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Our interest goes to the collisional statistics in an aabjtinteracting fluid. We show thaten in the low density
limit and contrary to naive expectation, the number of collisiexpgerienced by a tagged particle in a given time
does not obey Poisson law, and that conversely, the fred fligk distribution is not a simple exponential. As
an illustration, the hard sphere fluid case is worked out taideFor this model, we quantify analytically those
deviations and successfully compare our predictions agaiolecular dynamics simulations.

The purpose of the present paper is to address, for an apoint, but also enjoys direct experimental realizatiofis [7
bitrary low density fluid in a stationary state, basic praigsr is therefore surprising that such a well studied systendgiel
that have been under-appreciated or overlooked, which beaon trivial properties in a limit where little would have lree
upon the collisional statistics: What is the probabilitg-di expected. We will see that at late times, whens- A/, the ef-
tribution P(N/,¢) of the number of collisions\V" suffered in  fect of such correlations is th&t(\/, ¢) is of Poissonian form
equilibrium by a tagged particle over a given durati®Con-  put with a renormalized frequenay/+/2 instead ofw. This
versely, what is the probability distribution function dfet  result holds irrespective of space dimension. In additoa,
free flight time, (1), again for a tagged particle? Such plicit and accurate results will be reported for the numkfer o
fundamental questions, relevant in their own right, hage al collision cumulantgA/?).. Our analytical predictions will be
consequences on the evaluation of transport coefficierts arcompared to numerical simulations.
when transposed to the related realm of granular gases,[1, 2] For the sake of simplicity, we begin the analysis by the free
directly quantify dissipation. Our message is that inveiex-  flight time distributionP.. (7). The evolution of a tagged par-
pectation fails —except in highly untypical cases— as fdhas ticle in a large stationary homogeneous fluid defines, in the
collisional statistics is concerned, for an interactingdflin low density limit, a Markov process where the transitioresat
and also, arguably less surprisingly, out of equilibriuml A can be computed from a linearized Boltzmann equation, see
results reported are new, together with the kinetic theeeiit  e.g [8]. In simplified situations, the velocity dependeritico
niques used. sion rater(v) can be computed analytically; the inset of Fiy. 1

Whereas in a dense fluid, velocity correlations and hydroshows an illustrative example for hard spheres in equilitri
dynamic effects are responsible for a non trivial collisibn Velocities are expressed here in rescaled units, and falitequ
statistics, one could naively expect that in the dilute fimi rium situations, the velocity distribution function reaesth
where collisions become uncorrelated and molecular clsos | the space dimension
enforced [[B] 4], collisional events define a Poisson process

P(w) so thatP(N,t) = exp(—wt)(wt) /N, wherew is o(v) = 1 o2 @
the mean collision frequency (i.éN') /¢t — w at long times, - \/ﬁd :
where the brackets denote an ensemble average). The corre-
sponding free flight time distribution would then be Out of equilibrium,¢ is a stationary measure. In any case, the
d mean collision frequency follows from ¢:
P (r) = _EP(N: 0,7) = we 7. 1)
However, as we shall see below —and this seems to have been w = /¢(V) r(v)dv = (r(v)). ®)

ignored in the literaturé [5]— such a point of view is flaweul. |
essence, the collision frequency for a particle with veloei  From the Markovian property, it follows that tleenditional
depends ow (it generically increases with = |v|), whichin  probability of having a free flight time given a velocityv
turn induces correlations between successive collisioesi  readsP... (7|v) = r(v) exp(—r(v)7). To proceed further and
After general considerations that encompass equilibrinth a obtainP,...(7) from some average &, (7|v), attention must
non equilibrium steady states, we will show that the colli-be paid to the fact that the relevant weight to use is not the
sional statistics is generically non Poissonian. This istwh velocity distributiong(v) itself, but the velocity on collision,
prompted us to focus on the simplest -analytically traetabl r(v)¢(v)/w. The prefactor(v) biases the distribution toward
interactions and consider the equilibrium hard sphere flwid  more energetic events and accounts for the fact that in agive
illustrative purposes. Such a model is one of the most usefuime interval, a particle with a larger than typical velgaitill
paradigms in statistical mechanics and has played an é&ssentexperience more collisions. We therefore obtain

role in the development of the theory of liquid$ [6]. It is one
of the simplest system exhibiting a phase transition. Remar
ably, it does not only provide a valuable theoretical stayti

T2 v
FFT(T) = /dV #e—r(v)r ¢(V) (4)
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This expression explicitly differs from the result repatie 10° R
[al, wherer? /w is replaced by- (in other words, the weight
used in [9] is¢ and notr¢/w). To see why such an ap- g
proach is incorrect, one can compute the mean collision time 192}
(t) = [ 7P, (1) dr, that should be equal tb/w. This is in-

deed the case with the distribution given [ (4), whereas the &
formula of Ref. [9] gives(r) = (1/r), which differs from Lot
1/{ry = 1/w [10]. More importantly, upon neglecting the =

v dependence of the rate(i.e. assuming: = w), the inte-
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gral in (@) is readily integrated and yields express[dn (i) f 100 | ¢ I\E/Iolegular Dynamics \\i%f%w% ]
F.... It has been shown thatw@aindependent collision rate . wqéx(p()w 7 SN 00
corresponds to particles interacting via an inverse poaer | RN “do.goao 3
pair potential with exponertd — 2 [4], which defines the so- 16°L ‘ \ ‘ \ ‘ | AN
called Maxwell modell[11], a particularly convenient frame 0 ° 10 w1 15 20

work in kinetic theory. Maxwell molecules are nevertheless S o ] )

highly untypical and for any other fluid; depends on so Figure 1 Free flight time d|§tr|but|on asgfunctlormf, on allpear-
that [3) cannot be exponential. We therefore conclude herl?9 Scale, for a two dimensional hard disc gds< 2). The circles
that the collisional statistics is in general non Poissonéx- correspond to t,hge results of molecular dynamics simulatarden-

. - sity p = 0.040 ™~ whereo is the discs diameter, withi = 1000
cept for Maxwell molecules where successive collisions tur . vicies The dotted line shows the prediction of Ed. (6)levEd.
out to be uncorrelated. We will clarify below the conditions ) s shown with a dashed line. The inset shows the tagged col
for the occurrence of correlations, and show that whiletthe gjgn frequency-(v) /w versusu, also ford = 2. The valuel /v/2 at
dependence af is a necessary condition for non Poissoniany = 0, indicated with an arrow, ig-independent.
behavior, it is in general not sufficient.

After the previous qualitative remarks, our goal is to quan-
tify the deviations for Poissonian behavior, and to this,@v&l  The resulting probability density is not a simple exporainti
hereafter consider the prototypical hard sphere modelavherat variance with a claim sometimes found in the literatuee (s

the frequency(v) takes the formi[g]: e.g. [12[1B]). However, a saddle point computation akin to
that leading to[{6) provides here the long distance behavior
Cw [0? (L d v? of P.,, which is governed by the minimum of the function
r=ZF\ g h(gtte7)f r(v)/v [L4]. This leadsa) to P, (¢) o exp(—w(v)~1£//3)

- d—1 d o2 for £ much larger than the mean free path, dmdo the re-
e 2.1 <T’ 3 ?>) , (5)  mark that for the Maxwell model with a independent rate
r, the minimum ofr(v) /v is reached fon — oo and van-

where, F, denotes a confluent hypergeometric function of thelSheS, Which leads to a non-exponential lafgiemiting be-

first kind. Although a closed-form expression cannot be obhavior [15]. ,
tained for2,.. () due to the lack of simplicity of the collision e now turn to the related but more complex question of
rater(v), finding the large- behavior calls for a saddle point the number of collisions. We introduce the joint probatilit

approximation for the integral appearing in EqJ (4), which/ (v, ?) of having velocityv and having sufferedy’ col-
lisions in a time window, for our tagged particle. The cor-

ields
y responding time evolution, again in the dilute limit, folle
P s ( wT) w ( 9 . wr )—d/2 from the linear Boltzmann-like equation
FFT \/5 2 d \/id
. . . . . \ 3tf(v1,/\/, t) = /dVQ /da‘(V12 . 3)9(V12 . t/J\')
Interestingly, to leading order, is distributed exponentially,
as naively expected [see Ed.] (1)], but with a renormalized [f(ViI" N =1, 8)p(vy") — f(vi, N, t)p(va)] , (8)

ratew/+/2. The validity of expressiofi6) is illustrated in Fig.

[, which displays results of numerical simulations. We havevhered is the Heaviside functiony;, is the relative veloc-
checked that the molecular dynamics data in Elg. 1 preciselity, o is a unit vector and thex superscript refers to pre-
coincide with the numerical integration of Ed (4) for all-ve collisional velocities: vi* = vi — (viz - )0 andvi* =

locities (not shown). vy + (vi2 - 6)o. The latter equation encodes a full descrip-
We also note here that very similar considerations hold fotion of the collisional statistics for the tagged partigtethe
the distribution of path lengths: for a particle with veliyoir,  low density limit. Here again we stress that such an analytic

the free flight distance (FFD)travelled in a timet is ¢ = vt, approach can be extended to other interaction potentald; |
so thatP.. (¢|v) = v~ ' P..(fv!|v). P., then follows from  ing to the already mentioned remark that, apart from Maxwell

FFD

the counterpart of Eq[{4) molecules, it does not admit a Poisson solution. Moreover,
the above equation does not admit a stationary solutionein th

2 . . . . .
P(0) = /dv r*(v) exp (_LU)Z) sv).  (7) long time limit, due to the time dependent behavior of the col
v

FFD

W lision numberA/. More precisely, we expect the large time



dependence to be exponential, as a consequence of the lin o
ear character of the equation. For analytical progresstrist

convenient to introduce the generating functf?)ﬂnrough

Foat)=> e, N 1), @ 3
N'=0 =
c -1 _
Of course, upon summind](8) over all possible values of ¥ — Gaussian
N, in the equilibrium state one recoveysy,_, f(v,N) = E%Psrgé'nmat'o
i~ . . . - |
f(v,0,t) = ¢(v), the Maxwell-Boltzmann distributiori]2). -
It then appears that the cumulant generating functiok), \
such that in the large time limit N\
-2 | | |
" ar 0 1 2 3
T A T ) et (10) n=N/t

N |,
A=0 Figure 2 Large deviation function(n) characteristic of the long
is the largest eigenvalue of an evolution operator thaigdita _time l_oehavior of th_e probability’ (V' t) of suffering N collisions
forwardly follows from [8) [15]. Furthermorgy()\) is directly ~ in a timet (and defined byr(\/t) ~ t™" log P(N, 1) for wt >

related to the large time behavior B{\, ¢) throughiits large 1). The symbols correspond to molecular dynamics measures fo
deviation functionr. defined as a hard disc system witt". = 1000 particles at two different but

low densities. The solid line shows the Gaussian resulbvioiig
from Egs. [I6) while the dashed line is the large deviatiarcfion
m(n) = n — nlog(n/w) — w associated to the Poisson |&\w).
On the graph, the time scale has been set by the choicel.

PN, 1) “= grn) (11)
wheren = N/t. Indeed,r is the Legendre transform of

= mi A)+An) . 12
m(n) m,\m(ﬂ( ) n) (12) to project the Boltzmann equatidd (8) governing the evoluti

The quantityu()\) therefore bears an important physical in- of f(v, A, t) onto the first two velocity moments. This leads

formation, and has been the technical focus of our study.
From perturbation theory, we have obtained the behavior of

w at large) in the form Ve - 1_eM 1+ () 16a
. ) ) = =5 ) , (169)
A)~—(e"=1)+0(e” , 13
1(A) \/5( )+0(e™) (13)
which implies that with T(\) = ﬂ _ (16b)
B N V1i+eée
e v2 [ wt
PN t) ~ NT (E) , forN<wt. (14) |t can be checked that(oc) = —w/+v/2, as implied by Eq.

(I3). The corresponding first three cumulants follow from

For this Poissonian behavid?(w//2), the large deviation (I0) and read, irrespective of dimensién
function easily follows:

Ne
=1 17a
m(n) = n —nlog(nv2/w) —w/v2. (15) wt (172)
We note that Eq[{14) with/ = 0 is compatible with the time T (17b)
integral of the leading exponential order of free flight time e 989
distribution given in[(B), as it should. ; ¢ = %6 - (17¢)
w

However, the dependence embodied in Efs] (13) [add (14)

follows from a large\ expansion and only holds fof < wt  These values are compared to molecular dynamics simulation
(hencen/w — 0). Itis therefore not indicative of the typi- gata in Tabl€ll. Moreover, the large deviation functic(m) of

ca[ bghawor, for which it is more useful to consider the low ¢|lisions, which follows from(12), appears to be in exestl

A limit. We then dwell on the remark made aftgt (9) that for aggreement with its molecular dynamics counterpart, see Fig
A = 0, we havef(v,0,t) = ¢(v), which leads to the ap-

proximation scheme wherﬁ(v, A, t) is taken as a Gaussian At this point, it proves instructive to consider the Lorentz
with temperaturel’(\) and the requirement th&t(0) = 1 gas with only one mobile particle and a collection of spharic
[16]. This approximation is the lowest order of a more sys-fixed scatterers. One readily ge(®) « v, but the collisional
tematic expansion (sele [15]), but it provides a useful and re statistics is nevertheless Poissonian. The reason isHhat t
sonably accurate information given its simplicity. Theadse  velocity modulus of the mobile particle is constant along th
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TABLE | Cumulants for the number of collisions” from molecular
dynamics simulations (performed on a two dimensional systéth
reduced densityo? = 0.04), and comparison with both the Poisson
P(w) result and Gaussian approximatiénl(17).

N)e/t (N2)e/t NZ)e/t
ot — 10 1 1123 1.129 References and Notes
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Poisson 1 1 1 Gases (Oxford University Press, Oxford, 2004).
Gaussian 1 1.125 1.129 [2] A. Barrat, E. Trizac and M.H. Ernst, J. Phys.: Condensttibta

17, S2429, (2005).
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For the distributions of both\" and the related free flight 0N ot : ' .

. . ) ; 900 (2000); A Yethiraj and A. van Blaaderen, Natdl, 513
time —for which several incorrect results may be found in the (2003).

literature—, we have quantified the corresponding non Pois-[g] A. Puglisi, P. Visco, E. Trizac, and F. van Wijland, PhRev. E
sonian behavior which follows from the simple physical in- 73,021301 (2006).

gredient that a particle with a high velocity statisticadigl- [9] F. W. Wiegel and J. P. J. Michels, Chem. Phys. Lé@, 23
lides more often than a typical particle. A key quantity in (1976).

the theoretical analysis is the cumulant generating foncti [10] This problem also pertains to the definition of time inrdit
(X)), which can be computed explicitly for largeand ap- Simulatiqn Monte Carlo algorithms, as discussed in [K. Kgur
proximately for small\. The Gaussian ansatz worked out Phys Fluid=29, 3509 (1986)].

here can be considered as the lowest order of a systematic gf M- H- Emst, Phys. Repor8, 1 (1981).
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p lon. ulting yu predict Vv Dover edition, New York (1998).

fronted against molecular dynamics numerical simulations 13] D. L. Blair and A. Kudrolli, Phys. Rev. B7, 041301 (2003).
with a very good agreement. These numerical results shoyi4] conversely, the minimum of(v) is the relevant quantity for

that the deviations from Poisson behaviBfw), although the long time behavior of Eq[(4); it is reachechat= 0 (see
not dramatic —which may be the reason why they are under-  the inset of Figl1l), where(0) = w/+/2. This explains the/2
documented in the literature— are nevertheless clearlgrabs factors appearing in EQ.](6).
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