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Abstract

Despite the acknowledged relevance of aerosol water-soluble organic carbon (WSOC)

to climate and biogeochemical cycling, characterization of aerosol WSOC has been

limited. Electrospray ionization Fourier transform ion cyclotron resonance mass spec-

trometry (ESI FT-ICR MS) is utilized in the present study to provide detailed molecular-5

level characterization of the high molecular weight (HMW; m/z>223) component of

aerosol-derived WSOC collected from rural sites in Virginia and New York, USA. More

than 3000 organic compounds were detected by ESI FT-ICR MS within a m/z range

of 223–600 for each sample. Approximately 86% (Virginia) and 78% (New York) of

these peaks were assigned molecular formulas using only carbon (C), hydrogen (H),10

oxygen (O), nitrogen (N), and sulfur (S) as elemental constituents. H/C and O/C mo-

lar ratios were plotted on van Krevelen diagrams and indicated a strong contribution

of lignin-like and lipid-like compounds to the aerosol-derived WSOC samples. Dou-

ble bond equivalents were calculated from the molecular formulas and used to identify

black carbon (BC) compounds present in aerosol WSOC. BC compounds were found to15

comprise only 1–4% of the identified compounds in the aerosol-derived WSOC. Several

high magnitude peaks in the mass spectra of both samples corresponded to molecular

formulas consistent with molecular formulas proposed in previous secondary organic

aerosol (SOA) laboratory investigations indicating that SOAs are important constituents

of the WSOC. Overall, ESI FT-ICR MS provides the level of molecular characterization20

needed for detailed compositional and source information of the high molecular weight

constituents of aerosol-derived WSOC.

1 Introduction

The importance of atmospheric aerosols to several areas of environmental study has

been well-documented. Natural and anthropogenically-derived aerosols alter Earth’s25

radiative heat balance, and therefore climate, through scattering and absorption of so-
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lar radiation (e.g. Ramanathan et al., 2001; Satheesh and Moorthy, 2005; Highwood

and Kinnersley, 2006). Elevated concentrations of aerosols (specifically hygroscopic

aerosols) due to human activities increase the number of cloud condensation nuclei

(CCN) that act as seed for cloud droplets. Because of the limited amount of atmo-

spheric water vapor available for cloud formation, an increase in CCN number may5

reduce the average size of CCN such that it may limit precipitation and thereby in-

crease the lifetime of clouds, thus serving as an indirect positive feedback on climate

change (Toon, 2000; Ramanathan et al., 2001; Lohmann and Feichter, 2005).

In addition to the general role of aerosols in climate, fossil fuel and biomass com-

bustion produce anthropogenically-derived aerosols that are known to impair visibil-10

ity (Charlson, 1969; Jacobson et al., 2000), contribute to ecosystem-level problems

via rain acidification (Likens and Bormann, 1974; Driscoll et al., 2001 and references

therein) and the transport and deposition of persistent organic pollutants (Dickhut et

al., 2000; Galiulin et al., 2002; Jurado et al., 2004), and cause cardiovascular and res-

piratory problems in humans (Davidson et al., 2005; Highwood and Kinnersley, 2006).15

Furthermore, atmospherically-derived materials in aerosol form are potentially impor-

tant in a biogeochemical context. For example, recent studies estimate that between

30 and 90 Tg yr
−1

of aerosol-derived organic carbon (OC; Koch, 2001; Bond et al.,

2004) and 8 and 24 Tg yr
−1

black carbon (BC; Penner et al., 1993; Bond et al., 2004)

are deposited globally. These fluxes are potentially significant in the context of car-20

bon cycling and budgets at the atmosphere-land-water interfaces, especially in areas

where industrial sources are significant. Given the potential quantitative importance of

aerosol OC to different terrestrial and aquatic systems, molecular-level characteriza-

tion of aerosols is critical for both tracing the sources of aerosol OC and assessing its

transformations before and after deposition.25

Aerosols tend to be highly carbonaceous in nature with OC often comprising 10–

30% of total aerosol mass (e.g. Wolff et al., 1986; Jacobson et al., 2000; Tanner et al.,

2004; Liu et al., 2005). In addition, as much as 20–70% of aerosol OC is water-soluble

(WSOC; Krivacsy et al., 2001; Kleefeld et al., 2002; Yang et al., 2004; Decesari et al.,
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2007). As noted above, only hygroscopic aerosols can act as CCN, making WSOC

an important indirect climate agent (Saxena and Hildemann, 1996; Fuzzi et al., 2001;

Satheesh and Moorthy, 2005). Aerosol WSOC is also of great potential interest in the

context of OC cycling between atmosphere, land, and natural waters because it is likely

to be the fraction of aerosol OC that is most rapidly transported along with surface5

and ground waters through watersheds to lakes, rivers, and estuaries on timescales

relevant to carbon biogeochemical cycling.

Despite the potential importance of aerosol WSOC, detailed molecular characteri-

zation of the WSOC component of aerosols has thus far been limited. Attempts to

characterize WSOC at the molecular level using gas chromatography-mass spectrom-10

etry (GC-MS; Mayol-Bracero et al., 2002; Wang et al., 2006) and a combination of

ion chromatography and high performance liquid chromatography (HPLC; Yang et al.,

2004) characterized less than 10% and 20% of WSOC, respectively. Characterization

of aerosol WSOC at the functional group level using HPLC (Mayol-Bracero et al., 2002),
1
H (Decesari et al., 2000) and cross-polarization-magic angle spinning

13
C (Duarte et15

al., 2005; Sannigrahi et al., 2006) nuclear magnetic resonance (NMR) spectroscopy,

Fourier transform infrared spectroscopy (Duarte et al., 2005), and size exclusion chro-

matography (Sullivan and Weber, 2006) generally agree with the limited molecular-level

investigations (Mayol-Bracero et al., 2002; Yang et al., 2004; Yu et al., 2005; Wang et

al., 2006) in identifying mono- and di-carboxylic acids as well as polyconjugated acids20

(sometimes described as humic-like substances, HULIS) as the most prevalent com-

pounds in WSOC, followed by neutral compounds such as sugars.

The high concentration of acidic species in aerosol-derived WSOC likely indicates

the presence of secondary organic aerosols (SOA) formed from the oxidation of natu-

rally and anthropogenically emitted volatile organic carbon (VOC) precursors (Jaoui et25

al., 2005; Kanakidou et al., 2005; Sullivan and Weber, 2006). To date, however, much

of the work identifying SOA compounds has relied on experimental laboratory investi-

gations (e.g. Forstner et al., 1997; Jang and Kamens, 2001; Kanakidou et al., 2005;

Heaton et al., 2007), and very few SOA compounds have been identified in ambient
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aerosol samples (Edney et al., 2003; Tolocka et al., 2004; Jaoui et al., 2005). Com-

prehensive molecular characterization of WSOC derived from ambient aerosol material

will therefore complement studies of SOA formation processes, atmosphere-land-water

biogeochemical fluxes, and climate-related effects of WSOC.

Electrospray ionization coupled with Fourier transform ion cyclotron resonance mass5

spectrometry (ESI FT-ICR MS) provides detailed molecular characterization of organic

matter due to its extremely high resolution and mass accuracies (Marshall et al., 1998;

Kujawinski et al., 2002a; Sleighter and Hatcher, 2007). ESI is a “soft” ionization tech-

nique that produces minimal fragmentation of the analytes, thus allowing for detection

of intact molecules (Stenson et al., 2002) and is a particularly effective technique for10

ionizing polar, hydrophilic molecules (Gaskell, 1997; Kujawinski, 2002; Sleighter and

Hatcher, 2007) similar to those found in aerosol WSOC. FT-ICR MS provides ultrahigh

mass resolving powers (>300 000) and mass accuracy (<1 ppm), enabling the identi-

fication of many distinct compounds at a given nominal mass (Marshall et al., 1998;

Kujawinski et al., 2002a; Sleighter and Hatcher, 2007).15

Recently, ESI FT-ICR MS has been used to successfully characterize complex mix-

tures of organic matter including fulvic and humic acids extracted from rivers (Kujawin-

ski et al., 2002a; Stenson et al., 2003; Kujawinski et al., 2004), soils (Kujawinski et al.,

2002a; Kramer et al., 2004; Hockaday et al., 2006), peat (Kramer et al., 2004), and de-

graded wood (Kujawinski et al., 2002a; Kim et al., 2003a; Kramer et al., 2004) as well20

as dissolved organic matter (DOM) from riverine (Kim et al., 2003a,b; Stenson et al.,

2003; Kim et al., 2004) and marine waters (Koch et al., 2005; Tremblay et al., 2007),

ice cores (Grannas et al., 2006), mangrove porewaters (Koch et al., 2005; Tremblay

et al., 2007), and soils (Hockaday et al., 2006). Amongst the key findings in recent

ESI FT-ICR MS studies has been the detection of potential BC compounds (Kim et al.,25

2003b; Kim et al., 2004; Kramer et al., 2004; Hockaday et al., 2006). With biomass

and fossil fuel combustion thought to be the dominant sources of BC, ESI FT-ICR MS

analysis of aerosol WSOC may be useful for detecting the mobile, water-soluble com-

ponent of BC present in aerosols. The recent studies of Grannas et al. (2006) have
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shown that BC compounds can be identified in melt water from ice cores and rep-

resent historically-deposited atmospheric precipitation in snow-accumulating regions

of the world. In the present study, we demonstrate the utility of ESI FT-ICR MS for

characterizing aerosol-derived WSOC and present novel information on the molecular

composition of this material collected in two different watersheds of the northeastern5

United States.

2 Experimental section

2.1 Sample collection and field methods

Two-day integrated high-volume aerosol samples (>4000 m
3
) were collected during

16–18 August 2006 at the Institute of Ecosystem Studies Environmental Monitoring10

Station in Millbrook, NY (http://www.ecostudies.org/emp purp.html) and 7–9 Novem-

ber 2006 at the National Atmospheric Deposition Program (NADP) site (VA98) lo-

cated in Gloucester County, VA (http://nadp.sws.uiuc.edu/sites/siteinfo.asp?net=NTN\
&id=VA98) using high-volume total suspended particulate (TSP) air samplers (Model

GS2310, ThermoAndersen, Smyrna, GA). Both sites are located in rural environ-15

ments and are more than 30 km from major industrial emissions. Air was drawn

through pre-ashed (3 h, 525
◦
C) and pre-weighed high-purity quartz microfibre filters

(20.3 cm×25.4 cm, nominal pore size 0.6µm; Whatman QM-A grade) for collection of

aerosol particles. Following collection, aerosol filter samples were transferred to pre-

ashed (3 h, 525
◦
C) aluminum foil pouches and stored in the dark in a carefully cleaned20

air-tight polycarbonate desiccator until analysis.

2.2 Aerosol-derived WSOC C18 extraction procedure

Approximately half of each aerosol filter was cut into strips using solvent-cleaned

(hexane, acetone, and methanol) razor blades and placed in pre-combusted (500
◦
C)
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and solvent-cleaned 1-L glass beakers. Approximately 200 mL of LC-MS grade water

(Fisher Scientific) was added to the filter strips, and samples were sonicated for 30 min

to extract the WSOC from the filters. The extracted organic matter was then isolated

and concentrated from the WSOC filtrates using C18 solid phase extraction disks (3M,

Empore) following previously established protocols (Kim et al., 2003a). The C18 disks5

were activated using LC-MS-grade water and methanol (Fisher Scientific), and each

WSOC sample was acidified to a pH of 2 with 10 M HCl before passing through the

disk. The sorbed material was rinsed with LC-MS grade water before eluting it off the

disk with 4–6 mL of LC-MS grade methanol. Due to the qualitative nature of these stud-

ies, the recovery from the C18 disk was not measured; however, previous studies have10

shown that approximately 42–60% of freshwater dissolved organic matter is recovered

by this technique (Louchouarn et al., 2000; Kim et al., 2003a).

3 Analytical methods

Because previous studies have determined that water/methanol mixtures yield higher

quality mass spectra (Kujawinski et al., 2002b; Rostad and Leenheer, 2004), the C18-15

extracts were diluted by 25% with LC-MS grade water. In order to increase the ion-

ization efficiency, ammonium hydroxide was added immediately prior to ESI, raising

the pH of the sample to approximately 8. Samples were continuously infused into the

Apollo II ESI ion source of a Bruker Daltonics 12 Tesla Apex Qe FT-ICR MS, housed at

the College of Sciences Major Instrumentation Cluster (COSMIC) at Old Dominion Uni-20

versity (http://www.sci.odu.edu/sci/cosmic/index.shtml). Samples were introduced by a

syringe pump providing an infusion rate of 120µL/h. All samples were analyzed in neg-

ative ion mode, and electrospray voltages were optimized for each sample. Previous

studies have shown that the negative ion mode avoids the complications associated

with the positive ion mode in which alkali metal adducts, mainly Na
+

, are observed25

along with protonated ions (Brown and Rice, 2000; Rostad and Leenheer, 2004). Ions

were accumulated in a quadrupole ion trap for 1.0 s before being transferred to the ICR
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cell. Exactly 300 transients, collected with a 4 MWord time domain, were added, giving

about a 30 min total run time for each sample. The summed free induction decay (FID)

signal was zero-filled once and Sine-Bell apodized prior to fast Fourier transformation

and magnitude calculation using the Bruker Daltonics Data Analysis software.

3.1 Mass calibration and molecular formula assignments of aerosol WSOC5

Prior to data analysis, all samples were externally calibrated with an arginine cluster

standard and internally calibrated with fatty acids naturally present within the sample

(Sleighter et al., 2008). The ultrahigh resolving power of 12 T FT-ICR MS is capable

of separating m/z values to a mass accuracy of less than 1 ppm. A molecular formula

calculator developed at the National High Magnetic Field Laboratory in Tallahassee, FL10

(Molecular Formula Calc v.1.0 ©NHMFL, 1998; http://www.magnet.fsu.edu/) generated

empirical formula matches using carbon (C), hydrogen (H), oxygen (O), nitrogen (N),

sulfur (S), and phosphorus (P). Only m/z values with a signal-to-noise above 4 were

inserted into the molecular formula calculator. In the vast majority of cases, the exact

mass of each assigned formula agreed with the m/z value to within less than 0.5 ppm.15

3.1.1 Data processing

Molecular formulas generated by the molecular formula calculator were pre-processed

using a MatLab file (The MathWorks Inc., Natick, MA) that employed several conser-

vative rules in order to eliminate compounds not likely to be observed in nature. The

pre-processing file eliminated all molecular formulas in which: O/C≥1.2, H/C≥2.25,20

H/C≤0.3, N/C≥0.5, S/C≥0.2, P/C≥0.1, (S+P)/C≥0.2, and DBE (double bond equiva-

lents) <0, where DBE is calculated as follows:

DBE = (2c + 2 − h + n + p)/2 (1)

for any formula CcHhNnOoSsPp. DBE indicates the number of rings and double bonds

in a molecule and is a measure of the degree of unsaturation in a given compound25

(Hockaday et al., 2006).
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In addition to these rules, the MatLab file searched for and eliminated peaks detected

by the FT-ICR MS that were 1.003 mass units greater than another detected peak, un-

der the assumption that the two peaks represent the same compound, with the peak

at the higher m/z having a
13

C in place of a
12

C. Following pre-processing, molecu-

lar formulas were assigned following the “formula extension” approach described by5

Kujawinski and Behn (2006). Phosphorous is typically not a quantitatively significant

component of atmospheric materials (Chen et al., 2002; Grimshaw and Dolske, 2002;

Baker et al., 2006); therefore all molecular formulas containing phosphorous were elim-

inated for ease of processing. Additionally, by analyzing solvent blanks, peaks below

m/z 223 were determined to be high-frequency noise and were not analyzed.10

4 Results and discussion

4.1 Mass spectra

ESI FT-ICR mass spectra for aerosol-derived WSOC samples from both locations

showed over 3000 peaks and remarkably similar patterns in peak distribution. The

greatest peak magnitudes were located between m/z 250 and 375, and considerably15

smaller magnitude peak clusters were centered around m/z 450 and 550 (Fig. 1a and

b). Peak magnitude is not necessarily indicative of a compound’s concentration in a

sample due to inherent biases of C18 extractions and electrospray ionization efficien-

cies (Hockaday et al., 2006). In addition, only two samples were investigated here, so

further work is needed to determine whether this is a characteristic molecular weight20

distribution of aerosol WSOC. Nonetheless, the similarity between the spectra is strik-

ing given the differences in dates and locations of sampling (August 2006, Millbrook,

NY vs. November 2006, Harcum, VA). Dismal Swamp DOM (Sleighter and Hatcher,

2007) and Mount Rainier humic acid (Kujawinski et al., 2002a) also showed strongest

peak magnitudes at m/z 250 to 375 in their ESI FT-ICR spectra, indicating similar25

molecular weight distributions between these three different sample types.
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Spectral details for both samples (see insets for Fig. 1a and b) show that m/z 330–

340 demonstrated a typical pattern of several peaks at low mass defects (mass defect

is the distance a peak is displaced from the exact nominal mass) from a given odd-

numbered nominal mass, and fewer, less intense peaks at even-numbered nominal

masses (e.g. Kujawinski, 2002; Kim et al., 2004; Sleighter and Hatcher, 2007). Even-5

numbered nominal mass peaks are indicative of either
13

C isotopic peaks (observed

at a mass difference of 1.003m/z greater than its
12

C counterpart) or N-containing

compounds with an odd number of N (Koch et al., 2005). N-containing compounds

are preferentially discriminated against in C18 extraction methods because the polar

nature of organic nitrogen precludes its quantitative retention on the hydrophobic C1810

disk (Benner, 2002; Koch et al., 2005); therefore, any N-containing compounds present

in the WSOC samples would likely be present at relatively smaller peak magnitudes.

Figure 2 illustrates both the ultrahigh mass resolving power of FT-ICR MS and the

heterogeneous nature of aerosol WSOC. Similar to other mixtures of natural organic

matter (e.g. Kim et al., 2004; Kujawinski et al., 2004; Koch et al., 2005), aerosol WSOC15

in this study was found to be highly complex, containing more than 3000 compounds

in a single sample (Fig. 1) and 10–20 compounds at any given nominal mass (Fig. 2).

Less than 0.0001 Da often separated two distinct peaks (i.e. compounds; Fig. 2). Only

instrumentation with mass-resolving powers as high as FT-ICR MS can obtain the sep-

aration necessary to resolve compounds at such small mass differences.20

4.2 Formula assignments

Using a formula extension approach similar to that described by Kujawinski and Behn

(2006), 86% and 78% of the peaks identified in the mass spectra for the Virginia and

New York aerosol WSOC samples, respectively, were assigned molecular formulas.

Most of the identified compounds contained only C, H, and O (Table 1). The New York25

aerosol WSOC had a higher percentage of compounds containing C, H, O, and S (26%

versus 17%; Table 1) than the Virginia sample. In contrast, compounds containing C,

H, O, and N accounted for 26% of those identified in the Virginia sample vs. only 16%
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in the New York sample (Table 1). While ESI FT-ICR mass spectra do not provide a

quantitative estimate of compound concentrations, the New York and Virginia WSOC

samples were analyzed on the same instrument using the same protocols and meth-

ods, and therefore the resulting spectra reflect the same inherent biases. Because

of the similar sample processing, we may calculate and compare magnitude-weighted5

percent contributions for various compound groups (e.g. C-H-O, C-H-O-N, C-H-O-S,

C-H-O-N-S; Table 1). These magnitude-weighted percent contributions further support

a greater contribution of S-containing compounds to New York aerosol WSOC than

to Virginia WSOC, and a greater contribution of N-containing compounds to Virginia

aerosol WSOC compared to that from New York.10

4.3 Van Krevelen analysis

The identified molecular formulas of aerosol WSOC are represented in van Krevelen

diagrams (Fig. 3a and b) which plot molar ratios (H/C vs. O/C) of compounds against

each other. Also plotted are representative molar ratios for major known classes of

natural and anthropogenic organic compounds (i.e. ovals in Fig. 3a and b) in order15

to provide potential source information for the aerosol WSOC samples (see also Kim

et al., 2003b; Kujawinski et al., 2004; Sleighter and Hatcher, 2007). In addition to

major compound classes frequently used to apportion sources of dissolved organic

matter (Kim et al., 2003b; Kujawinski et al., 2004; Sleighter and Hatcher, 2007), SOAs

and mono- and di-carboxylic acids, compounds frequently associated with WSOC, are20

included to provide additional likely sources to aerosols (Fig. 3a and b; Yang et al.,

2004; Yu et al., 2005; Sullivan and Weber, 2006; Wang et al., 2006).

The majority of aerosol WSOC compounds identified by ESI FT-ICR MS in this study

had molar H/C and O/C ratios similar to lipids, lignin, mono- and dicarboxylic acids,

and SOAs (Fig. 3a and b). Compounds with molar ratios reflective of protein sources25

were also abundant, however, the majority of these compounds do not contain nitro-

gen, a component of every amino acid, (Fig. 3a and b) indicating that proteins are an

unlikely source for these particular compounds in the present study. Few compounds
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plotted within the regions characteristic of tannins, cellulose, and condensed hydrocar-

bons (Fig. 3a and b) suggesting that these groups are also not major contributors to

aerosol WSOC. Many of the compounds plotted outside any of the source signature

regions and had low O/C (∼0 to 0.2) and H/C (∼1 to 1.5) indicating an unknown source.

There are currently very few reports of SOA H/C and O/C molar ratios (Reinhardt et al.,5

2007; Altieri et al., 2008), however, with further investigation the region representing

SOA may prove to be more extensive and encompass those compounds not presently

represented by any known sources.

The relatively broad distributions of H/C and O/C molar ratios for compounds in these

samples (Fig. 3a and b) again illustrate the complex nature of aerosol WSOC, how-10

ever, certain patterns emerge. The majority of S-containing compounds identified in

both samples had H/C values greater than 1.2 and simultaneously showed high O/C

ratios. Organosulfur compounds have been detected in previous aerosol WSOC stud-

ies (Romero and Oehme, 2005; Gilardoni et al., 2007). Romero and Oehme (2005)

further observed HSO
−
4

mass fragments in high molecular weight (HMW) atmospheric15

HULIS and postulated that these anions were covalently bound by sulfonation or sulfa-

tion processes. The high O/C ratios of many S-containing compounds observed in the

New York and Virginia aerosol WSOC samples (Fig. 3a and b) are also consistent with

covalently bound HSO
−
4

. Elevated H/C molar ratios (>1.5) are indicative of saturated

hydrocarbons with few double bonds, and the high H/C ratios in S-containing com-20

pounds in these samples indicate that any sulfonation or sulfation processes resulted

in mostly saturated compounds. S-containing aromatic compounds that would show

much lower H/C ratios are not evident in these samples. In contrast, N-containing and

C-H-O compounds (Fig. 3a and b) frequently have H/C values <1 and do not typically

have O/C values >0.6, suggesting that the nitrogenous WSOC compounds in these25

samples tended to be highly carbonaceous, condensed compounds. Previous labo-

ratory studies of SOAs have also reported the formation of nitro-aromatic compounds

from the photooxidation of aromatic compounds in the presence of NOx (Forstner et

al., 1997; Jang and Kamens, 2001; Alfarra et al., 2006). The data presented here are
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consistent with the presence of nitro-aromatic compounds as well.

4.4 Black carbon in aerosol-derived WSOC

The aerosol WSOC samples from New York and Virginia contained several compounds

with DBE/C values greater than 0.7, a characteristic of condensed aromatic ring struc-

tures and a cut-off value proposed for the identification of BC compounds (Fig. 4; Hock-5

aday et al., 2006). BC compounds defined in this manner made up only 4% and 1%

of the identified compounds in Virginia and New York aerosol WSOC, respectively, and

were present at small magnitudes relative to the majority of other compounds present

(Fig. 4a, b). When peak magnitudes were accounted for as in Table 1 above, BC

compounds accounted for only 1.5% (Virginia) and 0.3% (New York) of the total peak10

magnitudes.

BC has traditionally been studied in particulate OM (e.g. Mitra et al., 2002; Gatari

and Bowman, 2003; Dickens et al., 2004). However, BC may become hydrophilic in

the course of its oxidation (Kamegawa et al., 2002; Park et al., 2005; Zuberi et al.,

2005), and several studies of aqueous OM mixtures have identified a BC component15

(Mannino and Harvey, 2004; Kim et al., 2004; Kramer et al., 2004; Hockaday et al.,

2006). A recent FT-ICR MS study of freshwater DOM identified BC using molar H/C and

O/C ratios using a similar approach to the one employed in the present study but did

not report the number of peaks characterized as BC (Kim et al., 2004). A study of BC

in DOM from the Delaware Bay found that 9% of bay DOC and 4–7% of coastal ocean20

DOC was BC (Mannino and Harvey, 2004). The authors listed sediment resuspension

and atmospheric transport from nearby Philadelphia, PA as likely sources of BC to

the bay. We are unaware of aerosol WSOC studies that have quantified BC, but soot

oxidation has been demonstrated to form WSOC compounds (Decesari et al., 2002).

While the relative paucity of BC compounds identified in this study does not support25

a strong aerosol WSOC source for BC to riverine and coastal DOC, the presence of

BC compounds in WSOC from both of these rural sites suggests that areas having

stronger BC sources such as urban regions may contribute greater amounts of BC to
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riverine and coastal DOC.

Radiocarbon analysis of the New York aerosol WSOC from August 2006 showed a

mean ∆
14

C signature of −230‰ (n=3; Wozniak et al., 2008). A simple two-source

isotopic mass balance assuming one source devoid of
14

C (e.g. fossil fuels) and an-

other source having present-day levels of
14

C (e.g. modern living biomass) suggests5

that more than 20% of the New York WSOC comes from a fossil source. BC emitted

as a byproduct of fossil fuel combustion represents a logical potential source of this

aged WSOC. The data presented here, however, do not support a significant input of

BC to aerosol WSOC, and therefore other sources of aged organic matter, both natural

and anthropogenic, may be responsible for the aged WSOC (e.g. aged soil organic10

matter, SOAs from fossil fuel precursors, etc.). In addition, several of the identified

BC compounds contain N in their molecular formulas, and as discussed previously,

C18 extraction does not retain organic N compounds efficiently (Benner, 2002; Koch

et al., 2005). Therefore, BC-derived compounds present in the initial WSOC sample

may not be quantitatively represented as well as non-N containing compounds in the15

FT-ICR mass spectra. Alternately, DBE/C≥0.7 may be too conservative as a cut-off for

a complete identification of BC compounds (Fig. 4a and b; Hockaday et al., 2006).

While BC compounds may comprise only a small portion of identified molecular for-

mulas in the aerosol WSOC samples analyzed here, their identification nonetheless

highlights another application of ESI FT-ICR MS. BC is generally defined as carbona-20

ceous material thought to be composed of a highly refractory, slow-cycling pool of

compounds resulting from combustion processes with relevance to climate and carbon

cycling issues and can be a significant portion of aerosol carbonaceous material (e.g.

Novakov et al., 2005; and references therein). In a biogeochemical context, the identifi-

cation of BC in aerosol WSOC suggests that BC may become desorbed into rainwater25

and transported through watersheds to various aquatic systems. To this point, BC has

primarily been studied using one of several operational definitions that do not measure

the full spectrum of BC (Masiello, 2004; Hammes et al., 2007). The use of ESI FT-

ICR MS to identify BC in aerosols may therefore provide molecular level information
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allowing for better characterization of BC in WSOC.

4.5 Potential contributions of secondary organic aerosols to aerosol-derived WSOC

Formula assignments for many of the FT-ICR MS peaks in this study were consistent

with formulas proposed in experimental laboratory investigations of SOA formation by

other researchers (Table 2). While molecular structure can not be deduced from the5

data collected in the present study, the molecular formulas are consistent with the

presence of at least certain SOA compounds and illustrate how the extremely high

mass resolution of FT-ICR MS may be utilized to identify dominant SOA species in

field-collected aerosols, aerosol-WSOC, rainwater and other natural aqueous samples.

Of the molecular formulas in Table 2, C18H28O4 was the most prevalent potential10

SOA species in the Virginia sample, while C20H32O4 was the most prevalent poten-

tial SOA species in the New York sample. Heaton et al. (2007) observed C18H28O4

as a product of β-pinene ozonolysis and suggested its formation is via reaction of a

monomer end product and a hydroperoxide intermediate of β-pinene ozonolysis. In

comparison, C20H32O4 (Table 2) was a product of α-pinene ozonolysis, and its pres-15

ence was attributed to dimerization of pinonaldehyde, a known product of primary

ozonolysis, via either aldol condensation or gem-diol formation (Tolocka et al., 2004).

The majority of previous experimental and field studies identifying SOA compounds

focused on low molecular weight (LMW) species (m/z<200; e.g. Forstner et al., 1997;

Jang and Kamens, 2001). However, recent experimental work also argues for the for-20

mation of HMW SOA compounds that are oligomers of precursor compounds (Gao et

al., 2004; Kalberer et al., 2004; Tolocka et al., 2004; Dommen et al., 2006; Heaton

et al., 2007). The abundance of HMW peaks in the mass spectra (Fig. 1a and b) and

molecular formula assignments in Table 2 agree with these recent studies on the contri-

bution of HMW compounds to SOA (Gao et al., 2004; Kalberer et al., 2004; Tolocka et25

al., 2004; Dommen et al., 2006; Heaton et al., 2007). While the ESI FT-ICR MS method

utilized in this study does not characterize LMW SOA products, detailed molecular

characterization of HMW SOA using FT-ICR MS is possible. This approach may help
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establish which of the many HMW SOA compounds identified in experimental labora-

tory investigations are prevalent in field samples, thus helping to identify the dominant

formation processes and pathways under natural environmental conditions. Laboratory

studies have also employed ESI FT-ICR MS to examine the behavior of α-pinene in the

presence of ozone to reveal that polymerization processes were important in the for-5

mation of HMW SOA (Tolocka et al., 2004; Reinhardt et al., 2007). Tolocka et al. (2004)

also found several species whose presence could not be explained by monomer poly-

merization or degradation and proposed unknown complex chemical pathways for their

formation. This study also reported SOA oligomers from a field sample illustrating the

utility of FT-ICR MS in validating laboratory investigations (Tolocka et al., 2004). ESI10

FT-ICR MS may alternately be used in field and laboratory investigations to detect SOA

compounds that may be abundant but previously unidentified.

5 Conclusions

ESI FT-ICR MS is well-adapted to molecularly characterizing aerosol WSOC as a re-

sult of its extremely high mass resolving power and ability to ionize and detect polar,15

hydrophilic molecules such as the HULIS-type molecules in WSOC. Van Krevelen dia-

grams of compounds found in aerosol WSOC may be further useful for understanding

the general compositional features of WSOC compounds. Finally, ESI FT-ICR MS may

be particularly well-suited to identifying BC and SOA molecular formulas, giving inves-

tigators an inventory of BC and SOA compounds in aerosol WSOC that may permit20

more detailed study of these highly complex substances for better understanding their

formation and degradation pathways. Further work is required to make ESI FT-ICR MS

analyses more quantitative if at all possible, but presently has been shown to be an ex-

cellent qualitative tool available to the aerosol and atmospheric chemistry communities.
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Table 1. Percent occurrence of formula groups and magnitude-weighted percent contribution

of formula groups to all peaks assigned molecular formulas in the mass spectra. Formulas are

grouped based on their elemental constituents.

Elemental Percent Occurrence Magnitude-Weighted Percent Contribution

Constituents VA NY VA NY

C, H, O 57 58 77 75

C, H, O, N 26 16 12 6

C, H, O, S 17 26 11 19

C, H, O, N, S <1 <1 <1 <1

6564

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/6539/2008/acpd-8-6539-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/6539/2008/acpd-8-6539-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 6539–6569, 2008

ESI FT-ICR MS

characterization of

aerosol WSOC

A. S. Wozniak et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 2. Elemental formulas of compounds consistent with proposed or identified SOA com-

pounds from selected previous studies. Relative peak magnitudes are ranked from 1 (strongest

peak assigned a molecular formula in spectrum) to n (weakest peak assigned a molecular for-

mula in spectrum; for VA, n=2098; for NY, n=2261).

Elemental m/z Relative Peak Magnitude Proposed Formation

Formula of Ion VA NY Mechanism

C11H18O
a
6 245.1031 1924 not present Dimer product of 1-methyl cyclohexene ozonolysis

C17H26O
b
5 309.1708 40 53 Dimer product of β-pinene ozonolysis

C17H26O
b
6 325.1657 45 106 Dimer product of β-pinene ozonolysis

C18H28O
b
4 307.1915 11 28 Dimer product of β-pinene ozonolysis

C18H28O
b
6 339.1813 42 49 Dimer product of β-pinene ozonolysis

C18H28O
b
7 355.1762 115 203 Dimer product of β-pinene ozonolysis

C18H30O
a
7 357.1919 155 307 Dimer product of α-pinene ozonolysis

C19H30O
b
7 369.1919 119 143 Dimer product of β-pinene ozonolysis

C19H32O
b
6 355.2126 95 103 Dimer product of β-pinene ozonolysis

C20H32O
c
4 335.2228 36 7 Dimer product of α-pinene ozonolysis

C20H32O
c
5 351.2177 68 19 Dimer product of α-pinene ozonolysis

C19H30O
c
5 337.2021 32 16 Dimer product of α-pinene ozonolysis

C18H28O
c
5 323.1864 26 22 Dimer product of α-pinene ozonolysis

a
Gao et al., 2004;

b
Heaton et al., 2007;

c
Tolocka et al., 2004.
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Fig. 1. ESI FT-ICR mass spectra for aerosol WSOC samples collected in (a) August 2006 in

New York and (b) November 2006 in Virginia. Insets highlight the m/z 330–340 region showing

characteristic peak distributions.
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Fig. 2. Expanded ESI FT-ICR mass spectrum region at m/z 295 for aerosol WSOC sample

from New York in August of 2006.
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Fig. 3. Van Krevelen plots for elemental formulas assigned to FT-ICR mass spectra peaks in

aerosol WSOC samples from (a) New York and (b) Virginia. Blue diamonds represent com-

pounds containing only C, H, and O, yellow squares represent S-containing compounds, and

red triangles are N-containing compounds. Black ovals represent traditional potential source

molecular classes (after Sleighter et al., 2007). The green SOA oval represents published mo-

lar H/C and O/C ratios from laboratory investigations of secondary organic aerosols (Reinhardt

et al., 2007; Altieri et al., 2008). O/C ratios for the green ovals representing mono- and dicar-

boxylic acids were calculated for molecules containing 10–30 carbons, and the H/C ratios for

these ovals assumed little branching and few double bonds.
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Fig. 4. Peak magnitude vs. DBE/C for elemental formulas identified in aerosol WSOC samples

from (a) New York and (b) Virginia. Blue diamonds represent compounds containing only C, H,

and O, yellow squares represent S-containing compounds, and red triangles are N-containing

compounds. For both samples, the y-axis was augmented to make lower magnitude com-

pounds visible. Several high magnitude C, H, O compounds at DBE/C between 0.3 and 0.5 are

not shown.
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