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Let S = (S k ) k≥0 be a random walk on Z and ξ = (ξ i ) i∈Z a stationary random sequence of centered random variables, independent of S. We consider a random walk in random scenery that is the sequence of random variables (Σ n ) n≥0 where

Under a weak dependence assumption on the scenery ξ we prove a functional limit theorem generalizing Kesten and Spitzer's theorem (1979).

Introduction

Let X = (X i ) i≥1 be a sequence of independent and identically distributed random vectors with values in Z d . We write

S 0 = 0, S n = n i=1 X i for n ≥ 1
for the Z d -random walk S = (S n ) n∈N generated by the family X. Let ξ = (ξ x ) x∈Z d be a family of real random variables, independent of S. The sequence ξ plays the role of the random scenery. The random walk in random scenery (RWRS) is the process defined by

Σ n = n k=0 ξ S k , n ∈ N.
RWRS was first introduced in dimension one by Kesten and Spitzer (1979) and Borodin (1979) in order to construct new self-similar stochastic processes. Functional limit theorems for RWRS were obtained under the assumption that the random variables ξ x , x ∈ Z d are independent and identically distributed. For d = 1, Kesten and Spitzer (1979) proved that when X and ξ belong to the domains of attraction of different stable laws of indices 1 < α ≤ 2 and 0 < β ≤ 2, respectively, then there exists δ > 1 2 such that n -δ Σ [nt] t≥0 converges weakly as n → ∞ to a self-similar process with stationary increments, δ being related to α and β by δ = 1α -1 + (αβ) -1 . The case 0 < α < 1 and β arbitrary is easier; they showed then that n -1 β Σ [nt] t≥0 converges weakly, as n → ∞, to a stable process with index β. [START_REF] Bolthausen | A central limit theorem for two-dimensional random walks in random sceneries[END_REF] gave a method to solve the case α = 1 and β = 2 and especially, he proved that when (S n ) n∈N is a recurrent Z 2 -random walk, (n log n) -1 2 Σ [nt] t≥0 satisfies a functional central limit theorem. For an arbitrary transient Z d -random walk, n -1 2 Σ n is asymptotically normal (see [START_REF] Spitzer | Principles of random walks[END_REF] p. 53). [START_REF] Maejima | Limit theorems related to a class of operator-self-similar processes[END_REF] generalized the result of Kesten and Spitzer (1979) in the case where (ξ x ) x∈Z are i.i.d. R d -valued random variables which belong to the domain of attraction of an operator stable random vector with exponent B. If we denote by D the linear operator on R d defined by D = (1 -1 α )I + 1 α B, he proved that n -D Σ [nt] t≥0 converges weakly to an operator self similar with exponent D and having stationary increments.

One-dimensional random walks in random scenery recently arose in the study of random walks evolving on oriented versions of Z 2 (see Guillotin-Plantard and Le Ny (2007,2008)) as well as in the context of charged polymers (see [START_REF] Chen | From charged polymers to random walk in random scenery[END_REF]). The understanding of these models in the case where the orientations or the charges are not independently distributed requires functional limit theorems for Z-random walk in correlated random scenery. To our knowledge, only the case of strongly correlated stationary random sceneries has been studied by [START_REF] Lang | Strongly correlated random fields as observed by a random walker[END_REF]. In their paper, the increments of the random walk S are assumed to belong to the domain of attraction of a non-degenerate stable law of index α, 0 < α ≤ 2. They further suppose that the scenery ξ satisfies the non-central limit theorem of [START_REF] Dobrushin | Non-central limit theorems for non-linear functionals of Gaussian fields[END_REF] with a scaling factor n -d+(βk)/2 , βk < d. Under the assumption βk < α, it is proved that n -1+βk/(2α) Σ [nt] t≥0 converges weakly as n → +∞ to a self-similar process with stationary increments, which can be represented as a multiple Wiener-Itô integral of a random function. Our aim is to study the intermediary case of a stationary random scenery ξ which satisfies a weak dependence condition introduced in Dedecker et al. (2007) and to prove Kesten and Spitzer's theorem under this new assumption.

In Guillotin-Plantard & Prieur (2008) the case of a transient Z-random walk was considered and a central limit theorem for the sequence (Σ n ) n∈N was proved. In this paper the onedimensional random walk will be assumed to be recurrent.

Our paper is organized as follows: In Section 2, we introduce the dependence setting under which we work in the sequel. In Section 3 we introduce in details our model and give the main result. In Section 4 properties of the local time of the random walk are given as well as the ones of the intersection local time. Models for which we can compute bounds for our dependence coefficients are presented in Section 5. Finally, the proof of our theorem is given in the last section.

Weak dependence conditions

In this section, we recall the definition of the dependence coefficients which we will use in the sequel. They have first been introduced in Dedecker et al. (2007). Our weak dependence condition will be less restrictive than the mixing one. The reader interested in this question would find more details in Guillotin-Plantard & Prieur (2008).

On the Euclidean space R m , we define the metric

d 1 (x, y) = m i=1 |x i -y i |. Let Λ = m∈N * Λ m where Λ m is the set of Lipschitz functions f : R m → R with respect to the metric d 1 . If f ∈ Λ m , we denote by Lip(f ) := sup x =y |f (x)-f (y)| d 1 (x,y)
the Lipschitz modulus of f . The set of functions f ∈ Λ such that Lip(f ) ≤ 1 is denoted by Λ.

Definition 2.1 Let ξ be a R m -valued random variable defined on a probability space (Ω, A, P), assumed to be square integrable. For any σ-algebra M of A, we define the θ 2 -dependence coefficient

θ 2 (M, ξ) = sup{ E(f (ξ)|M) -E(f (ξ)) 2 , f ∈ Λ} . (2.1)
We now define the coefficient θ k,2 for a sequence of σ-algebras and a sequence of R-valued random variables. Definition 2.2 Let (ξ i ) i∈Z be a sequence of square integrable random variables valued in R. Let (M i ) i∈Z be a sequence of σ-algebras of A. For any k ∈ N * ∪ {∞} and n ∈ N, we define

θ k,2 (n) = max 1≤l≤k 1 l sup{θ 2 (M p , (ξ j 1 , . . . , ξ j l )), p + n ≤ j 1 < . . . < j l } and θ 2 (n) = θ ∞,2 (n) = sup k∈N * θ k,2 (n) .
Definition 2.3 Let (ξ i ) i∈Z be a sequence of square integrable random variables valued in R.

Let (M i ) i∈Z be a sequence of σ-algebras of A. The sequence (ξ i ) i∈Z is said to be θ 2 -weakly dependent with respect to

(M i ) i∈Z if θ 2 (n) -----→ n→+∞ 0.
Remark : Replacing the • 2 norm in (2.1) by the • 1 norm, we get the θ 1 dependence coefficient first introduced by Doukhan & Louhichi (1999).

Model and results

Let S = (S k ) k≥0 be a Z-random walk (S 0 = 0) whose increments (X i ) i≥1 are centered and square integrable. We denote by P X 1 the law of the random variable X 1 . For any q ∈ N * such that P(X 1 ∈ [-q, q]) is non zero, we define the probability measure on Z P q = P X 1 [-q,q] P(X 1 ∈ [-q, q]) .

The random walk S is said to satisfy the property (P) if there exists q ∈ N * such that {x ∈ Z; ∃n, P (⋆n)

q (x) > 0} = Z.
In particular, if there exists some q ∈ N * such that the random walk associated to P q is centered and aperiodic then S satisfies the property (P). For instance, the simple random walk on Z verifies (P). Let ξ = (ξ i ) i∈Z be a sequence of centered real random variables.

The sequences S and ξ are defined on a same probability space denoted by (Ω, F, P) and are assumed to be independent. We are interested in the asymptotic behaviour of the following sum

Σ n = n k=0 ξ S k .
The case where the ξ i 's are independent and identically distributed random variables with positive variance has been considered by Kesten & Spitzer (1979) and Borodin (1979). Consider a standard Brownian motion (B t ) t≥0 , denote by (L t (x)) t≥0 its corresponding local time at x ∈ R and introduce a pair of independent Brownian motions (Z + (x), Z -(x)), x ≥ 0 defined on the same probability space as (B t ) t≥0 and independent of him. The following process is well-defined for all t ≥ 0:

∆ t = ∞ 0 L t (x)dZ + (x) + ∞ 0 L t (-x)dZ -(x). (3.2)
It was proved by Kesten and Spitzer (1979) that this process has a self-similar continuous version of index 3 4 , with stationary increments. We denote D =⇒ for a convergence in the space of càdlàg functions D([0, ∞), R) endowed with the Skorohod topology. Theorem 3.1 [Kesten and Spitzer (1979)] Assume that the ξ i 's are independent and identically distributed with positive variance σ 2 > 0. Then,

1 n 3/4 Σ [nt] t≥0 D =⇒ (σ∆ t ) t≥0 . (3.3) 
A simple proof of this theorem was proposed by Cadre (1995) (Section 2.5.a.) using a weak limit theorem for stochastic integrals (Theorem 1.1. in [START_REF] Kurtz | Wong-Zakai corrections, Random evolutions, and numerical schemes for SEDs[END_REF]). Applying Cadre's method, Theorem 3.1 can be extended to any scenery given by a stationary and ergodic sequence of square integrable martingale differences. Then, a natural idea is to generalize the result to any stationary and ergodic sequence ξ of square integrable random variables as it was done for the central limit theorem. Under suitable assumptions on the sequence, for instance the convergence of the series ∞ k=0 E(ξ k |M 0 ) in L 2 , the scenery ξ is equal to a martingale differences sequence modulo a coboundary term and satisfies a Donsker theorem. However, the RWRS associated to the coboundary term (if it is non zero) is not negligible. It can be proved that the L 2 -norm of this sum correctly normalized by n 3/4 converges to some positive constant.

In order to weaken the assumptions on the field ξ we introduce a sequence (M i ) i∈Z of σ-fields of F defined by

M i = σ (ξ j , j ≤ i) , i ∈ Z .
In the sequel, the dependence coefficients will be defined with respect to the sequence of σ-fields (M i ) i∈Z .

Theorem 3.2

Assume that the following conditions are satisfied :

(A 0 )
The random walk S satisfies the property (P).

(A 1 ) ξ = {ξ i } i∈Z is a stationary sequence of square integrable random variables.

(A 2 ) θ ξ 2 (•) is bounded above by a non-negative function g(•) such that x → x 3/2 g(x) is non-increasing, ∃ 0 < ε < 1 , ∞ i=0 2 3i 2 g(2 iε ) < ∞.
Then, as n tends to infinity,

1 n 3/4 Σ [nt] t≥0 D =⇒ i∈Z E(ξ 0 ξ i ) (∆ t ) t≥0 . (3.4) 
Remark : Assumptions (A 1 ) and (A 2 ) imply that

∀λ ∈ [0, 1/2[, k∈Z |k| λ |E(ξ 0 ξ k )| < +∞ (3.5)
Indeed, this sum is equal to

E(ξ 2 0 ) + 2 ∞ k=1 |k| λ |E(ξ 0 ξ k )|
and for any k ≥ 1, from Cauchy-Schwarz inequality, we get

|E(ξ 0 ξ k )| = |E ξ 0 E(ξ k |M 0 ) | ≤ ||ξ 0 || 2 θ ξ 2 (k) ≤ ||ξ 0 || 2 g(k)
The result (3.5) follows by remarking that

∞ k=1 |k| λ g(k) ≤ g(1) ∞ k=1 1 k 3/2-λ which is finite for every λ ∈ [0, 1/2[. Remark : If θ ξ 2 (n) = O (n -a
) for some positive a, condition (A 3 ) holds for a > 3/2.

Properties of the occupation times of the random walk

The random walk S = (S k ) k≥0 is defined as in the previous section and is assumed to verify the property (P). The local time of the random walk is defined for every i ∈ Z by

N n (i) = n k=0 1 {S k =i} .
The local time of self-intersection at point i of the random walk (S n ) n≥0 is defined by

α(n, i) = n k,l=0 1 {S k -S l =i} .
The stochastic properties of the sequences (N n (i)) n∈N,i∈Z and (α(n, i)) n∈N,i∈Z are well-known when the random walk S is strongly aperiodic. A random walk who satisfies the property (P) is not strongly aperiodic in general. However, a local limit theorem for the random walks satisfing (P) was proved by Cadre (2005) (ii) (a) For any p ∈ [1, +∞), there exists some constant C such that for all n ≥ 1,

E (α(n, 0) p ) ≤ Cn 3p/2 .
(b) For any m ≥ 1, for any real θ 1 , . . . , θ m , for any 0 ≤ t 1 ≤ . . . ≤ t m , the sequence

n -3/2 i∈Z m k=1 θ k N [nt k ] (i) 2 converges in distribution to R m k=1 θ k L t k (x) 2 dx
where (L t (x)) t≥0;x∈R is the local time of the real Brownian motion (B t ) t≥0 .

(iii) For every λ ∈ ]0, 1[, there exists a constant C such that for any i, j ∈ Z,

α(n, i) -α(n, j) 2 ≤ Cn (3-λ)/2 |i -j| λ .

Examples

In this section, we present examples for which we can compute upper bounds for θ 2 (n) for any n ≥ 1. We refer to Chapter 3 in Dedecker et al (2007) and references therein for more details.

Example 1: causal functions of stationary sequences

Let (E, E, Q) be a probability space. Let (ε i ) i∈Z be a stationary sequence of random variables with values in a measurable space S. Assume that there exists a real valued function H defined on a subset of S N , such that H(ε 0 , ε -1 , ε -2 , . . . , ) is defined almost surely. The stationary sequence (ξ n ) n∈Z defined by

ξ n = H(ε n , ε n-1 , ε n-2 , . . .) is called a causal function of (ε i ) i∈Z .
Assume that there exists a stationary sequence

(ε i ′ ) i∈Z distributed as (ε i ) i∈Z and in- dependent of (ε i ) i≤0 . Define ξ * n = H(ε n ′ , ε n-1 ′ , ε n-2 ′ , . . .). Clearly, ξ * n is independent of M 0 = σ(ξ i , i ≤ 0) and distributed as ξ n . Let (δ 2 (i)) i>0 be a non increasing sequence such that E (|ξ i -ξ * i | | M 0 ) 2 ≤ δ 2 (i) . (5.6)
Then the coefficient θ 2 of the sequence (ξ n ) n≥0 satisfies

θ 2 (i) ≤ δ 2 (i) . (5.7)
Let us consider the particular case where the sequence of innovations (ε i ) i∈Z is absolutely regular in the sense of [START_REF] Rozanov | Some limit theorems for random functions I[END_REF]. Then, according to Theorem 4.4.7 in [START_REF] Berbee | Random walks with stationary increments and renewal theory[END_REF], if E is rich enough, there exists (ε ′ i ) i∈Z distributed as (ε i ) i∈Z and independent of (ε i ) i≤0 such that

Q(ε i = ε ′ i for some i ≥ k | F 0 ) = 1 2 Q εk |F 0 -Q εk v ,
where εk = (ε k , ε k+1 , . . .), F 0 = σ(ε i , i ≤ 0), and • v is the variation norm. In particular if the sequence (ε i ) i∈Z is idependent and identically distributed, it suffices to take

ε ′ i = ε i for i > 0 and ε ′ i -ε ′′ i for i ≤ 0, where (ε ′′ i ) i∈Z is an independent copy of (ε i ) i∈Z .

Application to causal linear processes:

In that case, ξ n = j≥0 a j ε n-j , where (a j ) j≥0 is a sequence of real numbers. We can choose

δ 2 (i) ≥ ε 0 -ε ′ 0 2 j≥i |a j | + i-1 j=0 |a j | ε i-j -ε ′ i-j 2 .
From Proposition 2.3 in [START_REF] Merlevède | On the coupling of dependent random variables and applications. Empirical process techniques for dependent data[END_REF], we obtain that

δ 2 (i) ≤ ε 0 -ε ′ 0 2 j≥i |a j | + i-1 j=0 |a j | 2 2 β(σ(ε k ,k≤0),σ(ε k ,k≥i-j)) 0 Q 2 ε 0 (u) 1/2 du,
where

Q ε 0 is the generalized inverse of the tail function x → Q(|ε 0 | > x).

Example 2: iterated random functions

Let (ξ n ) n≥0 be a real valued stationary Markov chain, such that ξ n = F (ξ n-1 , ε n ) for some measurable function F and some independent and identically distributed sequence (ε i ) i>0 independent of ξ 0 . Let ξ * 0 be a random variable distributed as ξ 0 and independent of (ξ 0 ,

(ε i ) i>0 ). Define ξ * n = F (ξ * n-1 , ε n ) . The sequence (ξ * n ) n≥0 is distributed as (ξ n ) n≥0 and independent of ξ 0 . Let M i = σ(ξ j , 0 ≤ j ≤ i).
As in Example 1, define the sequence (δ 2 (i)) i>0 by (5.6). The coefficient θ 2 of the sequence (ξ n ) n≥0 satisfies the bound (5.7) of Example 1.

Let µ be the distribution of ξ 0 and (ξ x n ) n≥0 be the chain starting from ξ x 0 = x. With these notations, we can choose δ 2 (i) such that

δ 2 (i) ≥ ξ i -ξ * i 2 = |ξ x i -ξ y i 2 2 µ(dx)µ(dy) 1/2 .
For instance, if there exists a sequence (d 2 (i)) i≥0 of positive numbers such that

ξ x i -ξ y i 2 ≤ d 2 (i)|x -y|, then we can take δ 2 (i) = d 2 (i) ξ 0 -ξ * 0 2
. For example, in the usual case where F (x, ε 0 ) -F (y, ε 0 ) 2 ≤ κ|x -y| for some κ < 1, we can take d 2 (i) = κ i .

An important example is ξ n = f (ξ n-1 ) + ε n for some κ-Lipschitz function f . If ξ 0 has a moment of order 2, then δ 2 (i) ≤ κ i ξ 0ξ * 0 2 .

Example 3: dynamical systems on [0, 1]

Let I = [0, 1], T be a map from I to I and define X i = T i . If µ is invariant by T , the sequence (X i ) i≥0 of random variables from (I, µ) to I is strictly stationary.

For any finite measure ν on I, we use the notations ν(h) = I h(x)ν(dx). For any finite signed measure ν on I, let ν = |ν|(I) be the total variation of ν. Denote by g 1,λ the L 1 -norm with respect to the Lebesgue measure λ on I.

Covariance inequalities. In many interesting cases, one can prove that, for any BV function h and any k in

L 1 (I, µ), | Cov(h(X 0 ), k(X n ))| ≤ a n k(X n ) 1 ( h 1,λ + dh ) , (5.8) 
for some nonincreasing sequence a n tending to zero as n tends to infinity.

Spectral gap. Define the operator L from L 1 (I, λ) to L 1 (I, λ) via the equality

1 0 L(h)(x)k(x)dλ(x) = 1 0 h(x)(k • T )(x)dλ(x) where h ∈ L 1 (I, λ) and k ∈ L ∞ (I, λ).
The operator L is called the Perron-Frobenius operator of T . In many interesting cases, the spectral analysis of L in the Banach space of BV -functions equiped with the norm h v = dh + h 1,λ can be done by using the Theorem of Ionescu-Tulcea and Marinescu (see [START_REF] Lasota | On the existence of invariant measures for piecewise monotonic transformations[END_REF] and [START_REF] Hofbauer | Ergodic properties of invariant measures for piecewise monotonic transformations[END_REF]). Assume that 1 is a simple eigenvalue of L and that the rest of the spectrum is contained in a closed disk of radius strictly smaller than one. Then there exists a unique T -invariant absolutely continuous probability µ whose density f µ is BV , and

L n (h) = λ(h)f µ + Ψ n (h) with Ψ n (h) v ≤ Kρ n h v .
(5.9)

for some 0 ≤ ρ < 1 and K > 0. Assume moreover that: 

I * = {f µ = 0} is
P (h)(x) = L(f µ h)(x) f µ (x) . (5.11)
It is easy to check (see for instance [START_REF] Barbour | Iterates of expanding maps[END_REF]) that (X 0 , X 1 , . . . , X n ) has the same distribution as (Y n , Y n-1 , . . . , Y 0 ) where (Y i ) i≥0 is a stationary Markov chain with invariant distribution µ and transition kernel P . Since f g ∞ ≤ f g v ≤ 2 f v g v , we infer that, taking C = 2Kγ( df µ + 1),

P n (h) = µ(h) + g n with g n ∞ ≤ Cρ n h v .
(5.12)

This estimate implies (5.8) with a n = Cρ n (see [START_REF] Dedecker | New dependence coefficients. Examples and applications to statistics[END_REF].

Expanding maps: Let ([a i , a i+1 [) 1≤i≤N be a finite partition of [0, 1[. We make the same assumptions on T as in [START_REF] Collet | Exponential inequalities for dynamical measures of expanding maps of the interval[END_REF].

1. For each 1 ≤ j ≤ N , the restriction T j of T to ]a j , a j+1 [ is strictly monotonic and can be extented to a function T j belonging to C 2 ([a j , a j+1 ]).

2. Let I n be the set where (T n ) ′ is defined. There exists A > 0 and s > 1 such that

inf x∈In |(T n ) ′ (x)| > As n .
3. The map T is topologically mixing: for any two nonempty open sets U, V , there exists

n 0 ≥ 1 such that T -n (U ) ∩ V = ∅ for all n ≥ n 0 .
If T satisfies 1., 2. and 3., then (5.9) holds. Assume furthermore that (5.10) holds (see [START_REF] Morita | Local limit theorem and distribution of periodic orbits of Lasota-Yorke transformations with infinite Markov partition[END_REF] for sufficient conditions). Then, arguing as in Example 4 in Section 7 of Dedecker & Prieur (2005), we can prove that for the Markov chain (Y i ) i≥0 and the σ-algebras

M i = σ(Y j , j ≤ i), there exists a positive constant C such that θ 2 (i) ≤ Cρ i .
6 Proof of Theorem 3.2

The proof of Theorem 3.2 is decomposed in two parts: first, we prove the convergence of the finite-dimensional distributions of the process (n -3/2 Σ [nt] ) t≥0 , then its tightness in the Skorohod space D([0, +∞[).

Proof of the convergence of the finite-dimensional distributions: Since the random variable Σ n can be rewritten as the sum

i∈Z N n (i)ξ i
where N n (i) is the local time of the random walk S at point i, it is enough to prove that for every m ≥ 1, for any real θ 1 , . . . , θ m , for any 0 ≤ t 1 ≤ t 2 ≤ . . . ≤ t m , the sequence

1 n 3/2 m k=1 θ k Σ [nt k ] = 1 n 3/2 i∈Z m k=1 θ k N [nt k ] (i) ξ i converges in distribution to the random variable i∈Z E(ξ 0 ξ i ) m k=1 θ k ∆ t k .
We only prove the convergence of one-dimensional distributions. The general case is obtained by replacing N n (i) by the linear combination θ k N [nt k ] (i) in the computations. Let G = σ(S k , k ≥ 0) be the σ-field generated by the random walk S. For any n ∈ N and any i ∈ Z, we denote by X n,i the random variable N n (i)ξ i . We first use a classical truncation argument. For any M > 0, we define :

ϕ M : R → R x → ϕ M (x) = (x ∧ M ) ∨ (-M )
and

ϕ M : R → R x → ϕ M (x) = x -ϕ M (x) .
We now prove the following Lindeberg condition :

n -3/2 i∈Z E ϕ εn 3/4 (X n,i ) 2 -----→ n→+∞ 0 . (6.13)
We have, for ε > 0 fixed, for n large enough,

n -3/2 i∈Z E ϕ εn 3/4 (X n,i ) 2 G ≤ E ξ 2 0 1 {|ξ 0 |>εn 3/4 / max j Nn(j)} G α(n,0) n 3/2 =: Σ 1 (ε, n) Let η > 0. We decompose the expectation of Σ 1 (ε, n) as the sum of Σ 1,1 (ε, n) := E 1 {n -3/4 max j Nn(j)≥η} E ξ 2 0 1 {|ξ 0 |>εn 3/4 / max j Nn(j)} G α(n, 0) n 3/2 and Σ 1,2 (ε, n) := E 1 {n -3/4 max j Nn(j)<η} E ξ 2 0 1 {|ξ 0 |>εn 3/4 / max j Nn(j)} G α(n, 0) n 3/2 . Using (ii)(a) of Proposition 4.1, Σ 1,2 (ε, n) is bounded by CE ξ 2 0 1 {|ξ 0 |>ε/η}
From assumption (A 1 ) of Theorem 3.2, for any κ > 0, there exists η 0 > 0 such that the above term is less than κ/2 for any η ≤ η 0 . We now fix η equal to η 0 . Using Cauchy-Schwarz inequality,

Σ 1,1 (ε, n) ≤ E(ξ 2 0 ) P n -3/4 max j N n (j) ≥ η 0 1/2 E α(n, 0) 2 n 3 1/2
From assumption (A 1 ) of Theorem 3.2, (i) and (ii)(a) of Proposition 4.1, it follows that Σ 1,1 (ε, n) ≤ κ/2 for n large enough.

Since ε → E Σ 1 (ε, n) is decreasing, we can find a sequence of positive numbers (ε n ) n≥1 such that ε n -----→ n→+∞ 0, and

E Σ 1 (ε n , n) -----→ n→+∞ 0 (6.14)
Let us now prove that it implies

n -3/2 E i∈Z ϕ εnn 3/4 (X n,i ) -E(ϕ εnn 3/4 (X n,i )|G) 2 -----→ n→+∞ 0 . (6.15)
For any fixed n ≥ 0, and any i ∈ Z such that N n (i) = 0, define :

V n,i = ϕ εnn 3/4 /Nn(i) (ξ i ) -E(ϕ εnn 3/4 /Nn(i) (ξ i )|G)
If N n (i) = 0, let V n,i = 0. As for any fixed n ≥ 0 and any i ∈ Z, the function

x → ϕ εnn 3/4 /Nn(i) (x)
is 1-Lipschitz, we have for any fixed path of the random walk, for all l ≥ 1, for all k ≥ 1,

θ V•,n k,2 (l) ≤ θ ξ k,2 (l) ,
where

V •,n = (V n,i ) i∈Z and ξ = (ξ i ) i∈Z . E j∈Z N n (j)V n,j 2 G = j∈Z N n (j) 2 E(V 2 n,j |G) + i∈Z j∈Z;j =i N n (i) N n (j)E(V n,i V n,j |G) ≤ j∈Z N n (j) 2 E(V 2 n,j |G) + i∈Z N n (i) 2 j∈Z;j =i |E(V n,i V n,j |G)| by remarking that N n (i) N n (j) ≤ 1 2 (N n (i) 2 + N n (j) 2
). Then for any j > i, using Cauchy-Schwarz inequality, we obtain that

|E(V n,i V n,j |G)| = E V n,i E (V n,j |M i ) G ≤ E(V 2 n,i |G) 1/2 E E(V n,j |M i ) 2 G 1/2 ≤ E(V 2 n,i |G) 1/2 θ ξ 1,2 (j -i).
Moreover, as N n (i)V n,i = ϕ εnn 3/4 (X n,i ) -E(ϕ εnn 3/4 (X n,i )|G), we get

n -3/2 E i∈Z ϕ εnn 3/4 (X n,i ) -E(ϕ εnn 3/4 (X n,i )|G) 2 ≤ E C n α(n, 0) n 3/2 , (6.16) 
with

C n = sup i∈Z E(V 2 n,i |G) + 2 sup i∈Z E(V 2 n,i |G) ∞ l=1 θ ξ 1,2 (l) 
. It remains to prove that the right hand term in (6.16) converges to 0 as n goes to infinity.

We have, for n large enough,

E V 2 n,i G ≤ E ξ 2 i 1 {|ξ i |>εnn 3/4 / max j Nn(j)} G , (6.17) 
so using Cauchy-Schwarz inequality,

E C n α(n, 0) n 3/2 ≤ E Σ 1 (ε n , n) + 2 ∞ l=1 θ ξ 1,2 (l) E Σ 1 (ε n , n) 1/2 E α(n, 0) n 3/2 1/2
, which tends to 0 from (ii)(a) of Proposition 4.1, assumption (A 2 ) from Theorem 3.2 and (6.14).

Define Z n,i by ϕ εnn 3/4 (X n,i ) -E ϕ εnn 3/4 (X n,i )|G .

By (6.15) we conclude that, to prove Theorem 3.2, it is enough to prove it for the truncated sequence (Z n,i ) n≥0,i∈Z , that is to show that

1 n 3/4 i∈Z Z n,i D -----→ n→+∞ k E(ξ 0 ξ k ) ∆ 1 . (6.18) 
The proof is now a variation on the proof of Theorem 4.1 in [START_REF] Utev | Central limit theorem for dependent random variables[END_REF]. Let

d t (X, Y ) = E(e itX |G) -E(e itY |G) .
Let η be a random variable with standard normal distribution, independent of the random walk (S k ) k≥0 . Let (X i ) i=1,..,3 be random variables such that for i = 1, ..,

3, E(X i |G) = 0 and E(X 2 i |G) is bounded. Let Y 1 , Y 2 be random variables such that E(Y i |G) = 0 and E(Y 2 i |G) is bounded for i = 1, 2.
They are assumed to be independent conditionnally to the random walk. We define

A t (X) = d t X, η E(X 2 |G) .
We first need some simple properties of d t and A t : Lemma 6.1 (Lemma 4.3 in Utev, 1990)

A t (X 1 ) ≤ 2 3 |t| 3 E(|X 1 | 3 |G), A t (Y 1 + Y 2 ) ≤ A t (Y 1 ) + A t (Y 2 ), d t (X 2 + X 3 , X 2 ) ≤ t 2 2 E(X 2 3 |G) + (E(X 2 2 |G)E(X 2 3 |G)) 1/2 , d t (ηa, ηb) ≤ t 2 2 |a 2 -b 2 |.
We next need the following lemma :

Lemma 6.2 Let 0 < ε < 1.
There exists some positive constant C(ε) such that for all a ∈ Z, for all v ∈ N * , A t n -3/4 a+v i=a+1 Z n,i is bounded by

C(ε)   |t| 3 h 2/ε n -9/4 a+v i=a+1 E |Z n,i | 3 |G + t 2   h ε-1 2 + j :2 j ≥h 1/ε 2 3j 2 g(2 jε )   n -3/2 a+v i=a+1 N n (i) 2   ,
where h is an arbitrary positive natural number and with g introduced in Assumption (A 2 ) of Theorem 3.2.

Before proving Lemma 6.2, we achieve the proof of Theorem 3.2. We can decompose

E e it 1 n 3/4 i∈Z Z n,i -E e it √ k E(ξ 0 ξ k )∆ 1 (6.19)
as the sum of I i (n), i = 1, .., 4 where

I 1 (n) = E e it 1 n 3/4 i∈Z Z n,i -E e -t 2 2n 3/2 E ( i∈Z Z n,i) 2 |G I 2 (n) = E e -t 2 2n 3/2 E ( i∈Z Z n,i) 2 |G -E e -t 2 2n 3/2 E ( i∈Z X n,i) 2 |G I 3 (n) = E e -t 2 2n 3/2 E ( i∈Z X n,i) 2 |G -E e -t 2 2n 3/2 i,j∈Z Nn(i) 2 E(ξ i ξ j ) I 4 (n) = E e -t 2 2n 3/2 i,j∈Z Nn(i) 2 E(ξ i ξ j ) -E e it √ k E(ξ 0 ξ k )∆ 1
To prove Theorem 3.2, it is enough to prove that for any i = 1, .., 4, I i (n) goes to 0 as n → +∞. Estimation of I 1 (n) : Let us denote by M n the random variable max k=0,...,n |S k |. From Lemma 6.2, we have

|I 1 (n)| ≤ E A t n -3/4 Mn i=-Mn Z n,i ≤ C(t, ε) h 2/ε n -9/4 i∈Z E(|Z n,i | 3 ) + δ(h) , with δ(h) = h ε-1 2 + j :2 j ≥h 1 ε 2 3j 2 g(2 jε ) E α(n,0) n 3/2 .
Hence using assumption (A 2 ) from Theorem 3.2 and (ii)(a) from Proposition 4.1, we get δ(h) ----→ h→+∞ 0.

On the other hand, from assumption (A 1 ) of Theorem 3.2, there exists a constant C > 0 such that

n -9/4 i∈Z E(|Z n,i | 3 ) ≤ Cε n E α(n, 0) n 3/2 (6.20)
which tends to zero as n tends to infinity, using (ii)(a) from Proposition 4.1 and the fact that

ε n -----→ n→+∞ 0. Consequently inf h≥1 h 2/ε i∈Z E(|Z n,i | 3 ) + δ(h) -----→ n→+∞ 0.
Estimation of I 2 (n) : Using that for any x, y ≥ 0, |e -xe -y | ≤ |x -y| and the fact that

Z n,i = X n,i -[ϕ εnn 3/4 (X n,i ) -E(ϕ εnn 3/4 (X n,i )|G)],
we deduce that

|I 2 (n)| ≤ t 2 n 3/2 E i∈Z ϕ εnn 3/4 (X n,i ) -E(ϕ εnn 3/4 (X n,i )|G) 2 + E i∈Z X n,i 2 1/2 E i∈Z ϕ εnn 3/4 (X n,i ) -E(ϕ εnn 3/4 (X n,i )|G) 2 1/2   Since we have E i∈Z X n,i 2 = i,j∈Z E(N n (i)N n (j))E(ξ i ξ j ) = i∈Z E(α(n, i) -α(n, 0))E(ξ 0 ξ i ) + E(α(n, 0)) i∈Z E(ξ 0 ξ i ) ≤ Cn 3/2
by combining (ii)(a)-(iii) of Proposition 4.1 and (3.5). Then, from (6.15), we deduce that I 2 (n) converges to 0.

Estimation of I 3 (n) : We have 

|I 3 (n)| ≤ t 2 2n 3/2 i∈Z E(|α(n, i) -α(n, 0)|)|E(ξ 0 ξ i )| = o(
E e -t 2 2n 3/2 i,j∈Z Nn(i) 2 E(ξ i ξ j ) converges to E e -t 2 2 i∈Z E(ξ 0 ξ i ) R L 2 1 (x) dx which is equal to the characteristic function of the random variable i∈Z E(ξ 0 ξ i )∆ 1 .
Proof of Lemma 6.2: Let h ∈ N * . Let 0 < ε < 1. In the following, C, C(ε) denote constants which may vary from line to line. Let κ ε be a positive constant greater than 1 which will be precised further. Let v < κ ε h 1 ε . We have

A t n -3/4 a+v i=a+1 Z n,i ≤ 2|t| 3 3n 9/4 E   a+v i=a+1 Z n,i 3 G   ≤ 2 3n 9/4 κ 2 ε |t| 3 h 2/ε a+v i=a+1 E(|Z n,i | 3 |G) (6.21) since |x| 3 is a convex function. Let now v ≥ κ ε h 1 ε . Without loss of generality, assume that a = 0. Let δ ε = (1-ε 2 +2ε)/2. Define then m = [v ε ], B = u ∈ N : 2 -1 (v -[v δε ]) ≤ um ≤ 2 -1 v , A =    u ∈ N : 0 ≤ u ≤ v, (u+1)m i=um+1 N n (i) 2 ≤ (m/v) ε v i=1 N n (i) 2    .
Following [START_REF] Utev | Sums of random variables with ϕ-mixing[END_REF] we prove that, for 0 < ε < 1, A ∩ B is not wide for v greater than κ ε . We have indeed

|A ∩ B| = |B| -|A ∩ B| ≥ |B| -|A| ≥ v (1-ε 2 )/2 2 1 -4v -(1-ε) 2 /2 - 3 2 ,
where A denotes the complementary of the set A. We can find κ ε large enough so that |A ∩ B| be positive. Let u ∈ A ∩ B. We start from the following simple identity

Q ≡ n -3/4 v i=1 Z n,i = n -3/4 um i=1 Z n,i + n -3/4 (u+1)m i=um+1 Z n,i + n -3/4 v i=(u+1)m+1 Z n,i ≡ Q 1 + Q 2 + Q 3 . (6.22) 
For any fixed n ≥ 0, and any i ∈ Z such that N n (i) = 0, define :

W n,i = ϕ εnn 3/4 /Nn(i) (ξ i ) -E ϕ εnn 3/4 /Nn(i) (ξ i ) G .
If N n (i) = 0, let W n,i = 0. As for any fixed n ≥ 0, i ∈ Z, the function

x → ϕ εnσn/Nn(i) (x) -E ϕ εnσn/Nn(i) (ξ i ) G
is 1-Lipschitz, we have for any fixed path of the random walk, for all l ≥ 1, for all k ≥ 1,

θ W•,n k,2 (l) ≤ θ ξ k,2 ( 
l) , where W •,n = (W n,i ) i∈Z and ξ = (ξ i ) i∈Z . Hence, arguing as for the proof of inequality (6.16), we prove that for any fixed n, any a, b ∈ N,

E | b i=a Z n,i | 2 G ≤ C b i=a N n (i) 2 (6.23) with C = 2E(ξ 2 0 ) + 2 √ 2E(ξ 2 0 ) 1/2 ∞ l=1 θ 1,2 ( 
l) which is finite from assumptions (A 1 ) and (A 2 ). By Lemma 6.1,

d t (Q, Q 1 + Q 3 ) = d t (Q, Q -Q 2 ) ≤ t 2 2 E(Q 2 2 |G) + E(Q 2 2 |G) 1/2 E(Q 2 |G) 1/2 . (6.24)
Using (6.24) and (6.23), we get

d t (Q, Q 1 + Q 3 ) ≤ Ct 2 v (ε-1)ε 2 n -3/2 v i=1 N n (i) 2 . (6.25)
Now, given the random variables Q 1 and Q 3 , we define two random variables g 1 and g 3 which are assumed independent conditionally to the random walk (S k ) k≥0 such that conditionnally to the random walk, the distribution of g i coincides with that of Q i , i = 1, 3. We have

d t (Q 1 + Q 3 , g 1 + g 3 ) = E((e itQ 1 -1)(e itQ 3 -1)|G) -E(e itQ 1 -1|G)E(e itQ 3 -1|G) ≤ E(|e itQ 1 -1| 2 |G) 1/2 E E e itQ 3 -1 -E(e itQ 3 -1|G) | M um ; G 2 |G ≤ 2|t|n -3/4 E | um i=1 Z n,i | 2 | G 1/2 v |t| n -3/4 v i=(u+1)m+1 N n (i) θ ξ 2 (m + 1) ≤ C t 2 v 3/2 n -3/2 v i=1 N n (i) 2 g(v ε )
by (6.23), Definition 2.2 and Assumption (A 2 ) of Theorem 3.2. Hence (6.26) where f (v) = v 3/2 g(v ε ) is non-increasing by assumption (A 2 ) of Theorem 3.2. We also have by Lemma 6.1

d t (Q 1 + Q 3 , g 1 + g 3 ) ≤ Ct 2 f (v)n -3/2 v i=1 N n (i) 2 ,
A t (g 1 + g 3 ) ≤ A t (g 1 ) + A t (g 3 ). (6.27)

Finally, still by Lemma 6.1, and using Definition 2.2, we have

d t η E(Q 2 |G), η E ((g 1 + g 3 ) 2 |G) ≤ t 2 2 E(Q 2 |G) -E (g 1 + g 3 ) 2 |G (6.28) ≤ t 2 2 E(Q 2 2 |G) + 2E(Q 1 Q 2 |G) + 2E(Q 2 Q 3 |G) + 2E(Q 1 Q 3 |G) ≤ Ct 2 v (ε-1)ε 2 + f (v) n -3/2 v i=1
N n (i) 2 . (6.29)

Combining (6.25)-(6.29), we get the following recurrent inequality :

A t n -3/4 v i=1 Z n,i ≤ A t n -3/4 um i=1 Z n,i + A t n -3/4 v i=(u+1)m+1 Z n,i + Ct 2 v (ε-1)ε 2 + f (v) n -3/2 v i=1 N n (i) 2
for v ≥ κ ε h 1 ε ≥ κ ε . We then need the following Lemma, which is a variation on Lemma 1.2. in [START_REF] Utev | Sums of random variables with ϕ-mixing[END_REF]. Lemma 6.3 For every ε ∈ ]0, 1[, denote δ ε = (1ε 2 + 2ε)/2. Let a non-decreasing sequence of non-negative numbers a(n) be specified, such that there exist non-increasing sequences of non-negative numbers ε(k), γ(k) and a sequence of naturals T (k), satisfying conditions Proof of Lemma 6.3: The proof follows essentially the same lines as the proof of Lemma 1.2. in [START_REF] Utev | Sums of random variables with ϕ-mixing[END_REF] and therefore is omitted here. △

T (k) ≤ 2 -1 (k + [k δε ]),
We now apply Lemma 6. A t n -3/4 l+i j=l+1 Z n,j n -3/2 l+i j=l+1 N n (j) 2

.

Applying Lemma 6.3 yields the statement of Lemma 6.2.

Proof of the tightness: By Theorem 13.5 of [START_REF] Billingsley | Convergence of probability measures, 2nd edition[END_REF], it suffices to prove that there exists K > 0 such that for all t, t Using Cauchy-Schwarz inequality, it is enough to prove that there exists K > 0 such that for all t 1 ≤ t, for all n ≥ 1, 

E |Σ [nt] -Σ [nt 1 ] | 2 ≤ Kn
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 41 (i) The sequence n -3/4 max i∈Z N n (i) converges in probability to 0.

  an interval, and there exists γ > 0 such that f µ > γ -1 on I * . (5.10) Without loss of generality assume that I * = I (otherwise, take the restriction to I * in what follows). Define now the Markov kernel associated to T by

  1), by combining (iii) of Proposition 4.1 and (3.5). Estimation of I 4 (n) : From (ii)(b) of Proposition 4.1, we know that the sequence

  a(k) ≤ max k 0 ≤s≤k (a(T (s)) + γ(s)) for any k ≥ k 0 with an arbitrary k 0 ∈ N * . Then a(n) ≤ a(n 0 ) + 2 k 0 ≤2 j ≤n γ(2 j ) ,for any n ≥ k 0 , where one can take n 0 = 2 c with c > 2-δε 1-δε .

3 above with ⋆ k 0 = κ ε h 1 ε⋆ 2 +

 12 , for k ≥ k 0 , T (k) = max {u k m k , ku k m km k }where u k and m k are defined from k as u and m from v (see the proof of A ∩ B not wide), ⋆ c < ln(κε) ln(2)(we may need to enlarge κ ε ),⋆ for s ≥ k 0 , γ(s) = C t 2 s ε(ε-1) f (s) , ⋆ for s ≥ k 0 , a(s) = sup l∈Z max k 0 ≤i≤s

31 ) 2 =

 312 Since ab ≤ (a 2 + b 2 )/2 for any real a, b, we haveE |Σ [nt] -Σ [nt 1 ] | 2 ≤ i∈Z |E(ξ 0 ξ i )| j∈Z E (N [nt] (j) -N [nt 1 ] (j)) CE α [nt] -[nt 1 ] -1, 0 ≤ Cn 3/2 |tt 1 | 3/2using (3.5), the Markov property for the random walk S and (ii)-(a) of Proposition 4.1. △

  1 , t 2 ∈ [0, T ], T < ∞, s.t. t 1 ≤ t ≤ t 2 , for all n ≥ 1, E |Σ [nt] -Σ [nt 1 ] | • |Σ [nt 2 ] -Σ [nt] | ≤ Kn 3/2 |t 2t 1 |

	3 2 .	(6.30)