amounts have a very simi-

lar structure in the Northern Hemisphere and cancel to a large extent when computing

the mole fraction XCO2 leading to the good agreement demonstrated in Fig. 10. In

the Southern Hemisphere the small additional negative offset in both columns cancels10

perfectly when computing the ratio.

A possible explanation for the deviation of the resulting SCIAMACHY XCO2 sea-

sonal variations from CarbonTracker in the Southern Hemisphere could be a SZA (or

airmass) dependent error resulting for example from neglecting polarization in the ra-

diative transfer (Natraj et al., 2006) or from errors in the spectroscopic data, e.g., errors15

of the air-broadened half width of the CO2 and/or O2 absorption lines, as discussed

in Washenfelder et al. (2006) for the Park Falls XCO2 FTS measurements. Such kind

of errors can contribute to the differences shown in Fig. 10 but probably cannot fully

explain the difference to CarbonTracker over the Southern Hemisphere because of the

much better agreement with CarbonTracker over the Northern Hemisphere. If a SZA20

dependent error for example due to errors in the spectroscopic data would be the only

reason for the difference of the SCIAMACHY and CarbonTracker seasonal cycles, then

the difference should be similar for both hemispheres except for a six months phase

shift. This however is not the case.

Nevertheless, spectroscopic errors may contribute to the differences shown in Fig. 1025

and we estimated the sensitivity of the retrieved XCO2 to changes in the CO2 and O2

absorption line width. Why can line width errors result in a SZA dependent CO2 or O2

column retrieval error? This can be explained by increasing “saturation” of the depth of

non-resolved strong absorption lines with increasing absorber amount along the light
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path (Goody and Yung, 1989), an effect which is also nicely illustrated in Frankenberg

et al. (2005) for SCIAMACHY methane measurements (see their Figs. 1 and 2). Here

saturation refers to the decrease of the sensitivity of the (logarithm of the) measured

spectrum to changes in the absorber amount along the light path, for example due to

an increasing SZA. As a wider line shows less saturation (in the line center) compared5

to a narrower line (assuming identical line intensities and line shape functions), and

because the SZA dependence of the saturation will be different for the two lines, a line

width error may result in a SZA dependent retrieval error. Therefore one typically would

expect an underestimation (overestimation) of the retrieved column which increases

with increasing SZA, if the line width is in reality narrower (wider) than assumed for the10

retrieval (a narrower monochromatic line is deeper compared to an equivalent wider

line, but if the lines are strong and not resolved, the opposite is true). To quantify this

error we performed retrievals based on simulated spectra for a range of solar zenith

angles for different assumed air-broadened line width errors (assuming that the width

of all lines change identically by a certain percentage). The values we report here are15

for the two extreme solar zenith angles, namely 15
◦

(which is approximately the lowest

SZA encountered by SCIAMACHY) and 75
◦

(the upper limit accepted for this study).

We found that if all CO2 lines would (in reality) be narrower by 1% compared to the

air-broadened line widths currently assumed for retrieval (HITRAN 2004, Rothman et

al., 2005), this would result in retrieved CO2 column being underestimated by ∼0.4%20

for a SZA of 15
◦

and by ∼0.5% for a SZA of 75
◦
, i.e., the underestimation increases with

increasing SZA, in agreement with the discussion given above, by 0.1% for CO2. For

O2 we found a larger offset, but a negligible SZA dependence compared to CO2. This

means that the SZA dependent part of the XCO2 error appears to be dominated by the

SZA dependent part of the CO2 column error, i.e., 0.1% if the line widths would be off25

by 1%. We repeated this investigation for a range of line width errors and SZAs and

found that the SZA dependent part of the XCO2 error depends to a good approximation

linearly on the assumed line width error resulting in an approximately 0.5 ppm XCO2

error (peak-to-peak) per 1% line width error (the results for Lauder, New Zealand, are
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shown in Fig. 12). This means that the differences to CarbonTracker over the Southern

Hemisphere of about 6 ppm peak-to-peak would correspond to an air-broadened line

width error of 12% which is higher, but not very much higher, than the uncertainty of the

spectroscopic data which are 5–10% for CO2 (2–5% for O2). Finally we would like to

point out that the retrieved XCO2 over the Southern Hemisphere (or, more precisely, the5

difference to CarbonTracker) is (anti-)correlated with the SZA, which has a maximum

in winter, i.e., in the middle of the year. This is not true, however, for the Northern

Hemisphere, as the difference to CarbonTracker is not symmetric with respect to the

middle of the year. From this one can conclude that a SZA dependent error, for example

due to spectroscopic errors, may contribute significantly to the differences between the10

SCIAMACHY and CarbonTracker XCO2 shown in Fig. 10 but cannot explain all the

differences.

Figure 13 shows global bi-monthly maps of the XCO2 spatial pattern observed when

sampling the seasonal cycle during its (northern hemispheric) XCO2 maximum and

minimum time periods. Significant seasonal variability is visible in both the SCIA-15

MACHY and the CarbonTracker data. This variability of the CO2 spatial pattern is

dominated by the seasonal uptake and release of CO2 by the Northern Hemisphere

terrestrial biosphere, resulting in much lower XCO2 during July/August compared to,

e.g., May/June in the northern hemispheric mid and high latitudes covered by, e.g.,

the boreal forests. Figure 13 shows that both data sets, SCIAMACHY and Carbon-20

Tracker XCO2, are clearly correlated. The SCIAMACHY data show however signifi-

cantly larger variability; for this reason two different color scales have been used for

Fig. 13 (±14 ppm for SCIAMACHY compared to ±9 ppm for CarbonTracker).

5.3 CO2 regional pattern

To enable a more detailed comparison on the regional scale, Figs. 14 and 15 show25

monthly composite averages of the satellite data and CarbonTracker over large parts

of the Northern Hemisphere, namely USA, Canada and Eurasia. The horizontal reso-

lution of the maps shown in Figs. 14–15 is 7
◦×7

◦
. The data are shown as anomalies,
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i.e., the mean value has been subtracted for each map to be able to better compare

the spatial pattern. As can be seen, the two independent XCO2 data sets are clearly

correlated in space and time indicating that the satellite data capture spatio-temporal

atmospheric CO2 variability on a regional scale. Many of the larger scale features

which show up in the CarbonTracker XCO2 are also visible in the satellite data, for5

example the extended region of low XCO2 over eastern Canada in August 2005 and

the relatively high XCO2 over the southern USA in particular in July and August. There

are however also significant differences. The differences with respect to CarbonTracker

shown in Figs. 14 and 15 cannot be explained by a possible SZA dependent retrieval

error discussed in the previous section, as the variation of the SZA is small for the10

maps shown in Figs. 14 and 15 (especially in the east to west direction where the SZA

is essentially constant) and because only XCO2 anomalies are shown, i.e., the XCO2

mean value (which could be affected by a SZA dependent error) has been subtracted

for each map. Typically the retrieved variability in the SCIAMACHY data product is

about 4 ppm (∼1% of 380 ppm) higher compared to CarbonTracker. But depending15

on time and location the differences can exceed 8 ppm. Similar conclusions can be

drawn for other time periods (2003 and 2004) and other regions (e.g., South America),

not shown here. A clear interpretation of the differences to CarbonTracker cannot be

offered at present. As discussed in Sect. 5 the estimated accuracy of CarbonTracker

is about a few ppm. In the error analysis of the WFM-DOAS retrieval algorithm pre-20

sented in Sect. 4 we have identified several error sources which may contribute to the

overall error of a single measurement. Most of the individual errors are typically less

than 1% for a single measurement but the results shown in Figs. 14–15 are averages

over many individual measurements. The random error (precision) is probably very

small, much smaller than 1%, but it is difficult to reliably estimate the systematic error25

which remains after averaging many individual measurements; the overall systematic

error can be smaller but also larger than 1%. One can however assume that the er-

rors of the CarbonTracker and the satellite XCO2 are uncorrelated. In this case the

1-3 percent systematic differences between the satellite and the CarbonTracker XCO2
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anomalies may be interpreted as an upper limit of the relative accuracy of the satellite

XCO2. Based on this one may conclude that the relative accuracy of the satellite XCO2

is about 1–2%.

In order to determine if regionally elevated CO2 originating from anthropogenic CO2

emissions can be detected, we averaged all the SCIAMACHY XCO2 retrievals for5

the years 2003–2005. Figure 16 shows the resulting map (resolution 0.5
◦×0.5

◦
) for

Germany and surrounding countries. As can be seen, the SCIAMACHY XCO2 cor-

relates reasonably well with population density (CIESIN/CIAT, 2005) and EDGAR an-

thropogenic CO2 emissions (EDGAR 3.2 Fast Track 2000 dataset (32FT2000) Olivier

et al., 2005). All three data sets show an extended region of high values covering the10

region southern Netherlands/north-western Belgium/western Germany. Shown is also

the CarbonTracker XCO2. The comparison with CarbonTracker however does not allow

a quantitative comparison at a resolution of 0.5
◦×0.5

◦
as the resolution of the Carbon-

Tracker XCO2 data set used for this study is not high enough (4
◦
latitude×6

◦
longitude).

Despite the mismatch of the resolution one can see some correlations with the SCIA-15

MACHY XCO2, e.g., elevated XCO2 especially over northern Belgium/southern Nether-

lands and over northern Germany. The elevated CO2 over northern Germany, visible

in both the SCIAMACHY and the CarbonTracker XCO2, is not well correlated with

population density and the EDGAR CO2 emissions and may result from transport in

combination with the rather poor sampling of the SCIAMACHY XCO2 measurements20

(the number of measurements per grid cell is about 35 for Germany; the averaging is

strongly weighted towards cloud free days in late spring, summer, and early autumn;

see global monthly composite maps for 2003–2005 on the WFM-DOAS website http:

//www.iup.uni-bremen.de/sciamachy/NIR NADIR WFM DOAS/index.html). This trans-

port aspect needs further study using higher resolution CarbonTracker XCO2 data sets25

in the future. Figure 16 shows that the XCO2 regional enhancements are only on the

order of 1 percent (4 ppm) even for regions of very strong emissions sources (emitting

several 10 Tg (=Mt) CO2 per year). This is due to the large amount of CO2 already

contained in the atmosphere in combination with the quite large ground pixel size of
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SCIAMACHY (note that 370 ppm XCO2 corresponds to about 10 Mt CO2 in a single

ground pixel of size 30×60 km
2
). Nevertheless, Fig. 16 indicates that elevated CO2

originating from regional anthropogenic CO2 emissions can be detected. To the best

of our knowledge regionally elevated CO2 arising from anthropogenic CO2 emissions

has until now not been detected using measurements from space.5

6 Conclusions

We have presented and discussed a multi-year global data set of atmospheric carbon

dioxide column-averaged dry air mole fractions, XCO2. The XCO2 data set has been

retrieved from the spectral near-infrared nadir observations of the SCIAMACHY instru-

ment onboard the European environmental satellite ENVISAT using the significantly10

improved version 1.0 of the retrieval algorithm WFM-DOAS. The quality of the global

SCIAMACHY XCO2 data set has been assessed by a combination of an error analysis

using simulated retrievals, comparisons with a limited number of independent XCO2

measurements obtained using ground-based FTS, and comparisons with XCO2 from

NOAA’s global assimilation system CarbonTracker.15

The largest differences with respect to the reference data which we have identi-

fied were over the Sahara where SCIAMACHY XCO2 is overestimated by a few per-

cent under conditions of highly elevated desert dust storm aerosol as identified using

TOMS/Earth Probe Absorbing Aerosol Index (AAI) (Herman et al., 1997). We have

shown that XCO2 has smaller errors in this case than the absolute CO2 columns due20

to cancellation of errors when dividing the retrieved CO2 columns by simultaneously

retrieved O2. We found however that this does not fully eliminate all aerosol related

errors. Therefore, for most of the results presented here, we have applied a threshold

filter based on the AAI to remove strongly aerosol contaminated scenes.

Currently, the CO2 column-averaged dry air mole fraction is only measured at25

a few ground stations and only recently by a new network of FTS stations (see,

for example, the Total Carbon Column Observing Nework (TCCON) website: http:
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//www.tccon.caltech.edu). The comparison of the SCIAMACHY XCO2 with the XCO2

FTS measurements at Park Falls, Wisconsin, USA and Bremen, Germany, which are

both part of TCCON, showed good agreement with respect to the amplitude and the

phase of the CO2 seasonal cycle for the monthly composite averages.

To assess the quality of the data globally, we have performed comparisons with the5

recently released output of NOAA’s global assimilation system CarbonTracker. To en-

able a meaningful comparison, the CarbonTracker data have been sampled in space

and time as SCIAMACHY measures and the SCIAMACHY averaging kernels have

been applied to CarbonTracker to take the altitude sensitivity of the SCIAMACHY CO2

retrievals into account. In general we found reasonable to good agreement with Car-10

bonTracker, for example concerning the increase of carbon dioxide with time globally

and concerning the CO2 seasonal cycle over the Northern Hemisphere where a large

uptake of atmospheric CO2 is observed typically in July and August. This uptake is

attributed primarily to vegetation during the growing season, i.e., by the terrestrial bio-

sphere. On the regional scale the satellite data show in general similar spatial pattern15

as CarbonTracker but exhibit typically higher variability.

From the comparison with the limited reference data we conclude that the SCIA-

MACHY XCO2 data set over land can be characterized by a systematic low bias of

about 1.5% as concluded from the mean difference relative to the FTS and Carbon-

Tracker, and by a relative accuracy of about 1–2% for monthly averages at a horizontal20

resolution of 7
◦×7

◦
as concluded from the comparison of regional XCO2 anomalies

with CarbonTracker. We further estimate the single ground pixel retrieval precision to

be about 1–2% (∼6 ppm) as concluded, for example, from the mean of the standard

deviations of the daily SCIAMACHY XCO2 at given locations.

When averaging the SCIAMACHY XCO2 over all three years we find reasonable cor-25

relation with EDGAR anthropogenic CO2 emissions for Germany, The Netherlands and

Belgium indicating that regionally elevated CO2 arising from regional anthropogenic

CO2 emissions can be detected from space.

In summary, we have shown that significant progress has been made in our under-
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standing and the quality of the carbon dioxide data product derived from the SCIA-

MACHY nadir observations and that the new WFM-DOAS data set comes closer to

the demanding accuracy and precision requirements of 1% or better needed for sig-

nificant CO2 surface flux uncertainty reduction. We identified primarily two aspects

which need further study: (i) the identification of the cause (or causes) of the difference5

between the SCIAMACHY and CarbonTracker XCO2 seasonal cycle over the South-

ern Hemisphere, and (ii) an assessment of the significance of the observed regional

XCO2 spatio-temporal pattern with respect to their information content on regional CO2

sources and sinks.

The SCIAMACHY XCO2 data set presented and discussed here is available from the10

authors on request. Details concerning data format and access as well as supplemen-

tary information such as monthly composite maps covering the entire three years time

period are given on the SCIAMACHY/WFM-DOAS website http://www.iup.uni-bremen.

de/sciamachy/NIR NADIR WFM DOAS/index.html.

In the future we will aim at further improving the retrieval algorithm taking into ac-15

count, for example, updates of the spectroscopic line parameters and better consider-

ation of meteorological parameters (e.g., by taking advantage of temperature and pres-

sure vertical profiles from meteorological analysis) and light path variations (caused by

the variability of aerosols, clouds and the surface spectral reflectivity). One of the

challenges will be to significantly further improve the accuracy without increasing the20

computational speed by many orders of magnitude.
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Table 1. Results of the error analysis for different constant albedos performed by applying

WFM-DOAS to simulated SCIAMACHY spectra. The results are valid for a solar zenith angle

of 50
◦

and a surface elevation corresponding to sea level.

CO2 column O2 column XCO2

Albedo error [%] error [%] error [%]

0.003 0.63 0.89 –0.26

0.03 –0.01 0.01 –0.02

0.05 –0.05 –0.02 –0.03

0.08 –0.04 –0.01 –0.03

0.10 –0.01 0.01 –0.02

0.15 –0.13 –0.16 0.03

0.20 –0.13 –0.18 0.05

0.30 –0.01 0.01 –0.02

0.40 0.18 0.31 –0.13
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Table 2. As Table 1 but for the spectral albedos of natural materials shown in Fig. 7 taken from

the ASTER and USGS spectral libraries.

Surface type CO2 column O2 column XCO2

error [%] error [%] error [%]

Sand (Entisol) 0.13 0.03 0.10

Soil (Mollisol) 0.41 0.13 0.28

Deciduous (Aspen) 0.22 0.17 0.05

Conifers-Meadow –0.01 0.11 –0.12

Rangeland –0.11 –0.04 –0.07

Open Ocean 0.06 0.16 –0.10

Medium Snow 0.37 1.83 –1.43
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Table 3. Aerosol scattering (ASOD) and aerosol absorption vertical optical depth (AAOD)

in the O2 and CO2 fitting windows for the aerosol scenarios used in the error analysis. For

comparison the Rayleigh scattering vertical optical depth (RSOD) has also been included.

Aerosol scenario 756 nm 1560 nm

Look-up table default ASOD: 0.24669 0.17369

AAOD: 0.00291 0.00307

OPAC background ASOD: 0.17929 0.04264

AAOD: 0.00599 0.00557

OPAC continental ASOD: 0.16420 0.04794

AAOD: 0.02373 0.01411

OPAC desert ASOD: 0.22740 0.17568

AAOD: 0.01406 0.00419

Extreme in BL ASOD: 2.12661 0.91676

AAOD: 0.13324 0.07892

RSOD: 0.02674 0.00145
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Table 4. Results of the error analysis for various aerosol scenarios. The results are valid for an

albedo of 0.1, a solar zenith angle of 50
◦
, and a surface elevation corresponding to sea level.

Aerosol scenario CO2 column O2 column XCO2

error [%] error [%] error [%]

OPAC background –0.61 –0.07 –0.54

OPAC continental –0.70 –0.05 –0.65

OPAC desert –0.14 –0.49 0.35

Extreme in BL –1.16 –6.50 5.71
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Table 5. Retrieval errors resulting from applying WFM-DOAS to various model atmospheres

valid for an albedo of 0.1, a solar zenith angle of 50
◦
, and a surface elevation corresponding

to sea level. The analysed atmospheres differ from the US Standard Atmosphere used as

reference with respect to temperature, pressure and water vapour profiles.

Atmosphere CO2 column O2 column XCO2

error [%] error [%] error [%]

Sub-artic summer 0.04 –0.38 0.42

Sub-artic winter 0.17 0.67 –0.50

Mid-latitude summer –0.15 –0.55 0.40

Mid-latitude winter 0.47 0.66 –0.19

Tropical –0.54 –0.68 0.14
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Fig. 1. SCIAMACHY nadir spectrum, simulated with the radiative transfer model SCIATRAN (Buchwitz et al.,
2000a,b), covering the entire spectral region observed by SCIAMACHY (top). The three spectral fitting windows for O2,
CO2, and CH4 as used by WFM-DOAS version 1.0 are indicated by the shaded areas. WFM-DOAS example fits are
shown below (the symbols are the SCIAMACHY measurements, the solid lines correspond to the fitted WFM-DOAS
linearized radiative transfer model). A detailed discussion of the methane results is given in Schneising et al. (2008)
(Part 2). Shown in the top panel are also channel 7 and channel 8 which cover many CO2 and CH4 absorption lines
but are not used for WFM-DOAS version 1.0 due to systematic retrieval errors caused by the varying ice layers on the
cold detectors.
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Fig. 2. CO2 (top) and O2 (bottom) total vertical columns for the year 2003 as retrieved from

SCIAMACHY. Both gases are long-lived and therefore well mixed in the atmosphere; hence the

columns of the two gases are well correlated (r=0.98) and the spatial pattern primarily reflect

the Earth’s topography.
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Fig. 3. Three years of SCIAMACHY carbon dioxide column-averaged dry air mole fractions

(left) as retrieved by WFM-DOAS version 1.0 (WFMDv1.0) compared to NOAA’s CarbonTracker

(right) sampled as SCIAMACHY measures. The color scales are different for SCIAMACHY

and CarbonTracker to consider the higher variability of the SCIAMACHY XCO2 (±12.5 ppm)

compared to CarbonTracker (±6.0 ppm). The SCIAMACHY CO2 shown here has been aerosol

filtered using TOMS/Earth Probe Absorbing Aerosol Index (AAI) (see main text for details).
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Fig. 4. The left panels shows SCIAMACHY XCO2 not filtered for aerosol contamination (top:

June 2003, bottom: November 2003). The two panels on the right show the Absorbing Aerosol

Index (AAI) data product from TOMS/Earth Probe.
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Fig. 5. Yearly averages of SCIAMACHY CO2 showing the data without (left) and with (right)

aerosol (AAI) filtering. The AAI filtered SCIAMACHY data show better agreement with Car-

bonTracker (see Fig. 3) than the unfiltered data. Note that the panels shown on the right are

identical with the left hand side panels of Fig. 3.
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Fig. 6. Comparison between two SCIAMACHY XCO2 data products. On the left hand side the

standard XCO2 data product is shown which is based on normalizing the measured CO2 col-

umn by the simultaneously measured O2 column without (top) and with (bottom) AAI (aerosol)

filtering applied. On the right hand side the measured CO2 is normalized using model O2

columns obtained from CarbonTracker (meteorological) surface pressure.
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Fig. 7. Spectral albedos of different natural surface types. Reproduced from the ASTER Spec-

tral Library through the courtesy of the Jet Propulsion Laboratory, California Institute of Technol-

ogy, Pasadena, California (©1999, California Institute of Technology) and the Digital Spectral

Library 06 of the U.S. Geological Survey.
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Fig. 8. Results of an error analysis of the SCIAMACHY XCO2 retrievals based on simulated retrievals focusing on the
error of the CO2 seasonal cycle. For each month simulated spectra have been computed using different vertical profiles
of temperature, water vapour, and CO2. The time dependent temperature and water vapour profiles are from ECMWF;
the CO2 profiles are from CarbonTracker. The simulations correspond to Park Falls, Wisconsin, USA, and are assumed
to be approximately representative for northern hemispheric mid-latitudes. The top panel shows the retrieval errors for
the CO2 and O2 column (in red and blue, respectively) and for XCO2 (black) due to temperature profile variability. The
second panel shows the error due to CO2 profile variability (for the retrieval a constant CO2 mixing ratio vertical profile
is assumed). The third panel shows the error due to water vapour variability. The bottom panel shows the total error
when all three error sources are combined.

5528

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/5477/2008/acpd-8-5477-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/5477/2008/acpd-8-5477-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 5477–5536, 2008

Greenhouse gases

from satellite –

Part 1: CO2

O. Schneising et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Fig. 9. Comparison of the satellite XCO2 (blue) with ground based Fourier Transform Spectroscopy (FTS) mea-
surements (red) for Park Falls, Wisconsin, USA (top), and Bremen, northern Germany (bottom). Also included are
corresponding CarbonTracker results (green). Shown are comparisons of XCO2 anomalies, i.e., the corresponding
mean values have been subtracted. All quality-filtered SCIAMACHY measurements within a radius of 350 km around
the ground station are considered for the comparison. The thin light blue vertical bars correspond to the standard
deviation of the SCIAMACHY data within a given month, i.e., correspond to the measured single ground pixel XCO2

variability. The thicker (darker) blue vertical bars are an estimate of the statistical error of the SCIAMACHY monthly
mean XCO2. The red bars show the standard deviation of the FTS data. The following numbers have been computed
based on the monthly averages: d% is the mean difference SCIAMACHY–FTS in percent, s% denotes the standard
deviation of the difference in percent, and r is the correlation coefficient. Note that these numbers are valid for the
absolute XCO2, i.e., not for the anomalies, and for SCIAMACHY XCO2 which has not been scaled by 1.015 (therefore
d% quantifies the systematic bias of the SCIAMACHY XCO2 relative to the FTS).
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Fig. 10. Comparison of the SCIAMACHY (black) and CarbonTracker (red) XCO2 for the Northern Hemisphere (top
left), the Southern Hemisphere (top right) and for the interhemispheric XCO2 difference (bottom). For the comparison
both the daily SCIAMACHY and CarbonTracker data have been gridded on a common 0.5

◦×0.5
◦

latitude/longitude grid.
The symbols show the daily average of all coincident grid cells in the corresponding hemisphere. For SCIAMACHY
all measurements passing the aerosol filter have been averaged for which the WFMDv 1.0 quality flag indicates a
“good” measurement. The solid lines represent a 90 days running average and the straight lines the corresponding
linear fits further demonstrating the increase of XCO2 with time. For each hemisphere the following numbers have
been computed based on the (not smoothed) daily averages: d% is the mean difference SCIAMACHY–CarbonTracker
in percent, s% denotes the standard deviation of the difference in percent, and r is the correlation coefficient. Note
that the SCIAMACHY XCO2 has been scaled with 1.015 to compensate for an approximately 1.5% low bias relative to
CarbonTracker (as demonstrated by d% which is essentially zero).
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Fig. 11. As Fig. 10 but for the column amounts of carbon dioxide (left) and oxygen (right). The

SCIAMACHY CO2 has been scaled with 1.015. The deviations of the CO2 and O2 columns

from CarbonTracker have a very similar structure in the Northern Hemisphere (top) and can-

cel to a large extent when computing the mole fraction XCO2 leading to the good agreement

between SCIAMACHY and CarbonTracker demonstrated in the previous figure. In the South-

ern Hemisphere (bottom) the small additional negative offset in both columns cancels nearly

perfectly when computing the ratio.
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Fig. 12. Sensitivity of the retrieved SCIAMACHY XCO2 with respect to the CO2 air-broadened

line width for Lauder, New Zealand. Each curve corresponds to a different assumed error of

the air-broadened line width. The blue curve, for example, corresponds to a line width error of

5% (g*0.95 means that a true line width is assumed which is 0.95 times the line width assumed

for the XCO2 retrieval). All errors are shown as percentage errors (negative values correspond

to an underestimation of the retrieved XCO2) and as anomalies, i.e., the mean value of each

curve has been subtracted to highlight the time (SZA) dependence of the potential retrieval

error.
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Fig. 13. Bi-monthly averages of the SCIAMACHY XCO2 (left) compared to CarbonTracker

(right). Shown are only those measurements for which the WFM-DOAS quality flag indicates

a good measurement (see main text for details). The SCIAMACHY XCO2 has been aerosol

filtered. Note that different color scales have been used for SCIAMACHY (±14 ppm) and Car-

bonTracker (±9 ppm).
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Fig. 14. The spatial pattern of XCO2 over parts of the United States of America and Canada. The XCO2 field
is shown here as anomaly, i.e., the XCO2 mean value has been subtracted for each panel. The first column shows
the XCO2 as retrieved from SCIAMACHY. The second column shows the CarbonTracker XCO2 using an appropriate
(different) color scale. The last column also shows the CarbonTracker XCO2 but using the same color scale as has been
used for the satellite data. The red rectangles indicate the spatial positions of observation sites used in CarbonTracker.
The rows correspond to different months of the year 2005. The spatial resolution is 7

◦×7
◦
. The root mean square

(RMS) differences between SCIAMACHY and CarbonTracker for the region shown are: July: 2.3 ppm (0.6%), August:
2.2 ppm (0.6%), and September: 2.9 ppm (0.8%).
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Interactive DiscussionFig. 15. As Fig. 14 but for Europe, Asia and parts of northern Africa. The RMS differences

between SCIAMACHY and CarbonTracker for the region shown are: July: 4.3 ppm (1.2%),

August: 4.0 ppm (1.1%), September: 5.0 ppm (1.3%).
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Fig. 16. SCIAMACHY XCO2 over Germany (top left, 0.5
◦×0.5

◦
gridded, scaled with 1.015) dur-

ing 2003-2005 compared to population density (top right) (CIESIN/CIAT, 2005), anthropogenic

CO2 emissions (bottom right, EDGAR 32ft2000, 1
◦×1

◦
) (Olivier et al., 2005), and CarbonTracker

XCO2 (bottom left, model resolution 4
◦×6

◦
sampled as SCIAMACHY measures).
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