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Abstract

Let S = (Sk)k>0 be a random walk on Z and & = (§;);ez a stationary random sequence
of centered random variables, independent of S. We consider a random walk in random
scenery that is the sequence of random variables (¥,,),>0 where

) :ngk, neN.
k=0

Under a weak dependence assumption on the scenery £ we prove a functional limit theorem
generalizing Kesten and Spitzer’s theorem (1979).
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1 Introduction

Let X = (Xj;)i>1 be a sequence of independent and identically distributed random vectors
with values in Z%. We write

n
Sy =0, Sn:ZXifornzl
i=1

for the Z?-random walk S = (S,,)nen generated by the family X. Let £ = (€2)geza be a family
of real random variables, independent of S. The sequence £ plays the role of the random
scenery. The random walk in random scenery (RWRS) is the process defined by

n
Sn=) s, neN.
k=0

RWRS was first introduced in dimension one by Kesten and Spitzer (1979) and Borodin
(1979) in order to construct new self-similar stochastic processes. Functional limit theorems
for RWRS were obtained under the assumption that the random variables &,z € Z% are
independent and identically distributed. For d = 1, Kesten and Spitzer (1979) proved that
when X and £ belong to the domains of attraction of different stable laws of indices 1 < o < 2
and 0 < 0 < 2, respectively, then there exists § > % such that (n—52[nt]) 1~ converges weakly
as n — oo to a self-similar process with stationary increments, § being related to o and (3
by 6 =1 —a !+ (aB)!. The case 0 < o < 1 and 3 arbitrary is easier; they showed then

1
that (n” 7 Sp,y) 150
(1989) gave a method to solve the case & = 1 and 3 = 2 and especially, he proved that when

converges weakly, as n — oo, to a stable process with index 3. Bolthausen

(Sn)nen is arecurrent Z2-random walk, ((n log n)féz[nﬂ) 1> Satisfies a functional central limit

theorem. For an arbitrary transient Z%random walk, nfézn is asymptotically normal (see
BRI p. 53). Maejima (1996) generalized the result of Kesten and Spitzer (1979) in the case
where (£;).¢cz are i.i.d. R%valued random variables which belong to the domain of attraction
of an operator stable random vector with exponent B. If we denote by D the linear operator
on R? defined by D = (1 — é)] + éB, he proved that (n_DE[nﬂ)tzo converges weakly to an
operator self similar with exponent D and having stationary increments.

One-dimensional random walks in random scenery recently arose in the study of random
walks evolving on oriented versions of Z? (see Guillotin-Plantard and Le Ny (2007, 2008))
as well as in the context of charged polymers (see Chen and Khoshnevisan (2008)). The
understanding of these models in the case where the orientations or the charges are not
independently distributed requires functional limit theorems for Z-random walk in correlated
random scenery. To our knowledge, only the case of strongly correlated stationary random
sceneries has been studied by Lang and Xanh (1983). In their paper, the increments of the
random walk S are assumed to belong to the domain of attraction of a non-degenerate stable
law of index a,0 < a < 2. They further suppose that the scenery £ satisfies the non-central
limit theorem of Dobrushin and Major (1979) with a scaling factor n~dtBk)/2 Bk < d. Under
the assumption Bk < «, it is proved that (n_1+5k/(20‘)2[nﬂ)t>0 converges weakly as n — 400
to a self-similar process with stationary increments, which can be represented as a multiple
Wiener-It6 integral of a random function. Our aim is to study the intermediary case of
a stationary random scenery & which satisfies a weak dependence condition introduced in
Dedecker et al. (2007) and to prove Kesten and Spitzer’s theorem under this new assumption.



In Guillotin-Plantard & Prieur (2008) the case of a transient Z-random walk was considered
and a central limit theorem for the sequence (X,,)nen was proved. In this paper the one-
dimensional random walk will be assumed to be recurrent.

Our paper is organized as follows: In Section [, we introduce the dependence setting under
which we work in the sequel. In Section [} we introduce in details our model and give the
main result. In Section [ properties of the local time of the random walk are given as well
as the ones of the intersection local time. Models for which we can compute bounds for our
dependence coefficients are presented in Section f]. Finally, the proof of our theorem is given
in the last section.

2 Weak dependence conditions

In this section, we recall the definition of the dependence coefficients which we will use in the
sequel. They have first been introduced in Dedecker et al. (2007). Our weak dependence
condition will be less restrictive than the mixing one. The reader interested in this question
would find more details in Guillotin-Plantard & Prieur (2008).

On the Euclidean space R™, we define the metric

di(z,y) = Z |z — yil-
i=1

Let A = U, en+ A where Ay, is the set of Lipschitz functions f : R™ — R with respect to
the metric d;. If f € Ay, we denote by Lip(f) := sup,,, U(C‘Z)(%;/)‘ the Lipschitz modulus of

f. The set of functions f € A such that Lip(f) < 1 is denoted by A.

Definition 2.1 Let £ be a R™-valued random variable defined on a probability space (2, A, P),
assumed to be square integrable. For any o-algebra M of A, we define the 0y-dependence
coefficient

02(M, ) = sup{[|E(f()|M) — E(f())2, f € A}. (2.1)

We now define the coefficient ), o for a sequence of o-algebras and a sequence of R-valued
random variables.

Definition 2.2 Let (&)icz be a sequence of square integrable random variables valued in R.
Let (M;)icz be a sequence of o-algebras of A. For any k € N* U {oo} and n € N, we define

1 . .
01?,2(”) = lrglagi: 7 Sup{HQ(Mpa (§j17 s 7§jl))7p +tn<ji<...< ]l}

and

Definition 2.3 Let (&)icz be a sequence of square integrable random variables valued in R.
Let (M;)iez be a sequence of o-algebras of A. The sequence (&)icz is said to be Oo-weakly
dependent with respect to (M;)iez if 02(n) — 0.

n—-r+od
Remark : Replacing the || - |2 norm in (R.1]) by the || - ||; norm, we get the ; dependence
coefficient first introduced by Doukhan & Louhichi (1999).



3 Model and results

Let S = (Sk)k>0 be a Z-random walk (Sy = 0) whose increments (X;);>1 are centered and
square integrable. We denote by Px, the law of the random variable X;. For any ¢ € N*
such that P(X; € [—q, ¢]) is non zero, we define the probability measure on Z

p __ Pxiliag

17 P(X1 € [~q,q])

The random walk S is said to satisfy the property (P) if there exists ¢ € N* such that

{zreZ; 3n, PV (z) >0} =Z.

In particular, if there exists some ¢ € N* such that the random walk associated to P, is
centered and aperiodic then S satisfies the property (P). For instance, the simple random
walk on Z verifies (P). Let £ = (&)icz be a sequence of centered real random variables.
The sequences S and £ are defined on a same probability space denoted by (2, F,P) and are
assumed to be independent. We are interested in the asymptotic behaviour of the following

sum
n
En = ngk .
k=0

The case where the £;’s are independent and identically distributed random variables with
positive variance has been considered by Kesten & Spitzer (1979) and Borodin (1979). Con-
sider a standard Brownian motion (B;)¢>0, denote by (L(z))¢>0 its corresponding local time
at € R and introduce a pair of independent Brownian motions (Z1 (x), Z_(x)),z > 0 defined
on the same probability space as (B)¢>o and independent of him. The following process is
well-defined for all ¢ > 0:

A= /0 Li(2)dZ+ (z) + /0 Li(~2)dZ_(x). (3.2)

It was proved by Kesten and Spitzer (1979) that this process has a self-similar continuous

version of index %, with stationary increments. We denote L fora convergence in the space
of cadlag functions D(]0,00),R) endowed with the Skorohod topology.

Theorem 3.1 [Kesten and Spitzer (1979)] Assume that the &;’s are independent and iden-
tically distributed with positive variance o> > 0. Then,

1 D
(Wz[nt})tzo = (04¢)>0- (3.3)

A simple proof of this theorem was proposed by Cadre (1995) (Section 2.5.a.) using a weak
limit theorem for stochastic integrals (Theorem 1.1. in Kurtz & Protter (1991)). Applying
Cadre’s method, Theorem B.J can be extended to any scenery given by a stationary and ergodic
sequence of square integrable martingale differences. Then, a natural idea is to generalize the
result to any stationary and ergodic sequence £ of square integrable random variables as it was
done for the central limit theorem. Under suitable assumptions on the sequence, for instance
the convergence of the series > 7 E(&|Mo) in L2, the scenery ¢ is equal to a martingale
differences sequence modulo a coboundary term and satisfies a Donsker theorem. However,



the RWRS associated to the coboundary term (if it is non zero) is not negligible. It can be
proved that the L2—norm of this sum correctly normalized by n3/4
constant.

converges to some positive

In order to weaken the assumptions on the field £ we introduce a sequence (M;);ecz of

o-fields of F defined by
Mi=0o(&,j<i),i€l.
In the sequel, the dependence coefficients will be defined with respect to the sequence of

o-fields (M;)iez.

Theorem 3.2
Assume that the following conditions are satisfied :

(Ao) The random walk S satisfies the property (P).
(A1) € ={&}iez is a stationary sequence of square integrable random variables.

(A2) Hg() is bounded above by a non-negative function g(-) such that

z— x%/2 g(x) is non-increasing,

0. 0]
J0<e<l,y 27g(2) < .
=0

Then, as n tends to infinity,

<#E[nt}>t20 = ;E(SOQ) (At)i>o0- (3.4)

Remark : Assumptions (A;) and (Ag) imply that
VA€ [0,1/2] D [KPE(&&)| < +oo (3.5)
keZ

Indeed, this sum is equal to

E(&) +2  KME(é)|
k=1

and for any k£ > 1, from Cauchy-Schwarz inequality, we get

[EGogi)l = [E(SoB(EMo))]
< ol 6500)
< éoll2 g(k)
The result (B.H) follows by remarking that
[e.e] oo 1
> EPglk) <g(1)> FEYEESY
k=1 k=1

which is finite for every A € [0,1/2].
Remark : If HS(n) = O (n™?) for some positive a, condition (Az) holds for a > 3/2.



4 Properties of the occupation times of the random walk

The random walk S = (Si)x>0 is defined as in the previous section and is assumed to verify
the property (P). The local time of the random walk is defined for every i € Z by

k=0

The local time of self-intersection at point ¢ of the random walk (Sy,),>0 is defined by

n

an, 1) = Z les,—s=i}-

k,1=0

The stochastic properties of the sequences (Ny,(7))nen,icz and (a(n,i))nen icz are well-known
when the random walk S is strongly aperiodic. A random walk who satisfies the property
(P) is not strongly aperiodic in general. However, a local limit theorem for the random walks
satisfing (P) was proved by Cadre (2005) (see Lemma 2.4.5., p. 70), then it is not difficult to
adapt the proofs of the strongly aperiodic case to our setting: for assertion (i) see Lemma 4
in Kesten and Spitzer (1979), for (ii)-(a) see Lemma 3.1 in Dombry and Guillotin-Plantard
(2008). Result (ii)-(b) is obtained from Lemma 6 in Kesten and Spitzer (1979); details are
omitted. Assertion (iii) is an adaptation to dimension one of Lemma 2.3.2 of Cadre’s thesis
(1995).

3/4max N, (i) converges in probability to 0.

Proposition 4.1 (i) The sequence n™ na
(ii) (a) For any p € [1,400), there exists some constant C' such that for alln > 1,
E (a(n,0)P) < Cn®/2,
(b) For any m > 1, for any real 01,...,0p, for any 0 <t; < ... <t,,, the sequence

m

’I’Lig/2 Z ( akN[ntk](Z)> ?
1

1€Z k=

converges in distribution to

/]R ( i OrLy, (ac)) : dx
k=1

where (Li(x))e>0.0er 15 the local time of the real Brownian motion (By)i>0.
(iii) For every X € ]0,1[, there exists a constant C' such that for any i,j € Z,

la(n, i) = a(n, j)ll2 < Cn® V72 — j 2,

5 Examples

In this section, we present examples for which we can compute upper bounds for 6,(n) for any
n > 1. We refer to Chapter 3 in Dedecker et al (2007) and references therein for more details.



5.1 Example 1: causal functions of stationary sequences

Let (E,£,Q) be a probability space. Let (g;);ez be a stationary sequence of random variables
with values in a measurable space S. Assume that there exists a real valued function H defined
on a subset of SN, such that H(gg,e_1,6_9,...,) is defined almost surely. The stationary
sequence (&, )nez defined by &, = H(en,ep-1,En—2,...) is called a causal function of (&;);ez.

Assume that there exists a stationary sequence (g;');ez distributed as (g;);ez and in-
dependent of (g;)i<o. Define & = H(e,/',en—1’,en—2',...). Clearly, £ is independent of
Mo = o(&, i <0) and distributed as &,. Let (d2(7));>0 be a non increasing sequence such
that

IE (1& — &1 [Mo)lly < 62(7) - (5.6)
Then the coefficient 6, of the sequence (&,),>0 satisfies
02(i) < (i) (5.7)

Let us consider the particular case where the sequence of innovations (g;);ez is absolutely
regular in the sense of Volkonskii & Rozanov (1959). Then, according to Theorem 4.4.7 in
Berbee (1979), if E is rich enough, there exists (¢});cz distributed as (£;);cz and independent
of (ei)igo such that

. 1
Q(g; # &} for some i > k| Fy) = 3 | Qs 15 — Qe |

'U’

where & = (e, €k41,...), Fo = o(gi, 1 < 0), and || - ||, is the variation norm. In particular
if the sequence (g;);ez is idependent and identically distributed, it suffices to take €} = ¢; for
i >0 and €, — &/ for i <0, where (¢/);cz is an independent copy of (&;)iez.

Application to causal linear processes:

In that case, &, = Zj>0 ajen—j, where (a;);j>0 is a sequence of real numbers. We can choose

i—1
82(1) > lleo — €pll2 Y lajl + > lajlllei—j — &ijlla-
=0

Jj=i

From Proposition 2.3 in Merlevede & Peligrad (2002), we obtain that

i-1 Blo(er k<0),0(er k>i~])) 12
52(0) < o = el 3 loyl + 3l (22 | Q2 w) " au
=0

J=i

where @), is the generalized inverse of the tail function z — Q(|gg] > z).

5.2 Example 2: iterated random functions

Let (&,)n>0 be a real valued stationary Markov chain, such that &, = F(§,_1,¢y) for some
measurable function F' and some independent and identically distributed sequence (g;);~¢ in-
dependent of §y. Let & be a random variable distributed as &) and independent of (o, (€;)i>0)-
Define & = F(&)_1,epn) . The sequence (&)),>0 is distributed as (&, )n>0 and independent of
0. Let M; = 0(&;,0 < j <1i). As in Example 1, define the sequence (d2(i));>0 by (b.6). The
coefficient 0y of the sequence (&,),>0 satisfies the bound (5.7) of Example 1.



Let g be the distribution of {y and (£),>0 be the chain starting from &£ = z. With these
notations, we can choose d2(i) such that

1/2
(i) 2 16 - il = ([ [ 16 - €Butanntan)
For instance, if there exists a sequence (da(7));>0 of positive numbers such that

167 — &/ ll2 < da (i) |z — yl,
then we can take d2(i) = da(7)[|€o — &j|l2. For example, in the usual case where ||F(z,g9) —
F(y,e0)|2 < K|z — y| for some k < 1, we can take da(i) = K'.

An important example is §, = f(§u,—1) + &, for some r-Lipschitz function f. If {y has a
moment of order 2, then §2(7) < x¥(|&y — &2 -

5.3 Example 3: dynamical systems on [0, 1]

Let I =[0,1], T be a map from I to I and define X; = T*. If y is invariant by T', the sequence
(Xi)i>o of random variables from (I, ut) to I is strictly stationary.

For any finite measure v on I, we use the notations v(h) = [; h(x)v(dz). For any finite
signed measure v on I, let ||v|| = |v|(I) be the total variation of v. Denote by ||g||1 . the
L'-norm with respect to the Lebesgue measure A on 1.

Covariance inequalities. In many interesting cases, one can prove that, for any BV function
h and any k in LY(I, p),

| Cov(h(Xo), k(Xn))| < anl[k(Xn)l[1([[2]l1x + lIdh]) (5.8)
for some nonincreasing sequence a,, tending to zero as n tends to infinity.

Spectral gap. Define the operator £ from L!(I,\) to L' (I, \) via the equality
1 1
/ L(h)(x)k(z)d\(x) = / h(z)(k o T)(x)d\(z) where h € LY(I,\) and k € L>®(I, \).
0 0

The operator L is called the Perron-Frobenius operator of 7. In many interesting cases, the
spectral analysis of £ in the Banach space of BV -functions equiped with the norm |A|, =
ldh||+1|h]|1,» can be done by using the Theorem of Ionescu-Tulcea and Marinescu (see Lasota
and Yorke (1974) and Hofbauer and Keller (1982)). Assume that 1 is a simple eigenvalue of
L and that the rest of the spectrum is contained in a closed disk of radius strictly smaller
than one. Then there exists a unique T-invariant absolutely continuous probability p whose
density f, is BV, and

L(h) = Mh) fu+ W™ (h)  with  [[W"(h)]l, < Kp"|[hll.. (5.9)
for some 0 < p < 1 and K > 0. Assume moreover that:
I, = {fu # 0} is an interval, and there exists v > 0 such that f, > ~~1on I,. (5.10)

Without loss of generality assume that I, = I (otherwise, take the restriction to I, in what
follows). Define now the Markov kernel associated to T by

P(h)(a) = £ @) (5.11)

fu(x)



It is easy to check (see for instance Barbour et al. (2000)) that (Xo, X1,...,X,) has the same
distribution as (Y, Y,—1,...,Yp) where (Y;);>0 is a stationary Markov chain with invariant
distribution p and transition kernel P. Since || fglloo < [[f9llv < 2|/ fllvllgllv, We infer that,
taking C' = 2K~(||df .|| + 1),

P(h) = p(h) + gn with [|gn[lec < Cp"[|A]s- (5.12)
This estimate implies (p.§) with a,, = Cp™ (see Dedecker & Prieur, 2005).

Expanding maps: Let ([a;,a;t1][)1<i<ny be a finite partition of [0,1[. We make the same
assumptions on 7" as in Collet et al (2002).

1. For each 1 < j < N, the restriction T; of T' to |a;,aj41[ is strictly monotonic and can
be extented to a function T'; belonging to C*([a;, a;1]).

2. Let I, be the set where (T™)" is defined. There exists A > 0 and s > 1 such that
infyer, |(T™) (z)] > As™.

3. The map T is topologically mixing: for any two nonempty open sets U, V', there exists
no > 1 such that T="(U) NV # ) for all n > ny.

If T satisfies 1., 2. and 3., then (F.9) holds. Assume furthermore that (F.1() holds (see
Morita (1994) for sufficient conditions). Then, arguing as in Example 4 in Section 7 of
Dedecker & Prieur (2005), we can prove that for the Markov chain (Y;);>0 and the o-algebras
M; = o(Y;, j <1i), there exists a positive constant C such that (i) < Cp'.

6 Proof of Theorem

The proof of Theorem B.9 is decomposed in two parts: first, we prove the convergence of
the finite-dimensional distributions of the process (n*3/ QE[M])QO, then its tightness in the
Skorohod space D([0, +o0]).

Proof of the convergence of the finite-dimensional distributions:
Since the random variable ¥,, can be rewritten as the sum

1E€EZL

where N,,(7) is the local time of the random walk S at point ¢, it is enough to prove that for

every m > 1, for any real 01,...,0,,, for any 0 <t} <ty < ... <t,,, the sequence
1 & 1 i
7w 2 Ol = a7 2 (D0 04N (1))
k=1 i€Z k=1

converges in distribution to the random variable

[ E(&&) Y 0k,
1EZ k=1



We only prove the convergence of one-dimensional distributions. The general case is obtained
by replacing N, (i) by the linear combination 0N}, () in the computations.

Let G = o(Sk,k > 0) be the o—field generated by the random walk S. For any n € N and
any i € Z, we denote by X,,; the random variable N, (7)¢;.

We first use a classical truncation argument. For any M > 0, we define :

.{R—HR
P e purle) = (@ A M)V (M)

and
v JR—=R
z— oM(x) =2 — op(z).
We now prove the following Lindeberg condition :

n2Y <<<p€”3/4 (Xm-))2> — 0. (6.13)

n—-+o00
€L

We have, for € > 0 fixed, for n large enough,

n—3/2 Z B <<¢5n3/4 (Xn,i)) 2 ‘g>

1€EZ
a(n,0 .
< E (ggl{\50\>en3/4/max]~ Nn(])}‘g) 753/2) =: ¥1(g,n)

Let n > 0. We decompose the expectation of ¥1(e,n) as the sum of

o 2 OZ(TL, 0)
E1,1(87 n) T E<1{n_3/4 max; Nn(j)Zn}E <§01{|§0|>6n3/4/maxj- Nn(j)} ‘g> n3/2 >

and

. 2 a(”? O)
Yi2(e,m) = E(l{n,3/4 max; Ny (j)<n} & (501{|50|>sn3/4/maxj Nn(j)}‘g) 32 )

Using (ii)(a) of Proposition .1, 1 2(e,n) is bounded by

CE (&1 ig|></m})

From assumption (A;) of Theorem B.9, for any x > 0, there exists 79 > 0 such that the above
term is less than /2 for any n < 1.
We now fix 1 equal to 79. Using Cauchy-Schwarz inequality,

a(n,0)2>1/2

n3

1/2
Sia(en) < E(E) P(n maxNo(j) > m) " E(

From assumption (A;) of Theorem B.3, (i) and (ii)(a) of Proposition [L1, it follows that
¥1,1(e,n) < k/2 for n large enough.
Since € — E(El(a, n)) is decreasing, we can find a sequence of positive numbers (gy,)n>1

such that ¢, —— 0, and
n—-+o0o

E(El(en,n)> 0 (6.14)

n—-4oo

10



Let us now prove that it implies

n=3/°F ((Zgﬂ" —E<w€""3/4<Xn,@->|g))2> ——— 0. (6.15)

n—-+o00
€L

For any fixed n > 0, and any ¢ € Z such that N, (i) # 0, define :
n3/4 n (7 nn 3/4 n
Vai = o0 (g) — (e M0 (6)[G)
If N,(i) =0, let V;,; = 0. As for any fixed n > 0 and any ¢ € Z, the function
T — ¢€n"3/4/Nn(i) (z)
is 1-Lipschitz, we have for any fixed path of the random walk, for all [ > 1, for all £ > 1,
Vin
b5 (1) < 650
where V., = (Vy,i)icz and & = (& )iez-

(i) o)

JEZ
= Y NGPEVEI9+D ] DY N JE(Vi,iV,51G)
JEZ I€Z JEL;jFi
< Y NGPEWZIG) + ) Nu(i)? > E(ViVasl9))
JEZ i€Z JEL;j#i

by remarking that N, (i) N,(j) < 2(Ny(4)? + No(5)?).

Then for any j > ¢, using Cauchy-Schwarz inequality, we obtain that

9l
E(V210)/* E(E(Va,1M0%0) "
< E(VZIOV? 07,0 — ).

EVaiVaslO = |E (Vas B (Vay M)

IN

Moreover, as Ny (1)V,; = @5”"3/4 (Xni) — IE(QOE””S/4 (Xn,i)|G), we get

)

n 2B (3 (X,0) — B (Xm-)|g))2> < E(Cn<ag;}£ )>> , (6.16)

iE€EZ

with C), = sup;¢y, <E(Vn2@\g)) + 2\/supiez (E(VfJg)) pa] 952(1). It remains to prove that

the right hand term in (p.14) converges to 0 as n goes to infinity.

We have, for n large enough,

E(VnQ,i > = E <5i21{|@|>ann3/4/maxj Nn(j)}‘g> : (6.17)

so using Cauchy-Schwarz inequality,
£(c0 (SG5)) <o) +2 (2050 ) B0 ) (252 "

11




which tends to 0 from (ii)(a) of Proposition [I.1], assumption (As) from Theorem B.9 and (f.14).

Define Z,,; by
Pepn3/4 (Xnﬂ) - K ((Psnn3/4 (Xn,l)’g) .

By () we conclude that, to prove Theorem B.2, it is enough to prove it for the truncated

sequence (Zp,i),,> ¢z, that is to show that

n3/4 Z n,i nT——’ ZE 50519 (6-18)

€L

The proof is now a variation on the proof of Theorem 4.1 in Utev (1990). Let
di(X,Y) = [E(e"¥|G) — E(e"V|G)] .

Let n be a random variable with standard normal distribution, independent of the random
walk (Sk)r>0. Let (X;)i=1,.3 be random variables such that for i = 1,..,3, E(X;|G) = 0 and
E(X?|G) is bounded. Let Y7, Y2 be random variables such that E(Y;|G) = 0 and E(Y?|G) is
bounded for i = 1,2. They are assumed to be independent conditionnally to the random walk.

We define
A(X) = di (X, nVE(X?[G)) .
We first need some simple properties of d; and Ay :

Lemma 6.1 (Lemma 4.3 in Utev, 1990)
2
Ay(Xy) < g\t\BE(\Xl\:S’g)a

A1 +Ys) < A(Y7) + Au(Ya),

H(X+ X0, X0) < 5 (B(X3IG) + (BOGIOECR1) ).

t2
dy(na,nb) < 5la2 —b*].

We next need the following lemma :

Lemma 6.2 Let 0 < e < 1. There exists some positive constant C(g) such that for all a € Z,
for all v e N*, A, (n_3/4 Soaty Zn,i) is bounded by

a+1
a+v . 5 ' a+v
Ce) [ PR sn™* N B (1ZaalPlG) + 2 | R7Z + > 27g(2°) | n732 Y Nu(i)?
i=a+1 j :20>hl/e i=a+1

where h is an arbitrary positive natural number and with g introduced in Assumption (As) of

Theorem [3.3.

12



Before proving Lemma 5.3, we achieve the proof of Theorem B.3. We can decompose
E (e”ﬁ i) g (eMVERE@SIA) (6.19)

as the sum of I;(n),i = 1,..,4 where

+2

Li(n) = E( i Dien? ) —E(eWE((ZiEZZ’”)Q'g>>
on 3/2 ZEZZ”’i)Q‘g) — _QJ%E((ZZEZ ) Ig)
E(e Ele
E < 3/2 Z“EZ Xn Z) g)) — K <€ 2n3/2 2 JEL Nn (i )2]E(£Z£])>

e 2n3/2 Zz JJEZ Nn( ) (&.6])) —F (eitW/Zk E(fofk)A1>

E

To prove Theorem B.2, it is enough to prove that for any i = 1,..,4, I;(n) goes to 0 as
n — +o00.

Estimation of I;(n) : Let us denote by M, the random variable maxy—o, ., |Sk|. From
Lemma .9, we have

[1i(n)] < E( < o Z Zm>> < Cfte) <h2/€n9/4ZE(|Zn,@-I3) +5(h)> ;

iE€EZ
with 6(h) = (h%l +3 et 27 g(2ﬂ€))ﬂ«: (%)

Hence using assumption (As) from Theorem B.J and (ii)(a) from Proposition [L.1], we get

d(h) —— 0.
h—-+o00
On the other hand, from assumption (A;) of Theorem B.9, there exists a constant C' > 0
such that (n.0)
— « n?
n 9/4ZE(|Z"’i|3) < Ce,E < YD ) (6.20)
1EZ

which tends to zero as n tends to infinity, using (ii)(a) from Proposition .1 and the fact that

en, — 0. Consequently
n—-+o0o

inf <h2/5 > E(1Znal’) + 6(h)) — 0.

h>1 ‘ n—-+00
€L

Estimation of I»(n) : Using that for any =,y > 0, |e™* — e7¥| < |x — y| and the fact that

/ /
Zni = Xn,i - [Spenn?’ 4(Xn,i) - E(Qpenn?) 4(Xn,i)|g)]’

)

we deduce that

B(n)| < W[ ((Zw —E(goen"?’/%xn,i)\g))z)

€L

)\ /2 2\ /2
E<(zxn,i)> ((Zw wi) ~ B (X,,)(0)) )

€L €L
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Since we have

E((X %)) = X EN(NG)EES)

1€EZ 1,JEZ
= Y E(a(n,i) — a(n,0)E(%&) + E(a(n,0) Y E(&é)
i€Z i€Z
< Cn3?

by combining (ii)(a)-(iii) of Proposition [L.] and (B.§). Then, from (f.If), we deduce that
I5(n) converges to 0.

Estimation of I3(n) : We have
t2 :
1000 < 51575 S Bl )~ OB = o1
by combining (iii) of Proposition [i.1] and (B.H).

Estimation of I4(n) : From (ii)(b) of Proposition [L.1, we know that the sequence

E (e—/ Sise Nna)m(&&j))

2
converges to E <6t2 YiezEEo&i) [ Li (@) dx) which is equal to the characteristic function of the

random variable />, E(§0&) A

Proof of Lemma B.9: Let h € N*. Let 0 < € < 1. In the following, C, C(g) denote constants
which may vary from line to lilne. Let x: be a positive constant greater than 1 which will be
precised further. Let v < k. h=. We have

S o [l [
-3
A | n Z Zni| = 3 ol Z Zos ‘g
i=a+l i=a+1
a+v
< 3n9/4/€? [t n?e Z E(|Z,,%|G) (6.21)
i=a—+1

since |z|? is a convex function.

Let now v > k. he. Without loss of generality, assume that a = 0. Let 6. = (1—¢%+42¢)/2.
Define then
m = [v°], B = {u eN : 27 v — %)) <um < 2_12)} ,

(u+1)m v
A=SueN :0<u<n, Y Ny(0)* < (m/v) ) Nn(i)?
i=um-+1 =1

Following Utev (1991) we prove that, for 0 < e < 1, AN B is not wide for v greater than k..
We have indeed

(1-¢2)/2

ANB| = |B|=[ANB| > |B - [A] > T (1 - 4070-/2)

N W

)
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where A denotes the complementary of the set A. We can find x. large enough so that |AN B|
be positive.

Let uw € AN B. We start from the following simple identity

Q = n_3/4 Zv: Z,m

u+1)m )

um
WS ek S Zaan Y 7,
i=1 i=um+1 i=(u+1)m+1
= Q1 +Q2+Qs. (6.22)

For any fixed n > 0, and any ¢ € Z such that N, (i) # 0, define :

g).

If No(i) =0, let W, ; =0. As for any fixed n > 0, i € Z, the function

9)

is 1-Lipschitz, we have for any fixed path of the random walk, for all [ > 1, for all k£ > 1,
W.n
Ops" () < 05,(0).

Whi = Penn3/4 /Ny, (i) (&) — (805 n3/4 /N, (i (fz)

T Py /Na(i)(T) — E <<Penon/zvn (&)

where W.,, = (W,,)iez and & = (&)iez. Hence, arguing as for the proof of inequality (f.16),
we prove that for any fixed n, any a,b € N,

E<|§bjzm|2 (g) < czb:Nn(z'ﬁ (6.23)

with C' = 2E(&2) + 2v2E(¢2)Y/2 3772, 61.9(1) which is finite from assumptions (A1) and (As).
By Lemma p.1],

2

B(Q, Q1 +Qs) = d(Q.Q ~ Qo) <+ (E(Q3I0) + B(@3I0) *E(Q76) 7). (624
Using (p.24) and (6.23), we get

di(Q, Q1 + Q3) < Ct?v

T2 YN, ()2 (6.25)
=1

Now, given the random variables Q1 and )3, we define two random variables g; and g3 which
are assumed independent conditionally to the random walk (Sj)x>0 such that conditionnally
to the random walk, the distribution of g; coincides with that of Q;, ¢ = 1,3. We have

di(Q1 + Q3,91 + g3)
= [E((e"@ —1)(e"@s —1)|G) — E(e"91 — 1|G)E(e"9s — 1]G)|

< E(le"@ —17%G)'2E(|E ("9 — 1~ E(c*® ~1|0) | Mum: 6) ['10)
< 2 E() D ZﬁAQIG) o 1t (S gty Nali)) 65(m + 1)
< C 22 (D211 Na(9)?) g(v)
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by (.23), Definition .3 and Assumption (As) of Theorem B.2. Hence

d(Q1 + Q3,91 + g3) < Ct2f (v)n =3/ ZN (6.26)

where f(v) = v3/? g(v) is non-increasing by assumption (As) of Theorem B.3.
We also have by Lemma [.]]
Ai(g1 + g3) < Arlg1) + Ai(g3)- (6.27)
Finally, still by Lemma 6.1, and using Definition R.3, we have
i (1v/E(Q1G),1V/E (91 + 95)°19))

< LIEQY9) ~E (01 + 0710)| (629

/2
< 3 IE(Q3]G) + 2E(Q1Q2|G) + 2E(Q2Q3/G) + 2E(Q1Qs5|9)]
< o (vTFT 4 1) n Y N (6.29)
i=1
Combining (6.29)-(p.29), we get the following recurrent inequality :

Ay (n*3/4 z;jzl Zn,z) < A ( —3/4 Z Zn z) + Ay < —3/4 Zz (u+1)m—+1 Zn >
+ Ct? < +f( )> n=32 N Ni(i)?

1
for v > ke he > ke.

We then need the following Lemma, which is a variation on Lemma 1.2. in Utev (1991).

Lemma 6.3 For every ¢ € |0,1[, denote 6. = (1 — €%+ 2¢)/2. Let a non-decreasing sequence
of non-negative numbers a(n) be specified, such that there exist non-increasing sequences of
non-negative numbers (k), v(k) and a sequence of naturals T(k), satisfying conditions

T(k) <27 (k + [K)),
a(k) < max, (a(T(s)) +7(s))

or any k > ko with an arbitrary ko € N*. Then
Jor any Y

for any n > ko, where one can take ng = 2¢ wi %:gf.
€

Proof of Lemma B.3: The proof follows essentially the same lines as the proof of Lemma
1.2. in Utev (1991) and therefore is omitted here. A

We now apply Lemma [.J above with

16



1
* ko = Ke h=,

*

for k > ko, T(k) = max {ugmyg, k — upmy — my} where uy and my, are defined from k as
u and m from v (see the proof of AN B not wide),

c< 1;111(&5)) (we may need to enlarge kc),

>

e(e—1)
2

*

for s > ko, y(s) = C t? (s + f(s)),

Ay <n_3/4 Z?g[ﬂ Zn,j)
* for s > ko, a(s) = sup max T —.
ek Wi o3 N ()

Applying Lemma [.J yields the statement of Lemma [p.2.

Proof of the tightness:
By Theorem 13.5 of Billingsley (1999), it suffices to prove that there exists K > 0 such that
for all ¢,t1,t2 € [0,T],T < 00, s.t. t1 <t <ty, foralln >1,

3
E(|E[m] = Bl ) — E[m]|> < Kn*Plty — 2. (6.30)

Using Cauchy-Schwarz inequality, it is enough to prove that there exists K > 0 such that for
all t1 <t, foralln>1,

E (B — Zpon ) < Kn2lt — ], (6.31)
Since ab < (a? + b?)/2 for any real a,b, we have
E(lz[m] - E[nml2) < ) IE(%E)] ZE((NW} (J) — N[ml}(j))z)

i€z JEL

_ CE(a([nt] — [nt1] — 1,0)) < On2|t — )32

using (B.§), the Markov property for the random walk S and (ii)-(a) of Proposition [L.]. A

References

[1] D. W. K. Andrews (1984). Nonstrong mixing autoregressive processes. J. Appl. Probab. 21, p.
930-934.

[2] A.D. Barbour, R. M. Gerrard and G. Reinert (2000). Iterates of expanding maps. Probab. Theory
Relat. Fields 116, p. 151-180.

[3] H. C. P. Berbee (1979). Random walks with stationary increments and renewal theory. Math.
Cent. Tracts. Amsterdam.

[4] P. Billingsley (1999). Convergence of probability measures, 2nd edition, Wiley, New York.

[5] E. Bolthausen (1989). A central limit theorem for two-dimensional random walks in random
sceneries. Ann. Probab. 17, p. 108-115.

17



(6]

[14]

[15]

[16]

A.N. Borodin (1979). Limit theorems for sums of independent random variables defined on a
transient random walk. Investigations in the theory of probability distributions, IV. Zap. Nauchn.
Sem. Leningrad. Otdel. Mat. Inst. Steklov.(LOMI) 85, 17-29, 237, 244.

A.N. Borodin (1979). A limit theorem for sums of independent random variables defined on a
recurrent random walk. Dokl. Akad. Nauk. SSSR 246, no4, p. 786—787.

B. Cadre (1995). Etude de convergence en loi de fonctionnelles de processus: Formes quadratiques
ou multilinéaires aléatoires, Temps locaux d’intersection de marches aléatoires, Théoreme central
limite presque stir. PHD Thesis, Université Rennes 1.

X. Chen and D. Khoshnevisan (2008). From charged polymers to random walk in random scenery.
Preprint available at http://www.math.utk.edu/~zchen/publications.html

P. Collet, S. Martinez and B. Schmitt (2002). Exponential inequalities for dynamical measures of
expanding maps of the interval. Probab. Theory. Relat. Fields 123, p. 301-322.

J. Dedecker and C. Prieur (2005). New dependence coefficients. Examples and applications to
statistics. Probab. Theory Relat. Fields 132, p. 203-236.

J. Dedecker, P. Doukhan, G. Lang, J. R. Leon, S. Louhichi and C. Prieur. Weak dependence:
With Examples and Applications. Lect. notes in Stat. 190. Springer, XIV (2007).

C. Dombry and N. Guillotin-Plantard (2008). Discrete approximation of a stable self-similar
stationary increments process. To appear in Bernoulli.

R.L. Dobrushin and P. Major (1979). Non-central limit theorems for non-linear functionals of
Gaussian fields. Z. Wahrscheinlichkeitstheorie verw. Gebiete 50, 27-52.

P. Doukhan and S. Louhichi (1999). A new weak dependence condition and applications to moment
inequalities. Stochastic Process. Appl. 84, p. 313-342.

N. Guillotin-Plantard and C. Prieur (2008). Central limit theorem for sampled sums of dependent
random variables. To appear in ESAIM P&S.

N. Guillotin-Plantard and A. Le Ny (2007). Transient random walks on 2d-oriented lattices.
Theory of Probability and Its Applications (TVP), Vol. 52, no 4, p. 815-826.

N. Guillotin-Plantard and A. Le Ny (2008). A functional limit theorem for a 2d- random walk
with dependent marginals. Electronic Communications in Probability Vol. 13, p. 337-351.

F. Hofbauer and G. Keller (1982). Ergodic properties of invariant measures for piecewise mono-
tonic transformations. Math. Z. 180, p. 119-140.

I. A. Tbragimov (1962). Some limit theorems for stationary processes. Theory Probab. Appl. 7, p.
349-382.

T.G. Kurtz and P. Protter (1991). Wong-Zakai corrections, Random evolutions, and numerical
schemes for SEDs. In Stochastic analysis, Academic press, p. 331-346.

R. Lang and N.X. Xanh (1983). Strongly correlated random fields as observed by a random walker.
Probab. Theory and Related Fields 64, p. 327-340.

A. Lasota and J. A. Yorke (1974). On the existence of invariant measures for piecewise monotonic
transformations. Trans. Amer. Math. Soc. 186, p. 481-488.

M. Maejima (1996). Limit theorems related to a class of operator-self-similar processes. Nagoya
Math. J. 142, p. 161-181.

18



[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

F. Merlevede and M. Peligrad (2002). On the coupling of dependent random variables and appli-
cations. Empirical process techniques for dependent data., p. 171-193. Birkh&user.

T. Morita (1994). Local limit theorem and distribution of periodic orbits of Lasota-Yorke trans-
formations with infinite Markov partition. J. Math. Soc. Japan 46, p. 309-343.

M. Rosenblatt (1956). A central limit theorem and a strong mixing condition. Proc. Nat. Acad.
Sci. U. S. A. 42, p. 43-47.

Y. A. Rozanov and V. A. Volkonskii (1959). Some limit theorems for random functions I. Theory
Probab. Appl. 4, p. 178-197.

F.L. Spitzer (1976). Principles of random walks. Second Edition, Springer, New York.

S. A. Utev (1990). Central limit theorem for dependent random variables. Probab. Theory Math.
Statist. 2, p. 519-528.

S. A. Utev (1991). Sums of random variables with ¢-mixing. Siberian Advances in Mathematics
1, 3, p.124-155.

C. S. Withers (1981). Central limit theorems for dependent variables. I. Z. Wahrsch. Verw. Gebiete
57, 4, p. 509-534. (Corrigendum in Z. Wahrsch. Verw. Gebiete 63, 4, (1983), p. 555).

19



