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Abstract

The equilibrium inorganic aerosol model ISORROPIA was embedded in a Markov
Chain Monte Carlo algorithm to produce a powerful tool to analyze aerosol data and
predict gas phase concentrations where these are unavailable. The method directly
incorporates measurement uncertainty, prior knowledge, and provides for a formal5

framework to combine measurements of different quality. The method was applied
to aerosol- and gas-phase precursor observations taken at La Merced during the Mex-
ico City Metropolitan Area (MCMA) 2003 Field Campaign and served to discriminate
between diverging gas-phase observations of ammonia. The model reproduced obser-
vations of particle-phase ammonium, nitrate, and sulfate well. The most likely concen-10

trations of ammonia were found to vary between 4 and 26 ppbv, while the range for nitric
acid was 0.1 to 55 ppbv. During periods where the aerosol chloride observations were
consistently above the detection limit, the model was able to reproduce the aerosol
chloride observations well and predicted the most likely gas-phase hydrochloric acid
concentration varied between 0.4 and 5 ppbv. Despite the high ammonia concentra-15

tions observed and predicted by the model, when the aerosols were assumed to be in
the efflorescence branch they are predicted to be acidic (pH∼3).

1 Introduction

Air quality managers continually face decisions with information constraints, where
data may have poor time resolution, high uncertainty, or may simply be lacking. Ex-20

amples range from the Southeastern Aerosol Research and Characterization Project
(SEARCH) in the U.S., which did not include the requisite ammonia measurements
(Blanchard and Hidy, 2003), to the 1999 Atlanta Supersite Experiment, where a sys-
tematic bias of aerosol sulfate concentrations was postulated (Zhang et al., 2003).
In particular, while measurements of urban PM are often available, the correspond-25

ing gas phase concentrations needed for modeling and devising control strategies are

5935

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/5933/2006/acpd-6-5933-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/5933/2006/acpd-6-5933-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 5933–5998, 2006

Implementation of a
MCMC method to

aerosol modeling in
MCMA

F. M. San Martini et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

often lacking. The need for gas phase observations to devise control strategies for
inorganic PM was confirmed by Blanchard et al. (2000), who identified two parameters
to determine which precursor species limit aerosol nitrate formation: both parameters
require particulate and gas phase observations.

Mexico City has long been well-known for its poor air quality (Molina and Molina,5

2002). The 2003 Mexico City Metropolitan Area (MCMA) field campaign was an in-
tensive 5-week campaign focused on providing a scientific base for devising emissions
control strategies to reduce exposure to harmful pollutants in the MCMA, as well as
insights to air pollution problems in other megacities. In this paper we use data from
the MCMA-2003 campaign to illustrate the application of a Bayesian method to infer10

missing and uncertain measurements, focusing on the inorganic aerosol system. We
focus on the inorganic aerosols because the health risk of air pollution in the MCMA is
dominated by the effect of particles (Evans et al., 2002), and, although organic aerosols
comprise a majority of the fine particle mass in the MCMA, uncertainties in both model-
ing (Ansari and Pandis, 2000b; Clegg et al., 2001, 2003) and measurements (McMurry,15

2000) of organic aerosols and gas phase precursors remain large relative to the inor-
ganic aerosols.

The Bayesian method introduced here combines available measurements with
knowledge of aerosol thermodynamics to infer missing variables, and allows for the
direct incorporation of measurement uncertainty, the use of prior knowledge, and pro-20

vides a framework for combining measurements of different quality. Here we apply
the method to observations taken at the La Merced site. This site was chosen due to
the availability of direct observations of gas-phase nitric acid as well as two co-located
instruments to measure gas-phase concentrations of ammonia; this dataset provides
a unique opportunity to demonstrate how the method can be used to discriminate be-25

tween diverging observations. The need to better understand ammonia emissions and
concentrations was highlighted by San Martini et al. (2005), who showed that reduc-
tions in ammonia concentrations are likely to be less effective at reducing PM2.5 in
Mexico City than expected, while reductions in nitrate and sulfate are expected to be
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effective. A companion paper will discuss the application of the Bayesian method to
three other fixed sites in the MCMA-2003 campaign, CENICA, Pedregal, and Santa
Ana.

2 Experimental

La Merced (19◦24′ N, 99◦07′ W, 2250 m a.s.l.) is an area in downtown MCMA that5

includes both commercial and residential buildings and has heavy traffic. A major
bus station (known as TAPO) is located ∼500 m northeast of the site, and the Mexico
City international airport is ∼2–3 km east of the site (Moya et al., 2004). The routine
monitoring network in Mexico City (Red Automática de Monitoreo Atmosférico, RAMA)
operates a site at La Merced. The RAMA station measures temperature and relative10

humidity, as well as other meteorological observations (wind speed and direction, UV,
etc.) and criteria pollutant concentrations (e.g., ozone, NOx, SO2, PM10

1), on a per-
minute basis. In addition, hourly averaged observations, based on the per-minute data,
are available from RAMA if the data logger fails.

During MCMA-2003 gas-phase measurements of ammonia and nitric acid were15

taken at La Merced using an open-path Fourier Transform Infrared (FTIR) spectrome-
ter. A full description of the experiment and location is presented elsewhere (Grutter et
al., 2003). The FTIR instrument used a bistatic telescope system installed on top of two
four-story buildings along the 426-m lightpath, approximately 20 m above the surface.
The RAMA monitoring station is located ∼30 m away to the north from the west end of20

the optical trajectories and is only ∼8 m above the surface (Grutter et al., 2005). The
IR radiation is modulated with a Nicolet interferometer and captured with a HgCdTe
detector at 77 K. Approximately 180 interferograms are co-added during 5 min to pro-
duce an infrared transmission spectrum with 0.5 cm−1 resolution. The concentrations
are retrieved by performing a classical least squares regression using a synthetic back-25

1 Monitoring of PM2.5 by RAMA started in 2004, after the MCMA-2003 campaign.
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ground and references generated from the HITRAN spectroscopic database (Rothman
et al., 1998). For the quantitative analysis of NH3 and HNO3, the regions 920–1090
and 875–900 cm−1 are used, respectively.

The Aerodyne Mobile Laboratory (AML) was parked at the La Merced site from 25
April to 27 April 2003. The AML contains a suite a fast-response instruments capable of5

measuring trace gas concentrations at sub ppb levels, an aerosol mass spectrometer
(AMS) to measure the non-refractory chemical components of fine airborne particles,
as well as selected commercial fast response instruments (Herndon et al., 2005; Kolb
et al., 2004). Included in the suite of instruments on the AML was a quantum cascade
tunable infrared laser differential absorption spectroscopy (TILDAS) instrument capa-10

ble of measuring NH3 concentrations with one second time resolution. The TILDAS
instrument is a closed path system where the laser output is coupled into a multiple
pass absorption cell with a 56 m pathlength. The laser (Alpes Lasers) operated in
the 967.35 cm−1 region, overlapping a strong ammonia feature. The laser linewidth
was 0.014 cm−1 (hwhm), and the laser tuning rate was determined from a Germanium15

etalon. Concentrations were calculated based on the HITRAN database (Rothman et
al., 2003) and measured sample pressure and temperature.

The AML did not include an instrument to directly measure gas-phase HNO3. How-
ever, an estimate of the HNO3 concentration can be derived based on observations
of NO, NO2, and total NOy. The AML included a commercial total NOy instrument,20

which measures both NOy and NO using the chemiluminescence (CL) technique, but
configured differently than a standard CL NOx monitor so as to exploit the molybde-
num converter’s ability to detect more gas phase reactive nitrogen species. NO2 was
measured with two instruments on board the AML: a fast-response TILDAS and a com-
mercial NOx instrument. The operation of the NO2 TILDAS is described in (Li et al.,25

2004). (Dunlea et al., 2006)2 compared observations of NO2 from the AML and other

2Dunlea, E. J., Herndon, S. C., Nelson, D. D., Volkamer, R. M., San Martini, F. M., Zahniser,
M. S., Shorter, J. H., et al.: Evaluation of Standard Measurement Techniques for Nitrogen
Dioxide in a Polluted Urban Environment?, in preparation, 2006.
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instruments at three sites during MCMA-2003 and showed that the TILDAS observa-
tions are the most reliable. From the total NOy and NO measurements, along with the
TILDAS NO2 measurement, we calculate the non-NOx fraction of NOy, referred to as
NOz:

NOz=NOy−NO−NO2 (1)5

NOz provides an (approximate) upper bound to the HNO3 concentration since NOz may
comprise HNO3, RNO3, PAN, HONO, NO3, N2O5 and particulate NO3. Section 3.2
discusses the uncertainties in this measure of HNO3.

The AMS has been described in detail elsewhere (Jayne et al., 2000), and an
overview of its application during the MCMA-2003 campaign is provided by Salcedo10

et al. (2006). The AMS measures non-refractory (NR) species, operationally defined
to include all species that evaporate in a few microseconds after a sampled aerosol
particle impinges on the AMS heated vaporization surface, in particles smaller than
about 1µm (NR-PM1) (Salcedo et al., 2006). NR species internally mixed with refrac-
tory species can be detected quantitatively (Katrib et al., 2005; Slowik et al., 2004).15

Therefore, all inorganic aerosol species of interest are observed except for crustal ma-
terials and sea salt. The AMS observations used here are 4-min averages. All other
observations were averaged to the AMS timestamp, with the exception of the 5-min
averaged FTIR observations, which were interpolated to the AMS timestamp.

In sum, observations of gas-phase precursors and inorganic aerosol species, as20

well as temperature and relative humidity, are required in order to model the inorganic
aerosol system. Thus, although CENICA was considered the supersite for MCMA-
2003, La Merced can be considered the inorganic aerosol system supersite because
it was the only location during the MCMA-2003 campaign where co-located NH3 and
HNO3 observations were both available. The only species relevant to the inorganic25

aerosol system that were not directly measured at La Merced are crustal species and
gas-phase hydrochloric acid. The method used to estimate these species is presented
in Sect. 3.3.
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3 The Bayesian approach

Uncertainty can be divided into two categories: aleatory and epistemic uncertainty
(Pate-Cornell, 1996). Aleatory uncertainty (also known as inherent or stochastic un-
certainty) represents randomness or variability in nature, and in general cannot be
completely eliminated. Epistemic uncertainties represent a lack of knowledge of the5

system, which may be due to statistical uncertainty (due to lack of sufficient data)
and model uncertainty (due to lack of understanding of the physics or chemistry). In
principle, epistemic uncertainties can be reduced as knowledge increases and more
data becomes available. The inorganic aerosol system modeled here is characterized
by uncertain observations, missing variables, and stochastic processes; therefore, we10

require a tool that treats both types of uncertainty. The statistical theory that allows
the measurement and combination of aleatory and epistemic uncertainties is Bayesian
statistics (Pate-Cornell, 1996). The tool we will use for the Bayesian analysis is the
Markov Chain Monte Carlo (MCMC) method.

Bayes’ Theorem describes conditional probability:15

p
(
θ|Data

)
=

p
(
Data|θ

)
p (θ)

p (Data)
(2)

where Data and θ are the observations and unknown variables. In Eq. (2), p
(
θ|Data

)
is

the posterior, p
(
Data|θ

)
is the likelihood function, p (θ) the prior, and p(Data) is a nor-

malizing constant (equal to the probability of the observations). The vector of unknown
variables θ may be composed of observables that have not yet been observed and20

parameters, which are inherently unobservable. From a Bayesian perspective, there is
no fundamental distinction between observables and parameters: all are considered
random quantities. Bayes’ Theorem provides a powerful tool to predict observables
and infer parameters based on observations.

A variety of methods are available to solve Eq. (2), including conjugate analysis,25

asymptotic analysis, the use of closed-form approximations, and sampling based ap-
proximations. MCMC is an example of the sampling based approach, where the key
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idea is that while it would be nice to calculate p(θ|Data), we are just as happy to simu-
late a large number of random draws from p(θ|Data) (Draper, 20063). Thus, rather than
calculate the posterior, which in multi-dimensional problems involves computing expen-
sive multi-dimensional integrals, the posterior is estimated by directly drawing random
samples from the distribution. These random samples are then used to generate the5

descriptive characteristics of the posterior distribution.
The question of how to implement a stochastic simulation from which random draws

can be obtained and that is described by the posterior distribution p(θ|Data) was orig-
inally answered by Metropolis et al. (1953). Metropolis proposed generating a Markov
chain, a stochastic process whose next state depends on the past only through the10

value of the present state (Bertsekas and Tsitsiklis, 2002), that has the same state
space as θ and whose equilibrium distribution is p(θ|Data). Algorithms to generate
the Markov chain include Gibbs sampling, the independence sampler, Metropolis-
Hastings, and others. The algorithm used in this work, and probably the most widely
used algorithm, is the Metropolis-Hastings algorithm. First, an initial guess θ0 must be15

specified. Then, the algorithm is as follows:

– Current position is θ

– Generate proposed new θ∗

– Calculate the acceptance probability α (see below)

Compare α to U, where U is a random number generated on the interval [0,1]. If α>U,20

the proposed step is accepted.
The acceptance probability α is given by:

α = min
{

1,
p(θ∗|Data)

p(θ|Data)

P D(θ|θ∗)

P D(θ∗|θ)

}
(3)

3Draper, D.: Bayesian Hierarchical Modeling, New York, Springer-Verlag, in preparation,
2006.
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where PD(θ) is termed the probing distribution (see Appendix A).
The two key components of the MCMC method are a model relating the unknown

variables to the observations and a probability model describing the likelihood of the
observations. These will be discussed in turn. Next, Sect. 3.3 describes how prior
information was included in the analysis. Appendix A briefly discusses two implemen-5

tation issues that are critical to successfully applying the MCMC method: selecting a
probing distribution and convergence monitoring strategies.

3.1 Inorganic aerosol model

The assumption that local equilibrium exists for volatile species between the gas and
aerosol phases has been frequently invoked, and equilibrium models have been under10

development for over twenty years (for example see Ansari and Pandis, 1999b; Bas-
sett and Seinfeld, 1983, 1984; Nenes et al., 1998; Pilinis and Seinfeld, 1987; Wexler
and Seinfeld, 1991). A variety of researchers have shown generally good agreement
between equilibrium predictions and field observations (for example, see Allen et al.,
1989; Hildemann et al., 1984; Pilinis and Seinfeld, 1988; Russel et al., 1988), though15

under certain conditions the equilibrium time scale is too long to justify the equilib-
rium assumption (Wexler and Seinfeld, 1990, 1992). Factors that favor equilibrium are
small particle size, high particle number concentrations, and higher temperatures. Con-
versely, low aerosol mass concentrations, low temperatures, and large particle sizes
will increase the equilibrium time scale. Given the size of the particles sampled by20

the AMS (<1µm), their high concentrations, and the high temperatures and low rela-
tive humidities observed at La Merced, we expect that the equilibrium assumption is
reasonable for the period of study.

Two excellent reviews of available inorganic aerosol models are provided by (Zhang
et al., 2000) and (Ansari and Pandis, 1999a). Zhang et al. (2000) compared predic-25

tions of MARS-A, SEQUILIB, SCAPE2, EQUISOLV II, and AIM2 under a variety of
conditions and found that PM compositions are generally comparable for most ambient
gas-phase compositions. These findings were confirmed by Ansari and Pandis, who
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compared the predictions of GFEMN, ISORROPIA, SCAPE2 and SEQUILIB both for
a series of theoretical cases and against observations taken during the Southern Cal-
ifornia Air Quality Study (SCAQS) (Ansari and Pandis, 1999a). Applying the models
to SCAQS, Ansari and Pandis found minor discrepancies in predictions between the
models and general agreement with the SCAQS observations, though nitrate is un-5

derpredicted (Ansari and Pandis, 1999a). Observations of crustal species were not
available, however, and likely contributed to this underprediction.

Overall, Ansari and Pandis found small discrepancies in the overall prediction of
aerosol behavior of the four models, where GFEMN was used as a reference aerosol.
For ammonia rich environments, the mean predictions of the four models of aerosol10

nitrate and total dry inorganic PM agreed within 3%; ISORROPIA’s aerosol nitrate pre-
dictions showed better agreement with GFEMN than SEQUILIB and SCAPE2 (Ansari
and Pandis, 1999a). Although ISORROPIA tended to predict lower aerosol water than
GFEMN, SCAPE2, and SEQUILIB, relative to the predictions of GFEMN, the mean
normalized bias and error of ISORROPIA’s aerosol water were approximately an order15

of magnitude smaller than for SCAPE2 and SEQUILIB. Previous observations indicate
that Mexico City is an ammonia rich environment (Chow et al., 2002b; Moya et al.,
2004), suggesting that ISORROPIA is a particularly suitable choice of model.

The model treatment of chloride species is worth particular mention (see Sect. 4).
GFEMN, SCAPE2 and ISORROPIA predict that sodium will preferentially bind with20

available HNO3 to form sodium nitrate (NaNO3). If sufficient HNO3 is not available, the
excess sodium is predicted to bind with available HCl (forming NaCl). EQUISOLV II
and SEQUILIB, however, assume that the partitioning of sodium between NaNO3 and
NaCl (in the presence of HNO3 and HCl) is governed by:

NaCl(s) + HNO3(g) ↔ NaNO3(s) + HCl(g) (4)25

For the four models they examined, Ansari and Pandis found minor differences in
predicted chloride concentrations (Ansari and Pandis, 1999a). However, Zhang et
al. found that the particulate chloride exhibited good agreement between AIM2 and
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SCAPE2, but they found significant differences between the predictions of SEQUILIB
and EQUISOLV II.

Moya et al. (2001) confirmed the finding of minor discrepancies between the four
models examined by Ansari and Pandis by applying the models to data from the 1997
IMADA-AVER field campaign in Mexico City. Using the same dataset, San Martini com-5

pared predictions from ISORROPIA and a new equilibrium model that includes complex
and hydrate species and directly minimizes the Gibbs free energy, and similarly found
only small differences in model predictions (San Martini, 2004).

Nenes et al. (1999) incorporated ISORROPIA into the three-dimensional airshed
model UAM-AERO and compared it with predictions of UAM-AERO with SEQUILIB;10

they found good agreement between model predictions as well as experimental results.
These researchers also point out that ISORROPIA is significantly faster than other
inorganic aerosol models; this characteristic makes ISORROPIA an attractive model
for use in a sampling based technique.

Based on its agreement with other models, computational speed and the high am-15

monia concentrations previously observed in the MCMA, the model selected to relate
the unknown variables to the observations is a modified version of the inorganic equi-
librium model ISORROPIA. The major reactive inorganic atmospheric aerosol compo-
nents are ammonia, sulfate, nitrate, sodium, and chloride; water is the most important
solvent for constituents of atmospheric particles and drops (Ansari and Pandis, 1999b).20

ISORROPIA predicts the equilibrium partitioning of inorganic species between the gas
and aerosol phase given inputs of temperature, relative humidity, and total pollutant
concentrations (Nenes et al., 1998). For sulfate and sodium, the total concentration
is the aerosol phase concentration, while for ammonia, nitrate, and chloride the total
concentration is the sum of the gas and aerosol phase:25

NHt
3=NH+

4 (aerosol) + NH3(g) (5)

NOt
3=NO−

3 (aerosol) + HNO3(g) (6)

Clt=Cl−(aerosol) + HCl(g) (7)
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One modification made to ISORROPIA was the value of the equilibrium constant Kp

(ppb2) for the dissociation of solid ammonium nitrate:

NH4NO3(s) ↔ NH3(g) + HNO3(g) (8)

The value of Kp at a temperature T is evaluated according to:

KP (T ) = K
(
T o)exp

{
a
(
T o

T
− 1
)
+ b
(

1 + ln
(
T o

T

)
− T o

T

)}
(9)

5

ISORROPIA, like SCAPE2 (Kim et al., 1993) and EQUISOLV II (Jacobson, 1999; Ja-
cobson et al., 1996), used the NBS Thermodynamic Tables (Wagman et al., 1982) to
determine Kp for Eq. (8). Mozurkewich has conducted the most comprehensive re-
view to date of available thermodynamic data to determine the equilibrium constant
of ammonium nitrate (Mozurkewich, 1993); therefore, the thermodynamic parameters10

of Mozurkewich were substituted for those used in the original formulation of ISOR-
ROPIA. Table 1 shows the values of K (T o), a, and b used by different models. Note
that neither AIM2 nor GFEMN use equilibrium constants, rather they directly minimize
the Gibbs free energy to determine equilibrium. The thermodynamic parameters used
by these two models can be used to calculate a value of K (T o) of 43.6 ppb2 for AIM215

and 42.5 ppb2 for GFEMN. These values compare well with the value of 41.99 (±12%)
ppb2 suggested by Mozurkewich.

3.2 Likelihood of the observations

Uncertainty associated with a measurement can be partitioned into two components:
random noise and measurement bias (or systematic error) (Ferson and Ginzburg,20

1996). The observed and “true” variables can be related by:

Xtrue = Xobs + ε (10)

where ε is the difference between the “true” and observed values of X . For the case
where the variation is due to a combination of many small errors, with each of the
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errors being equally likely of being positive or negative, ε will be described by a normal
distribution. Indeed, the central limit theorem tells us that even if some of the error
sources have non-Gaussian distributions, ε will still be normally distributed as long
as the number of error sources is large. The Gaussian distribution has been found
to describe more real cases of experimental and instrument variability than any other5

distribution (Coleman and Steele, 1999). For an unbiased observation ε is described
by a normal distribution with zero mean and variance σ2:

ε∼N(0, σ) (11)

Xtrue now is a normally distributed random variable with mean Xobs and variance σ2.
For the case where the measurement uncertainty is proportional to the observation10

σ ∝ Xobs (12)

σ = s × Xobs (13)

Combining Eqs. (11) and (13) gives the likelihood model for an unbiased observation
whose uncertainty is proportional to the observation:

X ∼ N(Xobs, s × Xobs) (14)15

Equation (14) describes the likelihood function of an unbiased measurement with
Gaussian error whose uncertainty is proportional to the measurement, i.e.,

p
(
Xobs|x

)
=

1
√

2πsXobs

exp

(
−1

2

(
x − Xobs

sXobs

)2
)

(15)

3.2.1 Likelihood function for ammonia observations

Figure 1 shows the FTIR and TILDAS NH3 observations taken at La Merced. Be-20

tween approximately midnight (CDT) and 11:00 a.m. these two observations diverge
5946
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markedly. In theory, the error associated with the FTIR NH3 concentrations is between
15% and 20% (Moya et al., 2004). The estimated uncertainty for the TILDAS ammonia
concentrations is 20%. However, given the discrepancies in observed concentrations,
a more conservative error estimate of ±29% (at the 95% confidence level) was used
for both NH3 instruments (see Table 2). Combining the likelihood expression given by5

Eq. (15) with the parameters in Table 2 yields the likelihood for the FTIR or TILDAS
measurement:

p
(
FTIR|NH3

)
=

1
√

2π
(

0.15 (NH3)FTIR
obs

) exp

−1
2

(
NH3− (NH3)FTIR

obs

0.15 (NH3)FTIR
obs

)2 (16)

p
(
TILDAS|NH3

)
=

1
√

2π
(

0.15 (NH3)TILDAS
obs

) exp

−1
2

(
NH3− (NH3)TILDAS

obs

0.15 (NH3)TILDAS
obs

)2 (17)

The goal of this work, however, is not to determine likelihood for the FTIR or TILDAS10

measurement. Rather, given the “true” ammonia concentration, we wish to determine
the likelihood of both the FTIR and TILDAS observations, i.e., we wish to determine
p(Data |NH3), where Data=(FTIR, TILDAS).

Given the evident discrepancies in the two NH3 observations, great care was taken
to ensure quality assurance and control of these observations. We therefore have15

a high degree of confidence in both observations. We define an augmented model
space θ≡ [NH3,M], where M≡[MFTIR,MTILDAS], to incorporate both observations into
the likelihood function. M is a binary variable, where p(MTILDAS) and p(MFTIR) are the
probabilities that the TILDAS and FTIR instrument reflect the true state of nature, and
we assume that p(MTILDAS)+p(MFTIR)=1. We have a high degree of confidence in both20

observations and hence no a priori reason to believe one observation is more likely
than the other, i.e.,

p (MFTIR) = p (MTILDAS) = 0.5 (18)
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The augmented likelihood function is thus given by:

p
(
Data|NH3,M

)
=


1√

2π
(

0.15(NH3)FTIR
obs

) exp

(
−1

2

(
NH3−(NH3)FTIR

obs

0.15(NH3)FTIR
obs

)2
)

if M = MFTIR

1√
2π
(

0.15(NH3)TILDAS
obs

) exp

(
−1

2

(
NH3−(NH3)TILDAS

obs

0.15(NH3)TILDAS
obs

)2
)

if M = MTILDAS

(19)

Note that with an augmented model space θ ≡ [NH3,M], the expression for the accep-
tance probability now is:

α = min

{
1,

p(Data|NH∗
3,M

∗)p
(
NH∗

3|M
∗)p (M∗)

p(Data|NH3,M)p
(
NH3|M

)
p (M)

P D(NH3|NH∗
3,M

∗)P D (M)

P D(NH∗
3|NH3,M)P D (M∗)

}
(20)

5

The ammonia prior is obtained from observations taken before the experiment is be-
gun; it is therefore independent of M:

p
(
NH3|M

)
= p (NH3) (21)

Similarly, the ammonia probing distribution is independent of M:

P D
(
NH∗

3|M,NH3
)
= P D

(
NH∗

3|NH3
)

(22)10

Combining Eqs. (20–22):

α = min

{
1,

p(Data|NH∗
3,M

∗)p
(
NH∗

3

)
p
(
M∗)

p(Data|NH3,M)p (NH3)p (M)

P D(NH3|NH∗
3)P D (M)

P D(NH∗
3|NH3)P D (M∗)

}
(23)

3.2.2 Likelihood function for nitric acid observations

The nominal error associated with the FTIR HNO3 concentrations is approximately 40%
(Moya et al., 2004). The higher uncertainty in the HNO3 determination relative to that15

for NH3 is due to the small HNO3 infrared fingerprint and the strong water interference
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in the spectral window. A more conservative estimate of ±49% is used here (see
Table 2).

The uncertainty in the estimate of HNO3 based on the NOz observations is large.
In theory, NOz provides an upper bound to the HNO3 concentration since NOz may
comprise HNO3, RNO3, PAN, HONO, NO3 and N2O5. However, the uncertainties in5

the NOz concentrations are large because the concentrations were derived from three
measurements (see Eq. 1). The measurement errors are therefore additive. The av-
erage concentration of NOy and (NO+NO2) measured by the AML at La Merced were
100 and 90 ppb, respectively. Typical urban concentrations of HNO3 range from sub-
ppb to 10’s of ppb; the average NOz observation at La Merced was 4 ppb, and the10

mode of the distribution was 3 ppb. For reference, a 10% uncertainty in the NO, NO2,
and NOy observations results in an uncertainty that is approximately a factor of five
larger than the most frequently reported value of NOz. Figure 2 compares the FTIR
HNO3 observations with the determined NOz values. Despite the large uncertainties
in the NOz values, the diurnal variations of HNO3 evident in the FTIR observations can15

be seen in the NOz time series.
Due to the high uncertainty associated with the NOz values, the likelihood function for

HNO3 is based only on the FTIR HNO3 observation when it is available, i.e., we neglect
the NOz observation if the FTIR HNO3 observation is available. Out of a total of 612
data points analyzed, there are three points except either the FTIR HNO3 observation20

is missing or negative. For these three points only the NOz observation is used in the
likelihood function, where the uncertainty is assumed to be ±49% (see Table 2).

3.2.3 Likelihood function for AMS observations

The mass concentrations measured with the Aerodyne AMS during the MCMA-2003
campaign have a range of uncertainty of approximately −30% and +10% (Salcedo et25

al., 2006). This asymmetric likelihood distribution is due to the uncertainty in particle
collection efficiency. The mode of the likelihood function will therefore be the obser-
vation (i.e., the most likely value is the observation itself), with the probability density
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decreasing from the observation.
The probability model selected to represent this likelihood function is a mixed Gaus-

sian model, where most of the probability density comes from a normal probability den-
sity function (pdf) centered at the observation, and the remaining probability density is
provided by a second more diffuse Gaussian centered at 85% of the observation:5

p
(
Xobs|X

)
= m × N1 (µ1, σ1) + (1 −m) × N2 (µ2, σ2) (24)

where:
m=mixing proportion=0.7
µ1 = the AMS observation = Xobs
σ1 = 0.061×Xobs10

µ2 = 0.85×Xobs
σ2 = 0.15×µ2 = 0.1275Xobs
Substituting the parameters into the likelihood function yields

p
(
Xobs|X

)
= 0.7 × N (Xobs,0.061Xobs) + (0.3) ×N (0.85Xobs, 0.1275Xobs) (25)

Figure 3 shows the likelihood pdf for an observation of unity (arbitrary units). The most15

likely concentration is the observation, and the probability that the “true” concentration
is greater than 1.1 is 4.3% and less than 0.7 is 3.6% (i.e., there is an 8% chance that
the “true” concentration is either below 0.7 or above 1.1).

The AMS observations were measured in 4-min intervals with a 50% duty cycle. The
first two minutes of each interval were used to characterize the internal particle beam20

shape and are not included in the averaged data presented here. The detection limits
for ammonium, nitrate, and sulfate were 0.37, 0.05, 0.11µg/m3, respectively. Although
the nominal detection limit for chloride is 0.05µg/m3, a higher detection limit was used.
The higher detection limit for chloride was selected because on average the chloride
observations are between one and two orders of magnitude smaller (on a molar ba-25

sis) than the other inorganic aerosol species, and due to the negative observations
reported (see Fig. 12d and Part II). The detection limit used for chloride observations
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was 0.15µg/m3. Moreover, given the uncertainty of the small chloride mass concen-
trations evidenced by the negative observations, the standard deviation for the chloride
likelihood was doubled for observations between one and two times the detection limit,
i.e., for chloride observations between 0.15 and 0.30µg/m3 the likelihood function is:

p
(
Xobs|X

)
= 0.7 ×N (Xobs,0.122Xobs) + (0.3) ×N (0.85Xobs, 0.255Xobs) (26)5

The chloride observations and predictions are discussed further in Results section and
in Part II.

For all species, if an observation was below the detection limit, the likelihood function
given by Eq. (25) was not used. Rather, for ammonium, nitrate, and sulfate, the uncer-
tainty in the observation is assumed to be constant and equal to ±49% of the detection10

limit (i.e., ±0.18, 0.025, and 0.054µg/m3 for ammonium, nitrate and sulfate, respec-
tively, at the 95% confidence level). Chloride observations below the detection level
were assumed to be negligible. The AMS time series at La Merced comprises a total
of 612 AMS observations. Of these 612 observations, seventeen ammonium observa-
tions were below the detection limit, while the nitrate and sulfate observations were al-15

ways above the detection limit. A little less than half (38%) of the chloride observations
were above the detection limit. Of the 232 chloride observations above the detection
limit, 115 were above 0.30µg/m3 and 117 were between 0.15 and 0.30µg/m3.

3.2.4 Likelihood function for temperature and relative humidity

Figure 4 shows the observed temperature and relative humidity at La Merced. Both20

the per-minute and per-hour RAMA observations are shown. As can be seen from the
gaps in the per-minute data, the data logger failed for extended periods of time. For
the periods where the per-minute data is not available, the hourly averaged data was
interpolated. The uncertainty in the averaged temperature and relative humidity mea-
surements was assumed to be ±0.6◦C and ±1.4%, respectively, at the 95% confidence25
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level. The likelihood functions are:

p
(
Tobs|T

)
∼ N(Tobs, 0.3) (27)

p
(
RHobs|RH

)
∼ N(RHobs,0.7) (28)

3.3 Selecting the prior

The prior p(θ) represents the uncertainty of θ before the data arrives: the prior thus5

contains all the information available about the unknown variables before the experi-
ment begins. Two desirable characteristics of a prior are that it be well-centered near
the actual value of the unknown variables and the uncertainty bands should corre-
spond well to the realized discrepancies between actual and predicted values (Draper,
2006)3.10

Information for the prior may come from previous experiments, the scientific litera-
ture, expert opinion, constraints provided by knowledge of the physics and chemistry of
the system, and so on. For example, if all that is known about a parameter is that it must
be greater than zero and below an upper bound, (by Laplace’s Principle of Insufficient
Reason) an appropriate prior would be a uniform probability density function:15

X∼U [lower bound, upper bound] (29)

In general, some information is almost always available, and one of the advantages of
the Bayesian approach is that it provides a formal and intuitive mechanism to utilize
this information.

A natural selection for random variables that must be positive is the lognormal dis-20

tribution. Kahn provides an elegant explanation for the applicability of the lognormal
distribution to air pollution concentrations (Kahn, 1973). More recently, Ott proposed
the theory of successive random dilutions as a physical explanation for the lognor-
mality of pollutant concentrations (Ott, 1990). The use of lognormal pdf’s to describe
pollutant concentrations has been used by a wide variety of researchers (e.g., Beier,25
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1999; Georgiadis et al., 1998; Hadley and Toumi, 2003; Kan and Chen, 2004; Kao and
Friedlander, 1995; Lorenzini et al., 1994; Lu, 2002; Murphy, 1998; Tripathi, 1994).

The lognormal pdf of X is given by

p (X ) =
1

√
2πσX

exp

(
−1

2

(
ln(X ) − µ

σ

)2
)

(30)

Care must be exercised in the notation used: X is the mean of the random variable5

X while µ is the mean of the natural logarithm of X (i.e., µ=ln (X )). These two size
parameters are related by

µ = ln(X ) − 1
2
σ2 (31)

The standard deviation of the natural logarithm of X is σ. The standard deviation of X,
denoted by σX , is given by10

σX =
√(

e2µ+σ2) (eσ2 − 1
)

(32)

Finally, the mode (X̃ ) of the lognormal distribution, which is the most likely value of the
distribution, is given by

X̃ = eµ−σ2
(33)

Since we are often interested in the most likely value of a variable, if X is lognormally15

distributed, this will be denoted as

X ∼ logN(X̃ , σ) (34)

3.3.1 Prior for aerosol phase species

A uniform prior was used for the inorganic AMS species. The maximum concentration
observed for ammonium, nitrate, sulfate, and chloride was 9, 21, 12, and 3µg/m3,20
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respectively. None of these maxima is above what one would expect in a polluted
atmosphere like Mexico City.

The only inorganic aerosol species for which observations are not available are
crustal species (Koloutsou-Vakakis and Rood, 1994). Numerous researchers have
highlighted the importance of including crustal species in predicting aerosol behavior5

(e.g., Ansari and Pandis, 1999a; Jacobson, 1999; Koloutsou-Vakakis and Rood, 1994;
Moya et al., 2001). Common crustal elements include Al, Si, Fe, Ca, Mg, K, and Na.
Since Al, Si, and Fe are present in the form of stable oxides, they do not participate in
reactions and do not significantly affect the partitioning of species (Moya et al., 2001).
Ca, Mg, K, and Na compounds generally exist as oxides and/or carbonates and can10

be transformed to water-soluble species, and can affect the distribution of species (Kim
and Seinfeld, 1995).

Previous observations has found that geologic material comprises a significant frac-
tion of PM2.5 in Mexico City (Chow et al., 2002a), and size resolved observations of
aerosols at La Merced found appreciable concentrations of Na, K, and Ca in aerosols15

with aerodynamic diameter smaller than 1µm (Moya et al., 2004). The dry salt lake of
Texcoco is ∼15 km northeast of the site, covers ∼12 km2 (Moya et al., 2004) and is a
likely source of crustal species. We therefore need to allow for the presence of crustal
material in our calculations.

While crustal material was not measured at La Merced during MCMA-2003, impactor20

aerosol collection followed by PIXE analysis was conducted at the CENICA site. The
experimental setup and results are described elsewhere (Johnson, 2006). Here we use
the 6-h averaged concentrations of elemental Na, K, Mg, and Ca from the two smallest
stages (0.07–0.34µm and 0.34–1.15µm) to estimate a lognormal prior for equivalent
Na, defined as25

Naequiv=Na + K + 2Mg + 2Ca (35)

where all the concentrations are in molar units (µmol/m3). Moya et al. (2001) found
good agreement between the predictions of SCAPE2, which explicitly includes K, Mg,

5954

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/5933/2006/acpd-6-5933-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/5933/2006/acpd-6-5933-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 5933–5998, 2006

Implementation of a
MCMC method to

aerosol modeling in
MCMA

F. M. San Martini et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

and Ca, with those of ISORROPIA, where crustal species are included as equivalent
Na, when the models were applied to data from the 1997 IMADA-AVER campaign.

The PIXE observations provide an upper limit to the equivalent sodium concentra-
tion for two reasons. First, a relatively small critical orifice was selected for the AMS
onboard the AML to better sample smaller particles from fresh vehicle exhaust dur-5

ing chase experiments. Thus, the AML AMS size-dependent collection efficiency was
shifted to smaller sizes with a 50% cutoff for large particles of ∼0.8µm. On average,
approximately half of the equivalent Na is from the smallest stage (0.07–0.34µm) of
the impactor. Second, the PIXE observations are elemental concentrations, while we
are only interested in the concentration of crustal species that can interact with the10

other inorganic aerosol species.
Since the PIXE observations provide an upper limit for Naequiv for our system, we

halved the mode and doubled the standard deviation of the lognormal fit to the PIXE
measurements found using the method of moments (e.g., Seinfeld and Pandis, 1998).
Figure 5 shows the frequency distribution of the equivalent sodium concentration and15

the fitted lognormal prior (Observations ∼logN(12×10−3, 0.33), as well as the lognor-
mal prior selected for Naequiv (Naequiv∼ logN(6×10−3, 0.65)). Finally, we additionally

imposed an upper-limit cut-off of Naequiv=80×10−3µmol/m3.

3.3.2 Lognormal prior for NH3 and HNO3

The lognormal prior distributions for NH3 and HNO3 used in this work are described20

in detail by San Martini (2004). Briefly, two sources are used to determine the prior
distribution for ammonia: the 1997 IMADA-AVER campaign (Edgerton et al., 1999)
and an exploratory campaign undertaken at La Merced during February 2002 (Grut-
ter, 2002). The IMADA-AVER campaign provides 6-h averaged measurements at La
Merced (only), and 24-h averaged measurements at 25 different sites throughout the25

MCMA (Chow et al., 2002a), while the 2002 exploratory campaign yields 6-min NH3
concentrations measured using the same FTIR system used here. Figure 6 shows
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the frequency distribution of the 6-h and 24-h averaged IMADA-AVER observations,
the 6-minute averaged observations from February 2002, and the fitted lognormal prior
(NH3∼logN(0.5, 0.9)).

During the IMADA-AVER campaign nitric acid measurements were taken as 6-h av-
erages at the La Merced site only. No observations of nitric acid are available from5

the 2002 exploratory campaign. Given the scarcity of the HNO3 observations a very
diffuse prior was selected (see Fig. 7).

3.3.3 Prior for HCl(g)

To the authors’ knowledge no direct observations of HCl(g) are available for the MCMA.
Previous work, however, indicates that concentrations of HCl(g) may be appreciable10

(San Martini et al., 2005). Typical sources of HCl(g) include volatilization of chloride
from sea salt particles and other primary particulate matter emissions from natural
(e.g., soil dust) and anthropogenic sources. While Mexico City is hundreds of kilome-
ters from the ocean, the dry salt-lake in the northeast of the city is a source of salt
particles. Previous work has shown a clear gradient in PM2.5 and PM10 chloride con-15

centrations, with decreasing concentrations further from the dry lakebed (San Martini,
2004; San Martini et al., 2005).

In addition to the dry lakebed, other sources of (direct or indirect) HCl may be present
in the MCMA. The combustion of chlorine- or chloride-containing fossil fuels and the
incinerations of chlorine- or chloride-containing refuse are the two major anthropogenic20

sources of HCl (Saxena et al., 1993). In the U.S., most of the HCl emissions are
believed to be due to (bituminous) coal combustion (Saxena et al., 1993); this will
not be the case for Mexico City as there is negligible coal combustion in the MCMA.
In general, large anthropogenic sources of molecular chlorine (Cl2) include chemical
production facilities, water treatment plants, smelters, and paper production operations25

(Tanaka et al., 2000). Other anthropogenic sources that commonly contribute to the
chlorine budget include dry cleaning operations and solvent use.

The emissions inventory for chlorine sources in the MCMA is sparse. The 2000
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emissions inventory for the MCMA reports usage of chlorine in the production of alu-
minum, as well as evaporative emissions of methyl chloroform and perchloroethylene
(Secretaŕıa del Medio Ambiente, 2000). Given the high level of photochemical activity
generally present in the MCMA efficient conversion of most emitted organic chloride to
HCl is expected. Despite the sparseness of the chlorine emissions inventory, the pres-5

ence of the dry lakebed and the variety of industry in the MCMA suggests appreciable
atmospheric emissions of chlorine- and chloride-containing compounds in the MCMA.

In addition to anthropogenic sources, an additional source of chlorine relevant to the
MCMA may be the volcano Popocatépetl located southeast of the MCMA. Volcanoes
are a major source of HCl to the atmosphere. Allen et al. (2002) measured emis-10

sions from the Masaya Volcano, Nicaragua, and observed concentrations of HCl up to
1300µg/m3. Given the predominant winds, the relatively low volcanic activity, and the
distance of the volcano from the city (approximately ∼60 km from the center of Mexico
City), it is unlikely that emissions from the volcano will significantly impact concentra-
tions in the MCMA. However, there may be episodes of higher than normal volcanic15

activity that coincide with winds from the southeast that contradict this assumption.
Raga et al. found that aerosol composition in Mexico City is affected by emissions from
Popocatépetl (Raga et al., 1999). They suggest that recirculating flows as observed
by (Fast and Zhong, 1998) would provide the mechanism to transport pollutants from
aloft into the city. In addition, Moya et al. examined size-differentiated aerosol particles20

during December 2000–October 2001 and found significantly higher sulfate concentra-
tions during April and June (Moya et al., 2003). The authors attribute this observation to
an increase in volcanic activity and predominantly easterly winds (i.e., from the volcano
to the city) during this period, as well as ambient conditions that favor sulfate produc-
tion (high humidity). Thus, given appropriate meteorological conditions and volcanic25

activity, Popocatépetl may contribute to HCl concentrations in the MCMA.
Finally, a characteristic of the air pollution in the MCMA that is of particular relevance

in the question of HCl concentrations is the high concentrations of alkanes (Blake and
Rowland, 1995). Chlorine radicals react rapidly with alkanes via hydrogen abstraction
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to form HCl(g). Therefore, an urban atmosphere with high concentrations of alkanes
and a source of chlorine radicals is likely to have appreciable concentrations of HCl(g).

With no measurements of HCl(g) available for the MCMA, we turn to observations
of HCl in other locations to estimate the likely range of HCl(g) concentrations. San
Martini reviewed ambient HCl concentrations in urban locations worldwide, including5

locations close and far from the coast (San Martini, 2004). Figure 8 summarizes this
review, where for each literature source the minimum and maximum observed concen-
tration are shown; the units of the ordinate are arbitrary. Also shown is the assumed
prior (HCl∼logN(0.02, 1.4)), which allows for HCl concentrations an order of magnitude
greater and smaller than the largest and smallest observation.10

4 Results

Figure 9a shows the observed and predicted ammonia concentrations for the period of
study. Shown are both the long-path and point observations, as well the mode (black)
and 95% confidence interval (dashed black) of the NH3 posterior distribution. The NH3
posterior probability density surface is shown in Fig. 9b. The model is able to reproduce15

the observations well when the two ammonia time series agree. The most significant
discrepancies between the two ammonia time series are evident at night and in the
morning hours; during these times, the NH3 posterior probability density is centered
on the TILDAS observations. This means that during these periods, given our under-
standing of aerosol thermodynamics, the TILDAS observations are more consistent20

with the observations. As will be discussed later, the open-path instrument apparently
detected a source of ammonia that was not seen in the point measurement. Note that
the predicted 95% confidence interval encompasses the long-path FTIR observations,
indicating that the FTIR observations are plausible, and that the Markov Chain has
explored the entire solution space.25

During the afternoon of 26 April 2003, the NH3 posterior probability density is more
closely centered on the FTIR than TILDAS observations. In this period the FTIR ob-

5958

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/5933/2006/acpd-6-5933-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/5933/2006/acpd-6-5933-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 5933–5998, 2006

Implementation of a
MCMC method to

aerosol modeling in
MCMA

F. M. San Martini et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

servations are ∼3 ppbv larger than the TILDAS observations; this discrepancy is within
the uncertainty of the two time series. Figures 10a and b compare the mode of the
NH3 posterior distribution with the FTIR and TILDAS observations, where the points
are colored by the time of day.

Figure 11 shows the observed and predicted nitric acid concentrations. The ob-5

served nitric acid concentrations are low (∼5 ppbv) at night and in the early morning.
At approximately 11:00 a.m. the concentrations of nitric acid start to increase: this in-
crease occurs despite the rise in the boundary layer, clearly pointing to photochemical
production of HNO3 from rush-hour NOx emissions. The maximum nitric acid concen-
tration is at ∼03:00 p.m. The model captures this diurnal profile well on 26 April 2003.10

On 27 April 2003 the model appears to over-predict afternoon nitric acid concentra-
tions. Moreover, nitric acid concentrations at night and during the morning (before
∼11:00 a.m.) are predicted to be significantly below the observations. It is during
these periods when the concentrations of HNO3 are lowest and closest or below the
minimum detection limit.15

Figures 12 and 13 compare the observed and predicted aerosol concentrations. The
model does an excellent job at reproducing the aerosol observations. In particular,
note that while inorganic equilibrium models have traditionally performed poorly in pre-
dicting aerosol nitrate concentrations, the model has no such difficulties here. The
chloride concentrations deserve particular mention. The top panel of Fig. 14 shows20

the chloride observations, where only those observations above the detection limit
(0.15µg/m3) are shown, as well as the mode of the predicted chloride posterior distri-
bution (black squares). The model accurately predicts the chloride observations when
the chloride observations are consistently above the detection limit (∼01:00 a.m. to
∼11:00 a.m.). The HCl(g) concentrations are well constrained in this period, with con-25

centrations generally ∼O(ppbv), though higher concentrations are predicted on the
27th (∼O(10 ppbv)). In particular, the concentration of HCl(g) is predicted to go from
sub-ppbv in the early morning hours to ∼1 ppbv at 09:30 a.m. (see Fig. 14c). The
concentration of HCl (g) is predicted to increase to ∼5 ppbv until ∼10:30 a.m., at which
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point the predicted aerosol chloride continues to match the observations well. After this
the HCl(g) concentrations increase to ∼10 ppbv and higher; however, despite these
high gas-phase concentrations, the chloride is predicted to partition mostly to the gas-
phase, and the aerosol chloride predictions and observations no longer match well.
This behavior is also seen in the afternoon periods, where occasionally the AMS chlo-5

ride observation is above the detection limit. During these periods the Markov Chain
will search in extremely high HCl(g) concentration solution space (∼100 ppbv), and still
the most likely aerosol phase chloride concentration is negligible. The FTIR setup has
not been optimized for detection of HCl(g); however, it is expected that it would de-
tect concentrations above 5 ppbv, and certainly concentrations of ∼100 ppbv. No such10

signal was detected.
In sum, when the aerosol chloride concentration is consistently above the 0.15µg/m3

detection limit, the model is able to accurately reproduce the aerosol chloride concen-
trations. During these periods predicted HCl(g) concentrations are well constrained
and on the order of a couple ppbv. Conversely, when the aerosol chloride signal only15

occasionally goes above the detection limit, the model either fails to match the aerosol
phase concentrations or predicts gas phase concentrations that are unreasonably high.

4.1 Deliquescence versus efflorescence

The aerosols are predicted to be dry during the period of study. Figure 4 shows the RH
profile at La Merced: the maximum and minimum relative humidities during the period20

of study were 56% and 24%. Ansari and Pandis (2000a) have highlighted the impor-
tance of considering (metastable) efflorescence behavior. In addition, previous work
has indicated that the presence of aerosol chloride may be indicative of metastable
behavior (San Martini, 2004). We therefore investigated the effect of assuming the
aerosols were metastable (wet) for the period (04:42 a.m.–11:22 a.m.) on 26 April25

2003. During this period the RH started at 49%, reached a maximum of 56%, and then
decreased to 34%. The chloride concentration was consistently above the detection
limit between 04:42 a.m. and 10:06 a.m.. Subsequent to this, the chloride signal var-
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ied between being above and below the detection limit until ∼11:00 a.m., after which
the signal remained below the detection limit. We examined the effect of assuming
the aerosols were in the metastable branch for this period only because the activity
coefficient model used by ISORROPIA breaks down at high ionic strengths.

Differences between the predicted aerosol phase concentrations for the stable ver-5

sus metastable case were found to be negligible (see Fig. 15). Similarly, the predicted
ammonia concentrations for the two cases are very similar (see Fig. 16). Conversely,
differences between the predicted gas phase nitric and hydrochloric acid are evident
(see Figs. 17 and 18), where in both cases the acid concentrations are slightly higher
for the metastable case. The available data are insufficient to discriminate between sta-10

ble and metastable behavior in this case given the excellent agreement between the
ammonia and aerosol phase predictions for the two cases, as well as the uncertainties
in the nitric acid observations.

Finally, it is interesting to note that despite the high concentrations of ammonia ob-
served at La Merced, when the aerosols are assumed to be metastable they are pre-15

dicted to be acidic. The mode of the pH posterior distribution varies between 2.5 and
4.0 pH units during this period. Note, however, that after ∼10:00 a.m. the ionic strength
of the aerosols is predicted to be higher than 60 mol/kg. The errors associated with
the activity coefficient model used by ISORROPIA are significant at these high ionic
strengths. Excluding these points yields an average ionic strength of 41 mol/kg.20

4.2 Equilibrium constant KP (NH4NO3)

As discussed in Sect. 3.1, the value of the equilibrium constant used by ISORROPIA
for the dissociation of solid ammonium nitrate was changed based on the work of
(Mozurkewich, 1993). Figures 19 and 20 compare the observations with the model
predictions of NH3 and HNO3, and Fig. 21 compares the mode of the NH3, HNO3,25

and HCl distribution, respectively, predicted using the original Kp(NH4NO3) based on
the thermodynamic tables of (Wagman et al., 1982) and the modified Kp(NH4NO3)
of (Mozurkewich, 1993). Differences between the NH3 and HCl concentration for the
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two cases are small; for HNO3 the higher value of Kp(NH4NO3) used by the original
formulation of ISORROPIA results in HNO3 concentrations that are ∼20% higher. At
night and during the early morning hours the model predictions of HNO3 are below
the observations regardless of which equilibrium constant is used. The over-prediction
of HNO3 for the afternoon of the 27th discussed previously is exacerbated by the use5

of Kp(NH4NO3) based on Wagman’s data. We wish to emphasize, however, that care-
fully controlled laboratory conditions rather than field conditions are a more appropriate
means to determine and validate thermodynamic parameters. The finding that the NH3
TILDAS point observations are more consistent with all the available measurements
and our knowledge of thermodynamics is robust using both the value of Kp(NH4NO3)10

suggested by Mozurkewich and that used in the original formulation of ISORROPIA.

5 Conclusions

ISORROPIA was embedded in a Markov Chain Monte Carlo algorithm to produce a
powerful tool to analyze concentrations of inorganic aerosol and gas-phase precursors.
The method allows for the direct incorporation of measurement uncertainty, provides a15

formal framework for including prior knowledge and datasets of different quality. The
method was successfully applied to data taken at La Merced during the MCMA-2003
field campaign. The model was able to reproduce observed aerosol concentrations
extremely well, as well as provide an excellent constraint for gas-phase concentrations.

Observations of ammonia from two different instruments, a long-path FTIR and a20

TILDAS point sampler, were provided to the model. The model did an excellent job
at reproducing the gas-phase ammonia concentrations during periods where the ob-
served ammonia concentrations agreed. During periods when the two time series
diverged the model predicts that the observations from the TILDAS, which was co-
located to the aerosol measurements, are more likely to be consistent with all the25

available observations and our knowledge of aerosol thermodynamics.
The FTIR and TILDAS NH3 observations are not expected to be identical. Long-
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path observations tend to smooth out gradients from very local sources and pick up
plumes that are not observed with the point samplers. Moreover, the different sampling
heights (∼20 m versus ∼2 m) of the two instruments may result in the sampling of dif-
ferent air masses. In particular, the largest discrepancies are seen at night: a plausible
explanation would be a highly stratified nighttime atmosphere.5

While both vertical and horizontal inhomogeneities are plausible explanations to the
observed discrepancies, one would expect that these inhomogeneities would also be
reflected in other pollutants. However, an intercomparison of observations of SO2,
formaldehyde, CO, CO2, toluene and benzene did not find a comparable difference in
the time series from instruments measuring along a ∼0.5 km open-path versus in the10

AML. It is therefore unlikely that vertical inhomogeneities cause the difference in NH3
observations. Rather, it is hypothesized that during the day, when there is good mixing
in the boundary layer, mobile sources dominate NH3 emissions. During these times
the two time series agree well. At night and early morning, another (local) ammonia
source becomes dominant presumably closer to the east-end of the light path and thus15

is not observed by the TILDAS instrument, which was located at the west-end of the
FTIR beam trajectory. The low mixing height at night emphasizes the importance of the
local source; the rising boundary layer during the day, combined with increased NH3
emissions and mixing, allows the measurements to converge during the day.

The gas phase concentration and diurnal profile of HNO3 measured with the FTIR20

along the open path is reasonably well predicted by the model. This indicates that
this gas is more homogenously distributed around the measurement site and can be
accurately measured with the spectroscopic technique. The model predicts the rise
in photochemically produced nitric acid in the early afternoon, and does an excellent
job at predicting the maximum concentration on the 26 April, while on the 27 April25

the maximum concentration is slightly overpredicted. Nighttime and morning concen-
trations appear to be significantly below the measured concentrations, with sub-ppb
concentrations predicted between ∼03:00 a.m. and ∼09:00 a.m. both days.

Finally the model is able to predict HCl concentrations despite the lack of measured
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data. When aerosol chloride concentrations are consistently above the 0.15µg/m3

detection limit, the model is able to accurately reproduce the aerosol chloride concen-
trations and the most likely concentration of HCl(g) is predicted to vary between 0.4
and 5 ppbv.

Appendix A5

Practical implementation issues

A1 Probing distribution

The question of what is the “best” probing distribution for a particular problem is a
question that has bedeviled MCMC practitioners from the inception of the method to10

this day. In part, this is because essentially any probing distribution will (eventually)
work: the stationary distribution for just about any probing distribution is the desired
p(θ|Data) (Gilks et al., 1996). To date, no one has established a general method of
choosing a probing distribution that always leads to a well-mixed chain. Given this
caveat, two suggested characteristics of a successful probing distribution are (Draper,15

2006)3:

1. Choose a probing distribution that approximates an overdispersed version of the
posterior distribution that is being sampled from;

2. Choose a probing distribution whose expected value for each proposed move (θ∗),
given the current state θt, is to remain at θt (i.e., E(θ∗|θt)=θt).20

The second suggestion ensures that there will be an approximate left-right balance,
which encourages rapid exploration of the entire solution space (Draper, 2006)3. One
way of ensuring this is to select a symmetric probing distribution, i.e., PD(θ∗|θ)=PD (θ
|θ∗).
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θ is a ten-dimensional vector comprising 9 continuous (T, RH, NH3, HNO3, HCl, NH4,
Na, NO4, SO4, Cl, H2O) and one binary (M) variable. For the continuous variables
we use a random-walk Metropolis algorithm, which is easy to program and has good
MCMC convergence properties (Draper, 2006)3. The algorithm uses a multi-variate
normal distribution whose mean is the current position and variance plays the role of5

a tuning parameter that can be varied to ensure good mixing. However, since gener-
ating a multi-variate distribution is computationally inconvenient, we use the approach
outlined in (Rao, 1992) to generate the correlated normal draws. A modified Choleski
decomposition is applied to an estimate of the probing distribution covariance matrix.
We sample from a uni-variate normal distribution 9 times and multiply this vector by10

the diagonal matrix calculated in the modified Choleski decomposition to generate a
9-element vector of independently distributed normal numbers. The proposed Markov
step is generated by multiplying this vector by the lower triangular matrix calculated
from the modified Choleski decomposition of the estimated probing distribution covari-
ance matrix (San Martini, 2004). The probing distribution for the binary variable, which15

is independent of the other components of θ, is derived from a uniform distribution:

M =
{
MFTIR if 0 ≤ u ≤ 0.5
MTILDAS if 0.5 < u ≤ 1.0

(A1)

A well-chosen probing distribution will favor convergence. We want a Markov chain
that mixes well, or, in the words of Draper, “that moves around freely, happily jumping
all over the place” (Draper, 2006)3. A MCMC simulation with either too high or low an20

acceptance probability is suspicious: a high acceptance probability indicates that the
Markov steps are too small so that the simulation moves very slowly through the target
distribution, while a small acceptance probability may lead the Markov chain to stand
still most of the time. Adaptive Metropolis sampling (Gelman et al., 1996) was used in
this work to ensure an optimal acceptance probability (∼20%).25
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A2 Convergence diagnostics

Convergence diagnostics attempt to answer the question of when it is reasonable to
believe that the samples generated by the MCMC simulation are representative of the
underlying equilibrium distribution. This is a more general notion of convergence than
for usual iterative procedures because the MCMC simulation provides neither a single5

value nor a distribution, but rather a sample from a distribution. Moreover, the nature
of the MCMC algorithm is that the samples will generally be correlated (Cowles and
Carlin, 1996). While ensuring convergence is crucial when applying MCMC methods
in general, it is particularly important here due to the bimodal nature of the gas phase
posterior distributions.10

For an excellent comparative review of MCMC convergence diagnostics see (Cowles
and Carlin, 1996). While methods such as MCMC are used in many application areas
by a wide population of experimenters, these experimenters often have little knowledge
or interest in the fine details of convergence diagnostics (Heidelberger and Welch,
1983). Fortunately, the need for a tool that provides a variety of automated conver-15

gence diagnostics has been fulfilled. Researchers at the Medical Research Coun-
cil Biostatistics Unit in Cambridge, UK have developed and kindly made freely avail-
able by anonymous ftp://ftp.mrc-bsu.cam.ac.uk) Convergence Diagnosis and Output
Analysis (CODA) software, a set of S+ functions that calculates a variety of MCMC
convergence diagnostics (Best et al., 1995; Best et al., 1997). LeSage has imple-20

mented some of the CODA diagnostics in Matlab and kindly made these freely avail-
able (http://www.spatial-econometrics.com/). The Matlab code of LeSage was used
in this work, and the contributions of Best, Cowles, Vines, and LeSage are gratefully
acknowledged.

Since it is not possible to guarantee that a finite sample from an MCMC algorithm25

is representative of the underlying stationary distribution, (Cowles and Carlin, 1996)
recommend using a variety of diagnostic tools rather than any single plot or statistic,
as well as visually inspecting the chain trace plots. The latter suggestion is impractical
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given the number of data points examined here. Rather, we use a two-part conver-
gence test. If the Markov chain fails either of the tests, a trace plot is generated,
inspected and, either the resulting distribution is omitted from the final results due to
a lack of convergence or the MCMC simulation is repeated using a longer burn in,
more thinning, or a modified probing distribution covariance matrix so that the tests are5

passed. The two convergence tests utilized here are due to Raferty-Lewis (Raferty and
Lewis, 1992) and Geweke (Geweke, 1992).

The Raferty-Lewis test is based on two-state Markov chain theory and standard sam-
ple size formulas (Raferty and Lewis, 1992). The convergence diagnostic requires that
the user specify the quantile q to be estimated (here the 2.5th percentile), the desired10

accuracy r (here ±0.01), and the required probability sof attaining the specified accu-
racy (here 0.95). The diagnostic then calculates the number of iterations N needed to
estimate the specified quantile to the desired precision, as well as Nmin, the minimum
number of iterations needed if the samples were independent, identically distributed
draws. The ratio of these two quantities defines the independence factor I≡N/Nmin;15

thus I is a measure of within-chain correlation, where large values suggest probable
convergence failure. Per the recommendation of Raferty and Lewis, the diagnostic indi-
cates convergence failure if I>5.0. The diagnostic is also deemed to fail if N is greater
than the number of draws in the Markov chain (7000).

The Geweke diagnostic tests whether an equilibrium has been attained by comparing20

the means of the first 20% versus the last 50% of the sample (Geweke, 1992). The
mean of these two splits is not equal if the Markov chain has not reached an equilibrium
state. The output of the test is the two-sided p-value of the tail probability associated
with the computed Z statistic. If the null hypothesis is rejected, this indicates that
the chain has not converged. Here, a p-value of 0.05 was considered strong enough25

evidence to reject stationarity.
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Table 1. Thermodynamic parameters for Eq. (9) for the dissociation of ammonium nitrate used
by different models (To=298.15 K).

Model K(To) (ppb2) a b

MIT-IAM, MARS-R 41.99 −74.7351 6.025
ISORROPIA∗, EQUISOLV II, SCAPE2 57.46 −74.38 6.12
SEQUILIB 29.86 −75.108 13.456

* Earlier versions of ISORROPIA used the same parameters as SEQUILIB. ISORROPIA was
modified for use in this work by changing the values of K(To), a, and b for the dissociation of
solid ammonium nitrate to the values suggested by Mozurkewich (1993), also used by MIT-IAM
and MARS-A.
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Table 2. Measurement uncertainties for NH3, HNO3 and NOz.

Species Instrument s ±%

NH3 FTIR and TILDAS 0.15 29
HNO3 FTIR 0.25 49
NOz NOy, NO2 TILDAS 0.25 49
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Fig. 1. Ammonia observations at La Merced between 25 April 2003 and 27 April 2003 taken
with a TILDAS instrument onboard the AML and with a long-path FTIR instrument located on a
building rooftop. The uncertainty in both time series is ±9%.
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Fig. 2. Nitric acid and NOz observations at La Merced between 25 April 2003 and 27 April
2003 taken with a NOy and TILDAS instruments onboard the AML and with a long-path FTIR
instrument located on a building rooftop. The uncertainty in both time series is assumed to be
±9%.
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Fig. 3. Asymmetric likelihood function for a hypothetical AMS observation (see Eq. 25) above
the detection limit. The observation is 1 (arbitrary units) and has an uncertainty of −30% and
+10%. The area of the shaded region is 8%.
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we use the per minute data to calculate 4-min averages. For periods when the data logger
failed, only hourly averaged data was available. For these periods we interpolated the hourly
averaged data to determine the 4-min averages.

5981

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/6/5933/2006/acpd-6-5933-2006-print.pdf
http://www.atmos-chem-phys-discuss.net/6/5933/2006/acpd-6-5933-2006-discussion.html
http://www.copernicus.org/EGU/EGU.html


ACPD
6, 5933–5998, 2006

Implementation of a
MCMC method to

aerosol modeling in
MCMA

F. M. San Martini et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

25

20

15

10

5

Fr
eq

ue
nc

y

50x10
-3

403020100
Na (µmol/m

3
)

80

60

40

20

0

Probability

 Observation Frequency
 Prior Fit for Observations
 Prior for Naequiv

Observations ~ logN(12 x 10
-3, 0.33)

Naequiv ~ logN(6 x 10
-3

, 0.65)
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Fig. 9. (a) 4-min averaged ammonia observations at La Merced between 25 April 2003 and 27
April 2003 taken with the FTIR (red) and TILDAS (green) instruments, and the predicted mode
(black) and 95% confidence intervals (dashed black) of the ammonia posterior distribution. (b)
Predicted ammonia posterior probability density surface. The model was not run if both ammo-
nia observations were not available; model runs where the Markov Chain did not converge are
also not shown (see text).
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TILDAS (a) and FTIR (b). Only the mode of the posterior NH3 distribution is shown. The points
are shaded are shaded by time of day.
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Fig. 11. (a) 4-min averaged nitric acid (red) and NOz (green) observations at La Merced be-
tween 25 April 2003 and 27 April 2003, and mode (black) and 95% confidence intervals (dashed
black) of the nitric acid posterior distribution. (b) Predicted nitric acid posterior probability den-
sity surface.
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Fig. 12. Predicted (black) and observed (colored) concentrations of ammonium, nitrate, sulfate
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Fig. 13. Correlation plots for (a) ammonium, (b) nitrate, (c) sulphate, and (d) chloride for La
Merced. The error bars for the predictions represent the 95% confidence interval; the measure-
ment uncertainty is +10%, −30%. The detection limit for chloride is 0.15µg/m3.
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Fig. 16. Predicted ammonia concentrations for the stable (black) and metastable (light blue)
case. The solid lines are the mode of the distribution and the dashed lines represent the 95%
confidence interval.
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Fig. 17. Predicted nitric acid concentrations for the stable (black) and metastable (light blue)
case. The solid lines are the mode of the distribution and the dashed lines represent the 95%
confidence interval.
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Fig. 18. Predicted hydrochloric acid concentrations for the stable (black) and metastable (light
blue) case. The solid lines are the mode of the distribution and the dashed lines represent the
95% confidence interval.
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Fig. 19. 4-min averaged observations of ammonia and predictions using the equilibrium con-
stant given by Mozurkewich (black) and based on the thermodynamic data given by Wagman
(blue). The original formulation of ISORROPIA uses the value suggested by Wagman. The
95% confidence interval for both cases is shown (dashed line).
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Fig. 20. 4-min averaged observations of nitric acid and NOz, and predictions using the equi-
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Fig. 21. Comparison of the mode of the posterior distribution for (a) ammonia, (b) nitric acid,
and (c) hydrochloric acid predicted using the equilibrium constant suggested by Mozurkewich
(modified Kp) and Wagman (original Kp). The points are shaded by the time of day.
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