
HAL Id: hal-00304016
https://hal.science/hal-00304016

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gas/particle partitioning of carbonyls in the
photooxidation of isoprene and 1,3,5-trimethylbenzene

R. M. Healy, J. C. Wenger, A. Metzger, J. Duplissy, M. Kalberer, J. Dommen

To cite this version:
R. M. Healy, J. C. Wenger, A. Metzger, J. Duplissy, M. Kalberer, et al.. Gas/particle partitioning of
carbonyls in the photooxidation of isoprene and 1,3,5-trimethylbenzene. Atmospheric Chemistry and
Physics Discussions, 2008, 8 (2), pp.4727-4764. �hal-00304016�

https://hal.science/hal-00304016
https://hal.archives-ouvertes.fr


ACPD

8, 4727–4764, 2008

Gas/particle

partitioning of

carbonyls

J. Wenger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Atmos. Chem. Phys. Discuss., 8, 4727–4764, 2008

www.atmos-chem-phys-discuss.net/8/4727/2008/

© Author(s) 2008. This work is distributed under

the Creative Commons Attribution 3.0 License.

Atmospheric
Chemistry

and Physics
Discussions

Gas/particle partitioning of carbonyls in

the photooxidation of isoprene and

1,3,5-trimethylbenzene

R. M. Healy
1
, J. C. Wenger

1
, A. Metzger

2
, J. Duplissy

2
, M. Kalberer

2,3
, and

J. Dommen
3

1
Department of Chemistry and Environmental Research Institute, University College Cork,

Cork, Ireland
2
Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, Villigen, Switzerland

3
Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland

Received: 11 January 2008 – Accepted: 11 January 2008 – Published: 5 March 2008

Correspondence to: J. C. Wenger (j.wenger@ucc.ie)

Published by Copernicus Publications on behalf of the European Geosciences Union.

4727

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/4727/2008/acpd-8-4727-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/4727/2008/acpd-8-4727-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 4727–4764, 2008

Gas/particle

partitioning of

carbonyls

J. Wenger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Abstract

A new denuder-filter sampling technique has been used to investigate the gas/particle

partitioning behaviour of the carbonyl products from the photooxidation of isoprene

and 1,3,5-trimethylbenzene. A series of experiments was performed in two atmo-

spheric simulation chambers at atmospheric pressure and ambient temperature in5

the presence of NOx and at a relative humidity of approximately 50%. The denuder

and filter were both coated with the derivatizing agent O-(2,3,4,5,6-pentafluorobenzyl)-

hydroxylamine (PFBHA) to enable the efficient collection of gas- and particle-phase

carbonyls respectively. The tubes and filters were extracted and carbonyls identified as

their oxime derivatives by GC-MS. The carbonyl products identified in the experiments10

accounted for around 5% and 10% of the mass of secondary organic aerosol formed

from the photooxidation of isoprene and 1,3,5-trimethylbenzene respectively.

Experimental gas/particle partitioning coefficients were determined for a wide

range of carbonyl products formed from the photooxidation of isoprene and 1,3,5-

trimethylbenzene and compared with the theoretical values based on standard absorp-15

tive partitioning theory. Photooxidation products with a single carbonyl moiety were not

observed in the particle phase, but dicarbonyls, and in particular, glyoxal and methylgly-

oxal, exhibited gas/particle partitioning coefficients several orders of magnitude higher

than expected theoretically. These findings support the importance of heterogeneous

chemistry as a pathway for SOA formation and growth during the atmospheric degra-20

dation of anthropogenic and biogenic hydrocarbons.

1 Introduction

The atmospheric degradation of volatile organic compounds (VOCs) yields a range of

oxygenated products that, depending on their physical and chemical properties, can

lead to the formation of secondary organic aerosol (SOA). There is considerable in-25

terest in SOA because it accounts for a significant fraction (up to 80%) of ambient at-
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mospheric aerosol and can therefore affect climate and human health (Pöschl, 2005).

Despite extensive efforts over recent years, there remain uncertainties in the environ-

mental impact of SOA, because of a lack of knowledge on the sources, composition,

properties and mechanisms for its formation (Fuzzi et al., 2006).

Biogenic and anthropogenic sources of VOCs both contribute to SOA formation. Un-5

til very recently the major biogenic SOA precursors were believed to be the terpenes

and sequiterpenes. However, the importance of isoprene as a biogenic SOA precursor

has been confirmed in a number of recent field and laboratory experiments (Claeys

et al., 2004; Dommen et al., 2006; Edney et al., 2005; Kleindienst et al., 2006; Kroll

et al., 2005, 2006). Whilst biogenic VOCs are the dominant contributors to global10

SOA formation, anthropogenic species such as the aromatic compounds (benzene,

toluene, xylenes and trimethylbenzenes) can contribute significantly to the production

of SOA in urban areas (Kanakidou et al., 2005). A considerable amount of informa-

tion on the SOA-forming potential of individual biogenic and anthropogenic VOCs has

been obtained from simulation chamber experiments performed over the last 10 years15

(Kroll et al., 2006; Ng et al., 2007; Odum et al., 1997). However, elucidation of the

processes and chemical species responsible for SOA formation has proven more dif-

ficult. Although a number of recent studies have utilised state-of-the-art methods to

investigate the chemical composition of SOA, in general the overall yield of products

detected in the particle phase is typically less than 30% (Forstner et al., 1997; Hamil-20

ton et al., 2005). Some of the species detected in SOA are first generation oxidation

products that have partitioned into the particle phase, while others are formed through

further gas-phase oxidation of the products followed by partitioning (Jang and Kamens,

2001). In addition, the identification of oligomers in SOA has added further complexity

to the overall mechanistic picture of SOA formation and indicates that heterogeneous25

and particle-phase reactions may also play an important role (Dommen et al., 2006;

Kalberer et al., 2004).

Clearly more information is required to improve our understanding of SOA formation.

An important piece of information that is often missing from chamber experiments is
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knowledge of the gas/particle partitioning of the VOC oxidation products, which can

be particularly useful in determining the specific oxidation products involved in SOA

formation. However, experimentally determined gas/particle partitioning coefficients of

oxidation products have only been reported for a limited number of biogenic SOA pre-

cursors, such as α-pinene and other monoterpenes (Yu et al., 1999), and toluene as5

the only anthropogenic SOA precursor (Jang and Kamens, 2001). The objective of

this work was to use a recently developed denuder-filter system (Temime et al., 2007)

to investigate the gas/particle partitioning of the carbonyl photooxidation products of

isoprene and 1,3,5-trimethylbenzene (1,3,5-TMB). Experiments were carried out in

simulation chambers at the Paul Scherrer Institut (PSI) and University College Cork10

(UCC) for intercomparison purposes. The results are used to determine experimental

gas/particle partitioning coefficients and to provide insights into the oxidation products

involved in SOA formation, along with their contribution to the chemical composition of

the particle phase.

2 Experimental15

2.1 PSI experiments

The simulation chamber at PSI has been used for several photooxidation studies and

is described in detail elsewhere (Paulsen et al., 2005). Briefly, the apparatus consists

of a cubic 27 m
3

FEP Teflon foil chamber housed in a wooden temperature-controlled

enclosure. The walls and ceiling of the enclosure are covered with aluminium foil to20

maximize light intensity and diffusion. Light is provided by four xenon arc lamps (4 kW,

XPO 4000 W/HS, OSRAM), with one in each corner of the enclosure. Borosilicate

filters are located in front of each lamp to reduce actinic UV radiation below 300 nm.

Five photooxidation experiments were performed in the PSI chamber. The initial

starting conditions for the experiments are given in Table 1. All experiments were25

carried out at a relative humidity of approximately 50%, a temperature of 20
◦
C, and

4730

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/4727/2008/acpd-8-4727-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/4727/2008/acpd-8-4727-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 4727–4764, 2008

Gas/particle

partitioning of

carbonyls

J. Wenger et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

atmospheric pressure. For each experiment the chamber was first humidified, followed

by the introduction of NO and NO2. Finally, known amounts of either isoprene or 1,3,5-

TMB were evaporated in a heated glass bulb and introduced in a flow of purified air. The

mixture was allowed to mix for 30 min before turning on the lights. Parent hydrocarbons

and photooxidation products were monitored using proton-transfer mass spectrometry5

(PTR-MS) (Ionicon Analytik GmbH). Ozone was measured using a commercial Envi-

ronics S300 instrument, whilst NO and NO2 were quantified using a Thermo Environ-

mental Instruments (42C) analyzer equipped with a photolytic converter to selectively

reduce NO2 to NO. Particle size distributions (14–964 nm in diameter) were measured

with a scanning mobility particle sizer and a TSI 3010 condensation particle counter.10

The gas- and particle-phase carbonyl oxidation products generated in the photoox-

idation experiments were separated and simultaneously collected using a denuder-

filter sampling device recently developed at UCC (Temime et al., 2007). It consists of

an annular denuder coated with XAD-4 resin and the derivatizing agent O-(2,3,4,5,6-

pentafluorobenzyl)-hydroxylamine (PFBHA) to enable on-tube conversion of gas-phase15

carbonyls to their oxime derivatives which can be extracted and identified by GC-MS.

The filter is also doped with PFBHA to enable collection of carbonyls in the particle

phase. A second denuder tube is located downstream of the filter to trap any parti-

cle phase species that might revert to the gas phase during sampling. A schematic

diagram of this denuder-filter-denuder (D-F-D) configuration is shown in Fig. 1.20

The concentrations of the carbonyls produced in these photooxidation experiments

were considerably smaller than those used in the original tests of the denuder per-

formance (Temime et al., 2007). As a result, the amount of PFBHA used for coating

the denuder tubes was reduced by a factor of four (to 0.02 g), while the filters were

doped with 0.002 g of PFBHA. The use of a lower amount of PFBHA prompted another25

series of tests to ensure efficient collection of the gas-phase carbonyls. In order to de-

termine the collection efficiency, an alternative sampling configuration, consisting of a

filter-denuder-denuder (F-D-D), was employed as shown in Fig. 1. A second method to

test the collection efficiency of the denuder was also performed. This involved placing
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the PTR-MS inlet at the entrance and exit of a coated denuder tube while the reac-

tion mixture from the chamber was pumped through the denuder at 10 L min
−1

. Thus

the breakthrough of gas-phase products was measured in real time and an optimum

sampling duration was evaluated.

The denuder-filter apparatus was located inside the temperature-controlled chamber5

housing in order to avoid a temperature gradient during sampling which could affect

gas/particle partitioning of the photooxidation products. Based on the collection ef-

ficiency results a sampling duration of 50 min was chosen with a flow of 10 L min
−1

.

Denuder-filter samples were taken at regular intervals during each experiment using

both the D-F-D and F-D-D configurations. The denuder tubes and filters were coated10

as described previously (Temime et al., 2007) and extracted immediately after sampling

using a solvent mixture (methanol/dichloromethane/acetonitrile 0.5/8.5/1 v/v/v) (20 mL

per tube and 10 mL per filter). The extracts were stored in the dark at room temper-

ature overnight and then reduced to a known volume (approximately one third of the

original volume) by rotary evaporation, filtered using a PTFE membrane filter (pore size15

0.45µm), transferred to vials and shipped to UCC for GC-MS analysis. Blank denuder

and filter samples were prepared and extracted in the same way.

2.2 UCC experiments

Photooxidation of isoprene and 1,3,5-TMB was also performed in the simulation cham-

ber at UCC in order to compare aerosol yields and partitioning data for the oxidation20

products formed in the two chambers. The UCC chamber is described in detail else-

where (Temime et al., 2007). Briefly, the chamber is rectangular, made of FEP Teflon

foil, has a volume of ca. 6500 L and is surrounded by 12 Philips TL12 (40 W) lamps with

an emission maximum at 310 nm and 12 Philips TL05 (40 W) lamps with an emission

maximum at 360 nm.25

Four photooxidation experiments were performed in the UCC chamber. A summary

of the initial conditions for the experiments is given in Table 1. The relative humidity

was approximately 50% in each case. The chamber was humidified by flowing purified
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air through the headspace of an impinger containing heated Milli-Q water. Isoprene

and 1,3,5-TMB were also introduced through a heated impinger and concentrations

were monitored by GC-FID. NO and NOx concentrations were measured with a chemi-

luminescence NOx analyzer (Thermo Model 42i) and ozone was measured with a UV

photometric O3 analyzer (Thermo Model 49i). The formation and evolution of particles5

in the range 10–470 nm was monitored using a scanning mobility particle sizer (SMPS,

TSI Model 3034).

Denuder-filter sampling in the UCC experiments was performed in the same manner

as outlined above but with the sampling time reduced to 20 min because of the smaller

volume of the chamber. Once the particle mass had reached a maximum in each10

experiment, three denuder-filter samples were taken. The solvent mixture for extraction

of the denuder contents was replaced with methanol as dichloromethane was found to

degrade the glue holding the annular spaces of the denuder together over time, causing

the tubes to eventually break apart. A more efficient pre-concentration step was also

employed which involved blowing down 1 mL of the filter extracts to near dryness using15

nitrogen and reconstituting them with 100µL of methanol. These solutions were then

transferred to conical vial inserts and analyzed by GC-MS. Blank denuders and filters

were prepared in the same way and extracted. Standard solutions were also used to

quantify the photooxidation products in the gas and particle phases. Structurally similar

compounds were used for those carbonyls which were not readily available.20

2.3 GC-MS analysis

A Varian GC-MS system (Saturn 2000) equipped with a split/splitless injector (Var-

ian 1079) was used for chemical analysis. The chromatographic column used was a

Chrompack CP-Sil-8CB, (5% phenyl, 95% dimethylpolysiloxane), 30 m in length, with

an internal diameter of 0.25 mm. The derivatives were analysed using the following col-25

umn oven temperature program: 60
◦
C held for 1 min, then ramped from 60

◦
C to 100

◦
C

at 5
◦
C min

−1
, from 100

◦
C to 280

◦
C at 10

◦
C min

−1
and from 280

◦
C to 310

◦
C at 30

◦
C

min
−1

. The temperature was then held for 5 min. The injector temperature was held
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at 280
◦
C for 1 min and then ramped to 310

◦
C at 50

◦
C min

−1
. Mass spectra were ac-

quired over a mass range m/z 60–650 amu in the electron ionization (EI) mode. When

analysing the PFBHA derivatives, reconstructed ion chromatograms were used. The

m/z=181 ion fragment was used in most cases for quantification of the derivatized

carbonyls. However reconstructed ion chromatograms with more specific EI fragment5

ions were used whenever co-elution occurred.

2.4 Materials

The following compounds, with stated purities in brackets, were obtained from

Sigma Aldrich Chemical Company; Amberlite XAD-4 resin, PFBHA (≥98%),

methanol (99.9%), dichloromethane (≥99.8%), acetonitrile (99.9%), isoprene10

(99%), methacrolein (95%), methylvinylketone (99%), valeraldehyde (97%) gly-

oxal (40% in water), methylglyoxal (40% in water), 2,3-butanedione (97%), 3,5-

dimethylbenzaldehyde (97%) and glyoxal trimer dihydrate (≥97%). The follow-

ing compounds, with stated purities in brackets, were obtained from Fluka; 1,3,5-

trimethylbenzene (99%), glycolaldehyde dimer (98%), hexane (≥98%). The following15

compounds, with stated purities in brackets, were obtained from Lancaster Synthesis

(UK); hydroxyacetone (95%) and 2,5-hexanedione (97%). Nitric oxide (98.5%) was

obtained from Sigma Aldrich Chemical Company.

3 Results and discussion

3.1 Concentration-time profiles and aerosol yields20

The photooxidation of isoprene and 1,3,5-TMB was studied under a range of initial

starting conditions, as indicated in Table 1. Typical concentration-time profiles obtained

for experiments performed on isoprene and 1,3,5-TMB at PSI are shown in Figs. 2 and

3 respectively. The profiles for nitrogen oxides, ozone and particle mass were very
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similar in all experiments. As expected the decay of the hydrocarbon promotes the

conversion of NO to NO2 and the subsequent formation of ozone. SOA formation was

observed after 80–140 min and coincided with the point at which all NO had been

converted to NO2. Following nucleation, the particles continued to grow due to con-

densation before reaching a maximum after about 300 min and then decreased due5

to wall losses. The particle mass was calculated from the measured volume concen-

tration using a density of 1.4 g cm
−3

which was determined by comparing the mobility

diameter measurements from a differential mobility analyzer with the vacuum aerody-

namic diameter measured with an online aerosol mass spectrometer (Dommen et al.,

2006; Paulsen et al., 2005).10

The formation of photooxidation products was monitored in real time using the PTR-

MS, which detects VOCs in the form of the protonated molecular ion (M+1). In the

isoprene experiments, the most abundant product ion appeared at m/z=71 and is

attributed to the major first generation oxidation products, methacrolein (MACR) and

methylvinylketone (MVK), which are isomers and cannot be distinguished in the PTR-15

MS. Additional major ions were also detected at the following m/z values and are

tentatively attributed to the corresponding secondary products arising from further oxi-

dation of MACR and MVK; 61 (glycolaldehyde), 75 (hydroxyacetone), 59 (glyoxal) and

73 (methylglyoxal). All of these carbonyls have previously been identified as primary

or secondary products of isoprene photooxidation (Carter, 1996; Yu et al., 1995) and20

are consistent with the current understanding of the atmospheric degradation mecha-

nism. In the 1,3,5-TMB experiments, the major product ion appeared at m/z=113 and

could be due to any of the following species; cis/trans 2-methyl-4-oxo-2-pentenal, 3,5-

dimethyl-5(2H)-2-furanone, 3,5-dimethyl-3(2H)-2-furanone, 3-methyl-furan-2, 5-dione.

2-methyl-4-oxo-2-pentenal has been previously observed as a photooxidation product25

of 1,3,5-TMB (Smith et al., 1999) but contributions from the other isomers are also

possible. The other major ions were detected at m/z=59, 73, 135 and are attributed to

the photooxidation products glyoxal, methylglyoxal, and 3,5-dimethylbenzaldehyde re-

spectively. The PTR-MS instrument was calibrated using gas standards (Apel-Riemer
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Environmental Inc., Denver, CO) containing isoprene, methylvinylketone, methacrolein

and 1,3,5-TMB and a total of 27 alcohols, ketones, and aldehydes. For compounds

included in these standards an uncertainty of 5% is attributed to the data. For all oxy-

genated compounds in the gas standard an average sensitivity with an uncertainty of

30% was derived and applied to the other measured compounds.5

Similar concentration-time profiles for nitrogen oxides, ozone and particle mass were

also obtained in the experiments performed at UCC, Fig. 4. However, the rate of decay

of the parent hydrocarbons and NO was almost doubled and the formation of parti-

cles, which was still coincident with the point at which all NO had been converted to

NO2, occurred earlier (after 30–45 min) than in the experiments performed at PSI.10

The increased rate of reaction in the UCC chamber is due to the higher light intensity

around 360 nm which results in an increased photolysis rate for the OH radical precur-

sor HONO generated from the reaction of NOx at the walls of the reactor. It should also

be noted that the wall loss rate of particles is higher in the UCC experiments due to the

smaller volume to surface ratio in the chamber compared to PSI.15

The yield of SOA produced in each experiment was calculated from the ratio of the

aerosol mass formed to the amount of hydrocarbon reacted at the point where the

maximum particle concentration was observed. The aerosol mass was corrected for

wall losses by applying a first order loss rate obtained from the measured decay of the

particles at the end of each experiment. The calculated yields are listed in Table 1 and,20

in general, show good agreement with previously reported SOA yields for these com-

pounds (Cocker et al., 2001; Dommen et al., 2006). However, it is apparent that the

yields obtained at PSI, particularly for the 1,3,5-TMB experiments, are slightly higher

than those obtained in the UCC chamber. There are a number of factors that affect

the yield of SOA in simulation chamber experiments including temperature, humidity,25

seed aerosol and concentration of NOx. In both chambers, the experiments were per-

formed in the absence of seed aerosol, at a relative humidity of around 50% and under

high-NOx conditions (>300 ppbV). For the experiments at PSI, the VOC to NOx ratio

was approximately 2:1, with roughly equal parts of NO and NO2, whilst at UCC the
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VOC/NOx ratio was around 4:1. The effect of NOx on SOA yields is a complex issue

and has been discussed in detail for the photooxidation of isoprene (Kroll et al., 2006)

and aromatics (Ng et al., 2007). Although the total amount of NOx was varied to some

extent, no clear relationship was observed between the mixing ratio of NOx and the

SOA yield. This indicates that the variation in NOx concentrations employed during the5

set of experiments reported in this work was not sufficient to cause a significant change

in the SOA yields. The most likely explanation for the higher SOA yields in the PSI ex-

periments is therefore the difference in temperature. The chamber at UCC does not

have any cooling system and temperatures reached up to 32
◦
C during photooxidation

studies. At PSI experiments were carried out at 20
◦
C and higher SOA yields may thus10

be expected due to more condensation of gas-phase products and thus addition of

mass to the particle phase. It is interesting to note that this effect is more pronounced

for 1,3,5-TMB, possibly indicating that the SOA contains more volatile species than

those present in the SOA produced from isoprene photooxidation.

3.2 Denuder collection efficiency15

The collection efficiency of the denuder was tested using the PTR-MS during the first

isoprene (ISO PSI 1) and 1,3,5-TMB (TMB PSI 1) photooxidation experiments. Fig-

ure 5 shows how the PTR-MS signal changed when a PFBHA-coated denuder tube

was placed in front of the inlet whilst sampling from the chamber. For the isoprene sys-

tem, MACR and MVK (as well as isoprene) were efficiently trapped by the denuder tube20

as indicated by the dramatic decrease of the corresponding PTR-MS signals as air was

sampled from the exit of the denuder tube. After a sampling time of 60 min there was

still no breakthrough observed, indicating that these compounds were effectively col-

lected by the denuder throughout this period. For the 1,3,5-TMB system, both glyoxal

and methylglyoxal were efficiently trapped over a 150 min sampling period. Although25

the signal for 1,3,5-TMB initially dropped close to zero, it then gradually increased over

this timeframe indicating that the denuder gradually became saturated with the parent

VOC. It is important to note that even when breakthrough of 1,3,5-TMB was occurring,
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the signals for both glyoxal and methylglyoxal remained very close to zero indicating

efficient collection of these carbonyls throughout the sampling period. Based on these

results a sampling period of 50 min was chosen for the gas/particle partitioning studies

in order to maximize the particle mass collected on the filter with minimal gas-phase

breakthrough.5

The collection efficiency of the denuder tube was also determined during each ex-

periment at PSI using the F-D-D configuration, shown in Fig. 1. GC-MS data obtained

for glyoxal and methylglyoxal in experiment ISO PSI 1 are shown in Fig. 6. The re-

sults show that significant amounts of these dicarbonyls were collected on the filter

and first denuder tube (Tube 1), while the amounts collected on Tube 2 were negligible.10

This confirms that gas-phase breakthrough of these compounds did not occur to any

noticeable extent over a sampling period of 50 min and that the collection efficiency

of the PFBHA-coated denuder tube was virtually 100% under the sampling conditions

employed. In fact, for all of the carbonyls detected in the experiments at PSI and UCC,

the amounts collected on the second tubes in both the F-D-D and D-F-D configurations15

were negligible.

3.3 Identification of photooxidation products by GC-MS

Denuder-filter sampling was employed 2–3 times during each experiment followed by

GC-MS analysis of the denuder and filter extracts to identify carbonyl compounds

present in the gas and particle phase respectively. Typical GC-MS data obtained from20

the photooxidation of isoprene and 1,3,5-TMB are shown in Figs. 7 and 8. The carbonyl

compounds were identified by the retention times and mass spectra of their oxime

derivatives (Yu et al., 1995, 1997) and are listed in Tables 2 and 3. All of these car-

bonyls have previously been observed (or tentatively identified) as gas-phase products

in simulation chamber studies of the photooxidation of isoprene (Yu et al., 1995) and25

1,3,5-TMB (Smith et al., 1999; Yu et al., 1997) using impingers containing aqueous

solutions of PFBHA followed by GC-MS analysis of the oxime derivatives. However, no

information on the composition of the particle phase was obtained in these studies.
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In the initial experiments performed at PSI, the full range of gas-phase products was

identified in both the isoprene and 1,3,5-TMB systems, however, the only products

found in the particle phase were glyoxal and methylglyoxal. In order to investigate the

molecular composition of the particle phase further, experiments using higher mixing

ratios of the parent hydrocarbon were performed at UCC. This approach, combined5

with the increased sensitivity provided by the pre-concentration step and the use of

methanol as the extraction solvent, enabled the identification of several other products

in the particle phase for both systems. In addition, the use of calibration solutions

containing the oximes of the carbonyl products or appropriate surrogate compounds,

allowed for estimation of the concentrations of the carbonyls formed. For the isoprene10

experiments MACR, MVK, glycolaldehyde, hydroxyacetone, glyoxal and methylglyoxal

were quantified using their respective standards. The amount of 2-methyl-but-3-enal

was determined using the response factor of the valeraldehyde derivative and ox-

opropanedial, hydroxypropanedial, methylbutenedial and butenedial were quantified

using 2,3-butanedione as the surrogate compound. For the 1,3,5-TMB experiments15

3,5-dimethylbenzaldehyde, glyoxal, and methylglyoxal were quantified using their re-

spective standards. 2,3-dioxobutanal, oxopropanedial and butenedial were quanti-

fied using the response factor of the 2,3-butanedione derivative while 3-hydroxy-2,4-

pentanedione, 2-methyl-4-oxo-2-pentenal and methylbutenedial were quantified using

2,5-hexanedione as the surrogate compound.20

Mechanisms for the formation of the isoprene photooxidation products listed in Ta-

ble 2 are well established. MACR and MVK are the major primary products formed from

addition of OH to either of the double bonds in isoprene, followed by oxidation of the

corresponding hydroxyalkyl radicals. The unsaturated C5 carbonyl 2-methyl-but-3-enal

can also be formed as a primary product in this way although with much lower yields25

than MACR and MVK (Fan and Zhang, 2004). Further reaction of MACR and MVK

with OH leads to the formation of secondary products including glyoxal, methylglyoxal,

glycolaldehyde and hydroxyacetone (Spaulding et al., 2003). Yu et al. proposed that

2-methylbutenedial and hydroxymethylglyoxal are formed through the reaction of OH
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with the primary isoprene photooxidation products 3-methylfuran and hydroxybut-3-en-

2-one respectively (Yu et al., 1995). Oxopropanedial and butenedial are more difficult

to explain mechanistically, and although these products (or their corresponding struc-

tural isomers) were tentatively identified by Yu et al. they were only observed during

ozonolysis experiments (Yu et al., 1995). Interestingly, MACR, MVK and 2-methylbut-5

3-enal were only observed in the gas-phase, while all the other products were observed

in both gas and particle phases. This indicates that SOA formation does not occur from

direct condensation of the primary oxidation products, but instead, through further re-

action of these species, in agreement with recent studies (Kroll et al., 2006; Ng et al.,

2006).10

Mechanisms for the formation of the 1,3,5-TMB photooxidation products listed in Ta-

ble 3 are also fairly well established. 3,5-Dimethylbenzaldehyde is formed by H atom

abstraction from one of the methyl groups in the parent hydrocarbon and has been

observed as its PFBHA derivative in a previous study (Yu et al., 1997). Also observed

in that study were the mechanistically expected primary ring-opened co-products15

methylglyoxal and 2-methyl-4-oxo-2-pentenal. It was proposed that 3-hydroxy-2,4-

pentanedione is a secondary product resulting from further reaction of 2-methyl-4-

oxo-2-pentenal and that the triones, oxopropanedial and 2,3-dioxobutanal are formed

through the OH-initiated oxidation of hydroxydicarbonyls (Yu et al., 1997). The obser-

vation of 2-methylbutenedial and butenedial exclusively in the particle phase in this20

work is unexpected. However, their gas-phase concentrations could be below the lim-

its of detection for the method considering a pre-concentration step was not employed

for the denuder extracts. Although 2-methylbutenedial was observed as a photoox-

idation product of 1,3,5-TMB by Yu et al., its formation cannot be easily explained.

2-methylbutenedial and butenedial are major primary products from the photooxidation25

of benzene, toluene, m- and p-xylene and 1,2,4-TMB (Yu et al., 1997) and could there-

fore arise from low level impurities in the 1,3,5-TMB sample used in this work. Small

amounts of glyoxal were detected in the gas phase, but since this dicarbonyl cannot be

formed as a primary ring-opened product due to the position of the methyl groups on
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1,3,5-TMB, it seems likely that it is formed via secondary reactions, or from oxidation

of impurities in the 1,3,5-TMB sample, as for 2-methylbutenedial and butenedial.

The quantification procedure was used to determine yields for the carbonyl com-

pounds detected in the particle phase. The corresponding gas-phase yields were not

estimated since denuder-filter sampling was performed only during the latter stages of5

the photooxidation process when secondary chemistry was dominant. The particle-

phase yields shown in Tables 2 and 3 are based on the average of 3 samples. For the

isoprene system the identified carbonyls can only account for around 5% of the SOA

mass. A significant amount of the SOA mass (22–34%) produced from the photooxi-

dation of isoprene under high-NOx conditions has been attributed to oligomers arising10

from oxidation of MACR (Surratt et al., 2006). A range of other polar organics including

tetrols and acids are also present in isoprene SOA (Claeys et al., 2004; Surratt et al.,

2006), but the yields of these species are difficult to determine. For the 1,3,5-TMB

system the identified carbonyls can account for almost 10% of the SOA mass. This

compares favourably with the work of Hamilton et al. who attributed around 10% of15

the mass of toluene SOA to small oxygenated compounds (Hamilton et al., 2005). A

dominant fraction of the 1,3,5-TMB SOA mass is also believed to be due to oligomers

arising from heterogeneous reaction of oxidation products (Kalberer et al., 2004).

3.3.1 Gas/particle partitioning of photooxidation products

Experimental gas/particle partitioning coefficients, Kp,i (experimental), were calculated20

using the following expression (Odum et al., 1996):

Kp,i (experimental) =
Cp,i

Cg,iTSP
(1)

where Cg,i and Cp,i are the relative concentrations of each product in the denuder (gas

phase) and filter (particle phase) extracts, and TSP is the total suspended particulate

concentration or average particle mass concentration (µg m
−3

) measured during the25
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sampling period. For comparison purposes theoretical Kp,i values were also calculated

using standard absorptive gas/particle partitioning theory (Pankow, 1994a, 1994b):

Kp,i (theoretical) =
760RT fom

MWom106ζ i p L,i
◦

(2)

where fom is the mass fraction of the TSP that is the absorbing organic material (om)

phase, MWom is the average molecular weight of the absorbing om (g mol
−1

), ζ i is the5

activity coefficient of compound i in the om phase and po
L,i is the vapour pressure (Torr)

of the absorbing compound as a liquid, R is the ideal gas constant (8.206×10
−5

m
3

atm

mol
−1

K
−1

) and T is the temperature (K) taken to be 293 K and 305 K in the experiments

performed at PSI and UCC respectively. Liquid vapour pressure values were estimated

using the SPARC online calculator (Version 3.1) (Hilal et al., 1995), a group contribution10

calculation procedure that has been used to estimate vapour pressure values for a

range of organic compounds in previous studies (Asher et al., 2002; Barsanti and

Pankow, 2004, 2005, 2006). The values of fom and ζ i were assumed to be 1, as in

previous studies (Johnson et al., 2006; Kamens et al., 1999), and MWom is estimated

arbitrarily to be 120 for all experiments in this study (Jang and Kamens, 2001). The15

units of Kp,i are m
3µg

−1
and experimental and theoretical Kp,i values for the isoprene

and 1,3,5-TMB photooxidation products are compared in Tables 4 and 5 respectively.

The experimental Kp,i values obtained for glyoxal and methylglyoxal in the two simu-

lation chambers for the isoprene and 1,3,5-TMB systems are in reasonable agreement.

The reproducibility of experimental Kp,i values is improved for the experiments at UCC20

due to the pre-concentration of filter extracts and the higher precursor concentrations

used. This is the first reported study of gas/particle partitioning in the photooxidation of

isoprene and 1,3,5-TMB and a direct comparison with literature values is therefore not

possible. However, the values obtained here are broadly in line with the experimental

Kp,i values determined for a number of different carbonyls in the atmospheric oxidation25

of toluene (Jang and Kamens, 2001), α-pinene (Kamens and Jaoui, 2001) and other

biogenic precursors (Yu et al., 1999).
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The main feature of the results presented in Tables 4 and 5 is that the experimental

Kp,i values are much higher than their theoretical counterparts, particularly for the di-

carbonyl species glyoxal and methylglyoxal. This provides further evidence to support

the view that transfer to the particle phase is not occurring by gas/particle partitioning

alone and that the heterogeneous reactions of dicarbonyls are important in SOA for-5

mation and growth (Kalberer et al., 2004; Liggio et al., 2005b). The reactive uptake

of glyoxal into particles has been observed in several previous studies and has been

explained by hydration reactions occurring on/in the particle phase leading to larger

low-volatility products (Hastings et al., 2005; Jang et al., 2002; Liggio et al., 2005a).

Similar hydration reactions have been observed when evaporating aqueous solutions10

of glyoxal and methylglyoxal (Loeffler et al., 2006). The formation of oligomers has also

been recently observed in the photooxidation of both isoprene (Dommen et al., 2006;

Surratt et al., 2006) and 1,3,5-TMB (Kalberer et al., 2004). In the latter case, oligomers

attributed to the heterogeneous reactions of methylglyoxal and other carbonyl products,

were found to comprise over 50% of the SOA mass after ageing for 20 h (Kalberer et15

al., 2004). Oligomer formation has recently been observed from the atmospheric oxi-

dation of a variety of precursors (Dommen et al., 2006; Hamilton et al., 2006; Kalberer

et al., 2004; Tolocka et al., 2004; Zahardis et al., 2006) and it has become clear that

heterogeneous processes are an important pathway for SOA growth.

The experiments performed in this work are very similar to those previously per-20

formed at the PSI chamber where oligomer formation was observed, and as a result the

filter samples collected in these experiments are also expected to contain oligomeric

material. However, oligomers have not been detected by GC-MS before, possibly due

to the high temperatures typically used in the analytical procedure. Furthermore, there

is evidence to support the fact that the oligomers can revert to their monomeric form25

in solution. Indeed, tests performed at UCC showed that methanol containing PFBHA

was found to efficiently dissolve a trimeric glyoxal standard and convert the resulting

monomers to oxime derivatives. If glyoxal – or methylglyoxal-based oligomers were

present in the particle phase, then reversion to the monomeric form in the extracts
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would be expected. Indeed, if the oligomerization process is assumed to be reversible,

the use of excess PFBHA would be expected to convert the oligomers back to the

monomeric species by removing dicarbonyl monomers from the extract as soon as

they are formed.

The results presented in Tables 4 and 5 indicate that the deviation from absorptive5

gas/particle partitioning theory is greatest for glyoxal, methylglyoxal and dialdehydes

in general. In fact, with the exception of 3-hydroxy-2,4-pentanedione, all of the dicar-

bonyls were observed to transfer to the particle phase more effectively than products

with a single carbonyl moiety. For example MACR and MVK, although present at rel-

atively high mixing ratios in the gas phase during the isoprene experiments, were not10

observed in any of the filter extracts. Indeed, Barsanti and Pankow predicted accretion

reactions involving straight-chain aldehydes up to C10 to be thermodynamically un-

favourable under atmospheric conditions (Barsanti and Pankow, 2004). Barsanti and

Pankow followed this study with a second focusing on the thermodynamic potential

of dicarbonyls to add mass to ambient particulate matter through accretion reactions,15

using an initial background organic particulate matter concentration of 15µgm
−3

for

their calculations (Barsanti and Pankow, 2005). Glyoxal and methylglyoxal in particular

were expected to have an effect on particulate matter mass loading through hydra-

tion/oligomerization and aldol condensation reactions respectively. Interestingly, in that

study the contribution of these two dicarbonyls to the particle phase was predicted to20

be almost equal, and the experimental Kp,i values calculated in this work are also on

a similar order of magnitude with respect to each other. However, glyoxal does ex-

hibit consistently higher experimental Kp,i values than methylglyoxal indicating that the

dominating accretion reactions for the dialdehyde may be occurring at a higher rate.

Experimental Kp,i values for hydroxycarbonyl photooxidation products agreed more25

closely with their theoretical values based on absorptive partitioning, in particular for

3-hydroxy-2,4-pentanedione, which does not possess an aldehyde functionality and is

thus expected to be less reactive. This is in agreement with Barsanti and Pankow who

predicted that diketones such as 2,3-butanedione and 2,5-hexanedione would con-
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tribute much less to the growth of SOA via accretion reactions because of the lower

reactivity of ketones compared to their aldehyde counterparts (Barsanti and Pankow,

2005).

The importance of determining experimental partitioning values is underlined by re-

cent modelling studies of SOA formation from anthropogenic and biogenic precursors5

in simulation chamber experiments where all gas/particle partitioning coefficients of ox-

idation products had to be scaled by a species-independent factor of between 5 and

120 to explain the SOA mass formed (Jenkin, 2004; Johnson et al., 2005). A simulation

of regional scale SOA formation in the UK required gas/particle partitioning coefficients

of oxidation products to be scaled by a factor of 500 (Johnson et al., 2006). The re-10

sults of this work suggest that different scaling factors, based on the experimental Kp,i

values, should be used for each compound, or at least each group of compounds.

4 Conclusions

Experimental gas/particle partitioning coefficients for a wide range of carbonyl products

formed from the photooxidation of isoprene and 1,3,5-TMB were found to deviate to15

varying extents from their theoretical values based on standard absorptive partitioning

theory. Photooxidation products with a single carbonyl moiety were not observed in the

particle phase, but dicarbonyls, and in particular, glyoxal and methylglyoxal, exhibited

gas/particle partitioning coefficients several orders of magnitude higher than expected

theoretically. These findings support the importance of heterogeneous chemistry as a20

pathway for SOA formation and growth during the atmospheric degradation of anthro-

pogenic and biogenic precursors.
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Table 1. Starting concentrations and results for the isoprene and 1,3,5-TMB photooxidation

experiments.

Experiment [HC]0 [NO]0 [NO2]0 ∆[HC]
a

Aerosol Mass
b

Aerosol Yield
c

(ppbV) (ppbV) (ppbV) (ug m
−3

) (ug m
−3

) (%)

ISO PSI 1 1776 446 488 4283 203 4.72

ISO PSI 2 1473 344 365 3959 189 4.76

ISO UCC 1 2011 390 106 5140 220 4.29

ISO UCC 2 4079 686 269 10541 467 4.43

TMB PSI 1 815 194 177 1822 110 6.01

TMB PSI 2 1027 335 289 2488 208 8.34

TMB PSI 3 1017 286 294 2673 195 7.28

TMB UCC 1 1193 246 21 3137 141 4.50

TMB UCC 2 2929 496 100 7039 359 5.10

a
Amount of parent hydrocarbon (HC) reacted, corrected for dilution due to sampling.

b
Determined at the time of measured maximum particle volume concentration, corrected for

wall loss, assuming a density of 1.4 g cm
−3

.
c

Calculated from aerosol mass/∆[HC].
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Table 2. Gas- and particle-phase products observed by GC-MS during the photooxidation of

isoprene.

Compound Retention 

time 

(min) 

Molecular 

mass of 

derivative 

m/z (EI 

mode) 

Gas 

phase 

Particle 

Phase     

(% Yield)
a

O

methacrolein  

12.69 265 181 

265 (M) 

 

Yes No 

O

methyl vinyl ketone  

12.82, 

12.87 

265 181 

265(M) 

 

Yes No 

2-methylbut-3-enal*

O

 

13.24, 

13.32 

279 181 

279 (M) 

 

Yes No 

OH

O

glycolaldehyde  

14.14, 

14.53 

255 181 

255 (M) 

238 (M-17) 

Yes 1.00 ± 0.26 

O

HO

hydroxyacetone  

14.73 269 181 

269 (M) 

252 (M-17) 

Yes 1.29 ± 0.54 

O

O

glyoxal  

21.13, 

21.22 

448 181 

448 (M) 

251 (M-197) 

Yes 1.11 ± 0.24 

O

O

methylglyoxal  

21.24, 

21.51 

462 181 

462 (M) 

265 (M-197) 

Yes 1.04 ± 0.34 

OO

O

oxopropanedial*  

21.65, 

21.71, 

22.19, 

22.23 

476 181 

476 (M) 

279 (M-197) 

Yes 0.10 ± 0.05 

O

OHO

hydroxymethylglyoxal*  

22.90, 

23.02 

478 181 

478 (M) 

281 (M-197) 

 

Yes 0.10 ± 0.04 

O

O

methylbutenedial*  

25.80, 

25.86, 

26.25, 

26.73, 

26.94 

488 181 

488 (M) 

307 (M-181) 

Yes 0.27 ± 0.07 

O

O

butenedial*

 

27.16 474 181 

474 (M) 

Yes 0.25 ± 0.10 

* No standard available. Product tentatively identified on the basis of retention time and mass spectrum. 
∗

No standard available. Product tentatively identified on the basis of retention time and mass spectrum.
a

Contribution of each carbonyl to the average SOA mass taken from the average of three individual samples taken during experiment ISO UCC 2. Quoted
errors correspond to the relative standard deviation of the three samples.
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Table 3. Gas- and particle-phase products observed by GC-MS during the photooxidation of

1,3,5-TMB.

Compound Retention 

time 

(min) 

Molecular 

weight of 

derivative 

m/z (EI 

mode) 

Gas 

phase 

Particle 

Phase      

(% Yield)
a

O

3,5-dimethylbenzaldehyde  

20.40, 

20.48 

329 181 

329 (M) 

299 (M-30) 

Yes No 

O

O

glyoxal  

21.13, 

21.22 

448 181 

448 (M) 

251 (M-197) 

Yes No 

O

O

methylglyoxal  

20.66, 

21.14, 

21.26, 

21.40 

462 181 

462 (M) 

265 (M-197) 

Yes 2.06 ± 0.08 

OO

O

oxopropanedial*  

21.65 476 181 

476 (M) 

279 (M-197) 

Yes 0.92 ± 0.07 

O

O

O

2,3-dioxobutanal*  

21.85, 

22.10 

490 181 

490 (M) 

293 (M-197) 

 

Yes 0.55 ± 0.14 

OO

OH

3-hydroxy-2,4-pentanedione*

 

22.98, 

23.20 

506 181 

506 (M) 

489 (M-17) 

309 (M-197) 

Yes 1.27 ± 0.02 

O

O

2-methyl-4-oxo-2-pentenal*  

23.41, 

23.75, 

24.53, 

25.38, 

25.51, 

25.61, 

26.16 

502 181 

502 (M) 

321 (M-181) 

 

Yes 2.59 ± 0.12 
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Table 3. Continued.

O

O

methylbutenedial*  

26.25, 

26.73 

488 181 

488 (M) 

307 (M-181) 

No 0.59 ± 0.07 

O

O

butenedial*

 

27.16 474 181 

474 (M) 

 

No 1.67 ± 0.19 

* No standard available. Product tentatively identified on the basis of retention time and mass spectrum. 

∗
No standard available. Product tentatively identified on the basis of retention time and mass

spectrum.
a

Contribution of each carbonyl to the average SOA mass taken from the average of three

individual samples taken during experiment TMB UCC 2. Quoted errors correspond to the

relative standard deviation of the three samples.
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Table 4. Experimental and theoretical gas/particle partitioning coefficients for isoprene pho-

tooxidation products.

Experiment Compound n Kp,i Kp,i Kp,i (experimental) /

(experimental)
a

(theoretical) Kp,i (theoretical)

ISO PSI 2 glyoxal 2 (7.34±0.60)×10
−5

1.93×10
−9

38031

methylglyoxal 2 (9.96±1.78)×10
−6

4.14×10
−9

2405

ISO UCC 1 glyoxal 3 (6.25±1.33)×10
−5

9.75×10
−10

64102

methylglyoxal 3 (1.14±0.10)×10
−5

1.95×10
−9

5846

methylbutenedial 3 (3.62±4.77)×10
−4

3.37×10
−7

1074

butenedial 3 (6.17±3.78)×10
−4

1.55×10
−7

3980

ISO UCC 2 glyoxal 3 (4.44±1.46)×10
−5

9.75×10
−10

45538

methylglyoxal 3 (6.78±2.68)×10
−6

1.95 × 10
−9

3476

methylbutenedial 3 (7.85±1.76)×10
−5

3.37×10
−7

232

butenedial 3 (4.06±2.08)×10
−4

1.55×10
−7

2619

glycolaldehyde 3 (2.15±0.57)×10
−5

3.60×10
−7

59

hydroxyacetone 3 (1.48±0.56)×10
−5

7.20×10
−7

20

oxopropanedial 3 (7.51±3.52)×10
−6

5.58×10
−8

134

hydroxymethylglyoxal 3 (2.19±0.45)×10
−4

2.49×10
−6

88

a
Average value based on n measurements during each experiment. Quoted errors correspond

to the relative standard deviation.
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Table 5. Experimental and theoretical gas/particle partitioning coefficients for 1,3,5-TMB pho-

tooxidation products.

Experiment Compound n Kp,i Kp,i Kp,i (experimental) /

(experimental)
a

(theoretical) Kp,i (theoretical)

TMB PSI 1 methylglyoxal 1 5.89×10
−5

4.14×10
−9

14227

TMB PSI 2 methylglyoxal 3 (3.94±3.53)×10
−5

4.14×10
−9

9517

TMB PSI 3 methylglyoxal 2 (2.0±0.07)×10
−5

4.14×10
−9

4831

TMB UCC 1 methylglyoxal 3 (1.6±0.90)×10
−5

1.95×10
−9

8667

oxopropanedial 3 (1.90±1.70)×10
−5

5.58×10
−8

341

3-hydroxy-2,4-pentanedione 3 (1.09±0.36)×10
−4

1.13×10
−5

9

2-methyl-4-oxo-2-pentenal 3 (1.01±0.72)×10
−4

9.32×10
−7

108

TMB UCC 2 methylglyoxal 3 (1.22±0.05)×10
−5

1.95×10
−9

6256

oxopropanedial 3 (4.15±0.23)×10
−5

5.58×10
−8

744

2,3-dioxobutanal 3 (1.20±0.56)×10
−5

8.48×10
−8

142

3-hydroxy-2,4-pentanedione 3 (1.40±0.49)×10
−5

1.13×10
−5

1

2-methyl-4-oxo-2-pentenal 3 (1.77±0.50)×10
−4

9.32×10
−7

190

a
Average value based on n measurements during each experiment. Quoted errors correspond

to the relative standard deviation
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 Fig. 1. The denuder-filter–denuder (D-F-D) and filter-denuder-denuder (F-D-D) sampling con-

figurations used for determining gas/particle partitioning and gas-phase breakthrough respec-

tively.
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Fig. 2. Top: Concentration-time profile of isoprene, nitrogen oxides, ozone and particle mass for

experiment ISO PSI 2. Bottom: PTR-MS concentration-time data for isoprene and its oxidation

products during experiment ISO PSI 2. The grey areas represent the denuder-filter sampling

periods.
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Fig. 3. Top: Concentration-time profile of 1,3,5-TMB, nitrogen oxides, ozone and particle mass

for experiment TMB PSI 3. Bottom: PTR-MS concentration-time data for 1,3,5-TMB and its

oxidation products during experiment TMB PSI 3. The grey areas represent the denuder-filter

sampling periods.
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Fig. 4. Concentration-time profile of parent hydrocarbon, nitrogen oxides, ozone and particle

mass for experiments ISO UCC 2 (top) and TMB UCC 2 (bottom). The grey areas represent

the denuder-filter sampling periods.
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Fig. 5. PTR-MS Concentration-time profiles for isoprene, methacrolein and methylvinylketone

(ISO PSI 1), and 1,3,5-TMB, glyoxal and methylglyoxal (TMB PSI 1). The shaded areas depict

the periods when the PTR-MS sampled from the denuder tube exit.
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Fig. 6. Reconstructed ion chromatograms (m/z=448+265) comparing the relative gas-phase,

particle-phase and gas-phase breakthrough concentrations of glyoxal and methylglyoxal for

experiment ISO PSI 1. The particle-phase and gas-phase breakthrough chromatograms are

on the same scale.
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Fig. 7. Reconstructed ion chromatogram (m/z181) of a denuder extract from the photooxida-

tion of isoprene (experiment ISO UCC 1). 1: methacrolein 2: methylvinylketone 3: 2-methylbut-

3-enal 4: glycolaldehyde 5: hydroxyacetone 6: glyoxal 7: methylglyoxal 8: oxopropanedial 9:

methylbutenedial 10: butenedial.
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Fig. 8. Reconstructed ion chromatogram (m/z 181) of a filter extract from the 
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Fig. 8. Reconstructed ion chromatogram (m/z 181) of a filter extract from the photooxidation of

1,3,5-TMB (experiment TMB UCC 2). 1: methylglyoxal 2: oxopropanedial 3: 2,3-dioxobutanal

4: 3-hydroxy-2,4-pentanedione 5: 2-methyl-4-oxo-2-pentenal 6: 2-methylbutenedial 7: butene-

dial.
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