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Abstract

The combined effect of residential wood combustion (RWC) emissions with stable at-

mospheric conditions, which is a frequent occurrence in Northern Sweden during win-

tertime, can deteriorate the air quality even in small towns. To estimate the contribu-

tion of RWC to the total atmospheric aerosol loading, the positive matrix factorization5

(PMF) method was applied to hourly mean particle number size distributions measured

in a residential area in Lycksele during winter 2005/2006. The sources were identified

based on the particle number size distribution profiles of the PMF factors, the diurnal

contributions patterns estimated by PMF for both weekends and weekdays, and corre-

lation of the modeled particle number concentration per factor with measured aerosol10

mass concentrations (PM10, PM1, and light-absorbing carbon MLAC). Through these

analyses, the factors were identified as local traffic (factor 1), local RWC (factor 2), and

local RWC plus long-range transport (LRT) of aerosols (factor 3). In some occasions, it

was difficult to detach the contributions of local RWC from background concentrations

since their particle number size distributions partially overlapped and the model was15

not able to separate these two sources. As a consequence, we report the contribution

of RWC as a range of values, being the minimum determined by factor 2 and the possi-

ble maximum as the contributions of both factors 2 and 3. A multiple linear regression

(MLR) of observed PM10, PM1, total particle number, and MLAC concentrations is car-

ried out to determine the source contribution to these aerosol variables. The results re-20

veal RWC is an important source of atmospheric particles in the size range 25–606 nm

(44–57%), PM10 (36–82%), PM1 (31–83%), and MLAC (40–76%) mass concentrations

in the winter season. The contribution from RWC is especially large on weekends be-

tween 18:00 LT and midnight whereas local traffic emissions show similar contributions

every day.25
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1 Introduction

Recently, renewed attention has been paid to residential wood combustion (RWC) as

a substantial source of airborne particulate matter (PM) in regions with cold climate.

Studies on the impact of RWC on air quality have been conducted in several countries,

like Sweden (Hedberg et al., 2006; Krecl et al., 2007a; Krecl et al., 2007b), Norway5

(Kocbach et al., 2005), Denmark (Glasius et al., 2006), USA (Gorin et al., 2006), New

Zealand (Wang and Shooter, 2002) and Australia (Keywood et al., 2000). In Sweden,

the main energy sources for residential heating in 2005 were electricity (∼40%), com-

bined firewood and electricity (21%), followed by exclusively bio-fuel combustion (11%)

(Statistics Sweden, 2005). The energy output from bio-fuels increased by about 70%10

between 2000 and 2005 in the whole country. Approximately 61% of the residential

wood boilers have low combustion efficiency and their emissions can be several times

larger than modern installations (Johansson et al., 2004). The combined effect of these

small scale emissions with stable atmospheric conditions during wintertime, which oc-

cur frequently in Northern Sweden, can deteriorate the air quality even in small towns15

(Krecl et al., 2007a; Krecl et al., 2007b).

To implement effective strategies to control PM emissions and assess health effects

due to poor air quality, source apportionment of atmospheric aerosol is needed in ar-

eas with high PM concentrations. Different techniques, such as unique emission source

tracers, air quality dispersion modeling or source-receptor modeling, can be employed20

to estimate the contribution of the sources. A number of elemental and molecular trac-

ers (e.g., potassium and chlorine, methyl chloride (Khalil and Rasmussen, 2003), and

levoglucosan (Hedberg et al., 2006)) have been used to identify and quantify wood

smoke. However, the reliability of some of these tracers often suffers from high emis-

sion variability and lack of uniqueness. In contrast to these markers, radiocarbon (
14

C)25

measurements provide an unambiguous source apportionment of contemporary and

fossil fuel derived carbonaceous aerosol since it retains its identity throughout any at-

mospheric chemical change (Reddy et al., 2002). In the atmosphere, high temporal
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resolution measurements of many of these tracers are not possible due to the neces-

sity of large sampling volumes to detect the concentrations accurately. On the other

hand, atmospheric dispersion modeling can provide spatial and temporally resolved

source contributions but can be difficult to perform accurately since detailed quantita-

tive information of the emissions and meteorology is required, and in some cases also5

aerosol chemical transformation and removal processes might be considered. Thus,

dispersion model calculations need to be validated. Briefly, aerosol source-receptor

modeling quantifies the impact of various relevant sources to the concentrations mea-

sured at a certain site (the receptor). Among source-receptor models, positive matrix

factorization (PMF) has been extensively used for source apportionment of particle10

composition data, where the goal is to determine the sources that contribute to PM

samples (e.g., Hedberg et al., 2005; Hedberg et al., 2006). Lately, PMF has been ap-

plied to particle size distribution data to estimate possible sources from model identified

particle size distributions (Kim et al., 2004; Zhou et al., 2004). Continuous aerosol size

distribution measurements can provide very large data sets with high temporal resolu-15

tion, which is relevant for source apportionment calculations.

In order to characterize the urban aerosol during the wood burning season in North-

ern Sweden, a field campaign was conducted in a residential area in winter 2005/2006.

In this study, hourly mean particle number size distributions are analyzed using the

PMF method to obtain the factor profiles and identify the emission sources. Then a20

multiple linear regression (MLR) of observed PM10, PM1, particle number, and light-

absorbing carbon concentrations is carried out to determine the source contribution to

these aerosol variables on an hourly basis and for the whole measurement period.
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2 Methodology

2.1 Aerosol measurements

The field campaign was carried out in the town of Lycksele (64.55
◦
N, 18.72

◦
E, 240 m

a.m.s.l., population 8600). The receptor site was placed in Forsdala where RWC is

common and local traffic within the area is limited (the closest major road is located5

200 m from the site, ∼3000 vehicles/d). Particles were sized and counted in the di-

ameter range 25–606 nm with a differential mobility particle sizer (DMPS) composed

of a custom-built differential mobility analyzer (DMA, Vienna type) and a condensa-

tion particle counter (CPC, TSI 3760, TSI Inc., USA). Particle number concentration

was calculated from particle number size distribution and is denoted N25−606, where10

the subindices indicate the lower and upper bin limit of particle diameters. Total

PM10 mass concentrations were provided by a Filter Dynamics Measurement System

(FDMS, series 8500 Rupprecht & Patashnick Inc.) whereas total PM1 mass concentra-

tions were measured with a Tapered Element Oscillating Microbalance (TEOM 1400a,

Rupprecht & Patashnick Inc., USA). No other correction than the TEOM inbuilt cor-15

rection (1.3TEOM + 3) was applied to the PM1 mass concentrations. A commercial

Aethalometer (series 8100, Magee Scientific Inc.) operated with a PM1 sample inlet

measured the light-absorbing carbon mass concentration MLAC. The reader is referred

to Krecl et al. (2007a) and Krecl et al. (2007b) for more operational details on these

aerosol measurements. Additionally, PM10 mass concentrations were measured with a20

TEOM 1400ab (Rupprecht & Patashnick Inc., USA) at Vindeln station. This is a back-

ground monitoring station of the Cooperative Program for Monitoring and Evaluation of

the Long-Range Transmissions of Air Pollutants in Europe (EMEP), situated in a forest

∼65 km southeast of Lycksele. All measurements from 31 January to 9 March 2006

were averaged on an hourly basis considering a minimum data availability of 75% per25

hour.
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2.2 Positive matrix factorization

PMF is a powerful multivariate least-squares technique that constraints the solution to

be non-negative and takes into account the uncertainty of the observed data (Paatero

and Taaper, 1994). This method relies on the time-invariance of the source profiles

and, thus, requires the emission particle size distributions to be stable in the atmo-5

sphere between the sources and the receptor site. According to Zhou et al. (2004),

after some initial size distribution changes in the vicinity of the sources (due to coag-

ulation and dry deposition), it is reasonable to expect that particle size distributions

will become relatively stable when sampling at some appropriate distance from the

emission sources.10

The basic source-receptor model in matrix form is:

X = G.F + E, (1)

where X is the matrix of observed particle number size distributions, G and F are,

respectively, the source contributions and particle number size distribution profiles of

the sources that are unknown and are estimated from the analysis, and E is the residual15

matrix (observed – estimated). Equation (1) can also be expressed in the element form

as:

xi j =

p
∑

k=1

gik .fkj + ei j , (2)

where xi j is the particle number concentration of size interval j measured on sample

i , p is the number of factors contributing to the samples, fkj is the concentration of size20

bin j from the kth factor, gik is the relative contribution of factor k to samplei , and ei j is

the residual value (estimated – observed) for the size bin j measured on the sample i .

For a given p, values of fkj and gik are adjusted using a least-square method (with the

5730

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/5725/2008/acpd-8-5725-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/5725/2008/acpd-8-5725-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 5725–5760, 2008

Wood combustion

contribution to winter

aerosol in Sweden

P. Krecl et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

constraint that fkj and gik values are non-negative), until a minimum Q value is found:

Q =

n
∑

i=1

m
∑

j=1

(

ei j

σi j

)2

. (3)

σi j is the uncertainty of the particle number concentration of size bin j in sample i , n is

the number of samples, and m is the number of size intervals.

Following Hedberg et al. (2006), the apportionment of N25−606, MLAC, PM10, and5

PM1 was performed by multiple linear regression (95% confidence level) of the factor

contributions from PMF onto these aerosol concentrations.

Reff et al. (2007) recommended documenting all of the procedural details used in

the PMF application in order to obtain source apportionment results that are of known

quality. The next sections describe the data preparation, selection of model param-10

eters, and diverse tests on the PMF runs. A summary of the methodological details

chosen for this PMF analysis is shown in Table 1.

2.2.1 Data preparation

A total of 769 hourly mean particle number size distributions, each with 18 size inter-

vals, were used in this study after discarding faulty scans. There are several sources15

of measurement errors for DMPS particle number size distributions. Errors due to

particle counting might arise from the CPC detection efficiency, problems in the CPC

optics, and large flow rate fluctuations in the CPC. Neither large CPC flow rate varia-

tions nor problems associated to the CPC optics were observed during the Lycksele

campaign. According to Wiedensohler et al. (1997), the particle detection efficiency for20

the CPC TSI-3760 operated at 1.5 l min
−1

is 90% at 25 nm and rapidly increases for

larger particle diameters. Another error source is related to the particle sizing, being

the fluctuations of flow rate in the DMA the most important effect in this experiment.

The sheath flow rate variation was 1–2% during the campaign, producing a 2–3% error

in particle size calculations. Particle losses in the system could also lead to mea-25
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surement errors. In this study, we discard losses produced by diffusion and impaction

because of the size range covered by the DMPS. Particle residence times in the DMPS

system are very short compared to coagulation time scales and hence losses due to

coagulation are negligible. The inversion algorithm included a correction for doubly-

charged aerosol particles and a triangular-shape transfer function was implemented.5

The fraction of triply- charged particles is lower than 8% at 600 nm where usually low

particle concentrations are measured. As a result, if triply-charged particles at 600 nm

are wrongly assigned to a smaller size bin their effect might be negligible.

2.2.2 Selection of PMF parameters

Number of factors10

Different factor numbers were tested and a 3-factor model adequately fitted the

data with the most meaningful results. When 4 factors were included in the analysis,

no more relevant sources could be identified.

15

Rotations

As other factor analysis techniques, PMF suffers from rotational indeterminacy

of the solution as extensively discussed by Paatero et al. (2002). Fpeak is the model

parameter that controls the rotation in PMF by adding and/or subtracting the rows and20

columns of F and G matrices from each other depending on the sign of the Fpeak

value. Diverse methods have been proposed to adjust Fpeak to obtain the most

meaningful results (Paatero et al., 2002; Paatero et al., 2005). Usually, PMF is run

several times with different Fpeak values to determine the range within which the Q

value remains stable (Paatero et al., 2002). Figure 1a shows the Q values obtained25

when a 3-factor PMF model was run for Fpeak values between −2 and +2 in steps

of 0.1. Based on Paatero et al. (2005), the coefficients of determination R
2

among

the three g-factors are plotted as a function of Fpeak in Fig. 1b. The PMF solutions
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for Fpeak≥0 resulted in negative regression coefficients when the factor contributions

were regressed onto PM1 mass concentrations and, thus, these solutions are consid-

ered physically invalid. It can be observed that the statistical independence between

pairs of g-factors increases for decreasing Fpeak values (all R
2

were lower than 0.1 for

Fpeak≤−1.2). Thus, the selection of Fpeak is restricted to values smaller than −1.1.5

Another approach to reduce the rotational ambiguity is to use some a priori information

that helps constraining the solution. In our case, we employ PM10 mass concentration

measured at a background site (Vindeln). Figure 2 shows the temporal series of the

modeled PM10 contribution per factor for Fpeak=−0.1 (maximum valid value) and

Fpeak=−1.4 (panels a, b, and c) together with observed PM10 mass concentrations10

at Vindeln (panel c). As will be discussed in Sect. 3.1, factor 1 can be interpreted

mostly as the contribution from local traffic, factor 2 as local RWC, whereas factor 3 is

a combination of two sources: local RWC and long-range transport (LRT). The largest

difference in PM10 mass concentration when running PMF for Fpeak=−0.1 and −1.4

is found for factors 2 and 3. When PMF is run for Fpeak=−1.4, a larger contribution15

of factor 2 (mostly local RWC) to PM10 is found whereas the local RWC contribution

to factor 3 is reduced and the correlation with Vindeln background measurements

increases. For Fpeak<−1.6, the contribution of factor 3 to PM10 is mostly below the

observed background contribution. As a result of these tests, we selected a range of

Fpeak values between −1.6 and −1.2. For the sake of completeness, the time series20

of modeled aerosol variables MLAC, N25−606, and PM1 together with the observed data

are presented in Appendix A (Figs. A1, A2, A3).

Error model

25

A dynamical error model was chosen for this study and PMF uncertainties are

calculated at each iteration step of the program by using the formula shown in Table 1.

In this expression, the uncertainty σi j is derived from the measurement error Ci j , the

constant C3 and the maximum value between the observed xi j and the modeled yi j .
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C3 is included to account for some source profile variation and, in this way, provides

the fitting more flexibility to accommodate this variability. As previously shown, the

DMPS measurement error was quite small and, hence, we decided to set Ci j to 0 and

include all the uncertainty input in the C3 constant. In order to obtain small scaled

residuals, C3 was set up to 0.25.5

Robust mode and outliers

PMF was run in the robust mode to reduce the influence of atypical measure-

ments in the dataset. In this mode, the uncertainties of measurements for which10

the scaled residuals are larger than the outlier threshold distance α are increased

to diminish their influence on the PMF solution. As suggested by Paatero (2000),

standard α values of 2, 4 (default value), and 8 were tested in this study. The test

was carried out with a 3-factor model, Fpeak=−1.4, and C3=0.25. No difference

between the solutions using α=4 and α=8 was observed since the scaled residuals15

for both runs lay in the range [−2, 3.4]. Small differences in f and g-factors were found

when PMF was run with α=2 compared to the default α value. Emulated aerosol

concentrations (N25−606, MLAC, PM10, and PM1) were compared when running PMF

with α=2 and α=4. The largest mean difference between aerosol concentrations

(25%) was observed for the contribution of factor 2 to PM1 mass concentrations. This20

indicates, once more, that PM1 is the most sensitive aerosol variable in relation to PMF

initialization parameters in this study. As a result, PMF was run with α=4 in this work.

2.2.3 Tests on PMF runs25

Global minimum

Least-squares can yield multiple solutions depending on the initial starting point
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for each entry in the F and G matrices. PMF was run 5 times with different seed values

to ensure that a global minimum has been reached. The setup of the initialization

PMF parameters was: Fpeak=−1.4, C3=0.25, 3 factors and α=4. The same output

values (f and g-factors, and Q) were obtained for all the runs. Hence, we conclude

that the PMF solution consistently converges and a global minimum was found for this5

particular setup of model parameters.

Goodness of model fit

Two methods were employed to assess the adequacy of the PMF fit to the mea-10

surements. First, the distribution of scaled residuals was examined when using a

3-factor model (Fpeak=−1.4, C3=0.25, and α=4). The residual concentrations are

normally distributed and no structured features were identified. Second, the modeled

aerosol concentrations were compared to the measurements. Time series of observed

and total modeled concentrations of PM10, PM1, MLAC, and N25−606 are displayed15

in Figs. 2d, A1d, A2d and A3d, respectively. Figure 3 shows scatter plots and

least-squares linear regressions between modeled and observed PM10, PM1, MLAC

and N25−606 concentrations. The 95% confidence intervals for the slope and intercept

were also calculated and included in the linear regression equation. As expected, the

highest R
2

and slope close to 1 was obtained for N25−606 since PMF was run on particle20

number size distributions. The variability of the measured MLAC, is very well predicted

by the model (R
2
=0.85) whereas for PM10, and PM1 the coefficients of determination

are 0.75 and 0.72, respectively. The intercept seen in Fig. 3b (PM1 linear regression)

is significantly different from zero at 95% confidence interval. This might suggest the

inbuilt correction for the loss of volatile material applied by the TEOM instrument is not25

adequate for the measurements carried out in this Lycksele campaign. Hedberg et

al. (2006) reported a similar problem when performing PMF on PM2.5 mass concen-

trations measured with a TEOM series 1400 in a previous winter campaign in Lycksele.
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Model uncertainties

Following Hedberg et al. (2005), in order to estimate the model uncertainties

25% of the original samples were randomly removed and then PMF was run 300 times

on these new datasets (always with 3 factors, C3=0.25, α=4, and Fpeak=−1.4). Fig-5

ure 4 presents the mean and standard deviation of the factor profiles. The difference

between the mean factor profiles after removing 25% of the samples, and the factor

profiles when all samples (using the same model initialization values) are included lies

between one standard deviation values. As a result, the PMF solution is considered

stable.10

3 Results and discussion

3.1 Source identification

The sources were identified based on the particle number size distribution profiles

of the PMF factors (Fig. 5), the diurnal contributions patterns estimated by PMF for

both weekends (WE) and weekdays (WD) (Fig. 6), and correlation of the modeled N15

values with measured aerosol concentrations (PM10, PM1, and MLAC). Time series of

particle number contributions for each factor are presented in the appendix (Fig. A3).

Figure 5 displays the calculated factor profiles when the PMF model was run with Fpeak

values ranging from −1.6 to −1.2 in steps of 0.1. The left panels show mean modeled

particle number size distributions per factor whereas normalized f -factor profiles (mean20

±standard deviation) to the total number of particles per factor are presented in Fig. 5d.

This right panel highlights the contribution of each size bin to the total number particle

concentration per factor.

Factor 1 has a peak at particle diameter Dp∼28 nm (Fig. 5a) and shows a very well

defined daily pattern during weekdays and weekends (Fig. 6a). The strong diurnal25

variation might suggest that these particles are produced in the immediate vicinity of
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the receptor site. The origin of this factor is likely to be local traffic emissions. The

shape of this modeled profile is similar to the shape of particle number size distributions

measured at a street canyon and road tunnel sites in Stockholm (Gidhagen et al., 2004;

Kristensson et al., 2004). The peak number concentration in Stockholm was observed

at Dp∼20 nm for both studies, which could not be observed in our case since DMPS5

measurements started at 25 nm. In Sweden, only 5% of passenger cars are diesel

vehicles and heavy-duty vehicles comprise 5% of the total vehicle fleet (SIKA, 2006).

This could explain the weak correlation (R=0.37) between modeled N25−606 (attributed

to factor 1) and MLAC found in our study.

Factor 2 is strongly associated with the light absorbing carbon content of fine10

aerosols as shown by the high correlation (R=0.76) between modeled N25−606 (at-

tributed to factor 2) and the observed MLAC. Kim et al. (2004) also found a similar cor-

relation between modeled particle size distributions attributed to RWC and light absorp-

tion coefficients in Seattle (USA) during wintertime. In Lycksele, particle number con-

centrations are significantly higher on weekends than on weekdays after 13:00 LT (un-15

paired t-test, 95% confidence interval), reaching mean concentrations of ∼1×10
4

cm
−3

from 21:00 LT to midnight (Fig. 6b). Several studies (e.g., Hueglin et al., 1997; Hedberg

et al., 2002; Johansson et al., 2004; Boman, 2005) have shown that particle size dis-

tributions from wood combustion under controlled laboratory conditions vary in shape,

peak concentration value and mode diameter depending on a number of factors such20

as the combustion phase (i.e. ignition, intermediate, and smoldering), appliance type

(e.g. wood stove, boiler, fireplace), type and amount of wood, and wood moisture con-

tent. Despite of this broad variation, a consistent conclusion is that RWC emits particles

mainly in the size range 60–300 nm. As shown in Fig. 5b, factor 2 peaks at ∼70 nm

and its shape is similar to the shape of particle number size distributions measured25

in winter field campaigns (Kristensson, 2005; Hering et al., 2007) when wood burning

was an important particle emission source. Local RWC emissions are suggested to be

the source of this factor.

Factor 3 particle number size distribution is depicted in Fig. 5c and peaks at ∼160 nm.
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We suggest this factor could be a combination of two sources: local wood combustion

and long-range transport of particles. Tunved et al. (2003) found that particle number

size distributions are typically bimodal (mean mode diameters at ∼56 nm and 160–

190 nm) during winter in five Nordic background stations (covering latitudes 58
◦
N–

68
◦
N). They observed a gradient in the mean daily integral number concentration from5

∼2000 cm
−3

at the southernmost station to values <500 cm
−3

at the two northernmost

sites. The diurnal variation of the integrated particle number concentration was small,

typically below ±10% for all sites, indicating limited local anthropogenic sources in-

fluence. In our study, modeled N25−606 values for factor 3 are higher on weekends

than on weekdays, and this difference is statistically significant (unpaired t-test, 95 %10

confidence interval) in the time periods: 03:00–04:00 LT, 11:00–14:00 LT, and 18:00–

19:00 LT. The mean N25−606 for factor 3 is 586 cm
−3

on WD and 1043 cm
−3

during

WE and the standard deviation of the hourly mean values are ±24% and ±20%, re-

spectively. These results suggest factor 3 might be influenced by some local human

sources.15

As discussed above, RWC can produce substantially different size distribution

shapes and peak concentration values and cover a wide range of particle diameters.

In this study, number size distributions from local RWC and LRT partially overlap. It

has been shown in Sect. 2.2.2 that by fine-tuning the Fpeak value one can force the

model to detach the local aerosol contribution (attributed to RWC) from the long-range20

transport contribution. However, as shown in Fig. 6c, it was not possible to completely

isolate the LRT contribution in factor 3. Unfortunately, no particle size distribution mea-

surements were simultaneously carried out in a background site close enough to Lyck-

sele to subtract them from the measurements conducted in Lycksele before performing

the PMF analysis. Even though the individual contribution of these two sources to the25

hourly atmospheric aerosol concentrations cannot be determined we can estimate a

range of possible contributions. The local RWC contribution to atmospheric aerosol

then might vary between the contribution of factor 2 (i.e. factor 3 is all attributed to

LRT) and the contributions of factors 2 and 3 (i.e. factor 3 is all attributed to local RWC
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in this case).

3.2 Source apportionment

The mean contributions of the three factors to the total number of particles in the size

range 25–606 nm are 42.6% (factor 1), 43.7% (factor 2) and 13.7% (factor 3). As-

suming spherical particles and calculating the volume concentration from the modeled5

number concentration, the mean contributions per factor to the total volume concentra-

tion are 8.6%, 43.9%, and 47.5% for factors 1, 2, and 3, respectively.

Besides using the particle number size distributions of the PMF factors as a method

to identify the sources, one can gain some knowledge on the contribution of each

factor to certain particle diameter. Figure 7a displays the contribution of the factors to10

the total modeled particle number size distribution (Fpeak=−1.4, C3=0.25, and α=4)

together with the mean observed size distribution in the period 31 January–9 March

2006. The difference between the total modeled and the mean observed particle size

distributions is very small (<7%) for all particle diameters. The relative cumulative

contribution per factor to the number and volume concentrations as a function of the15

diameter are shown in Fig. 7b and c, respectively. In order to correctly interpret this

figure, we give an example related to the Aitken mode particles (defined, in this study,

as particles with 28<Dp<100 nm). It can be seen in Fig. 7b that these particles account

for 77% of the mean measured particle number concentration (black line). If we want

to know the contribution of each factor to the particles measured in the Aitken mode,20

we check the other 3 curves: blue (factor 1), green (factor 2), and red (factor 3). For

example, the contribution of factor 1 for the smallest particles is quite large (77%) and

decreases to 50% for Dp=100 nm. Considering all particle diameters now, factor 1

has the largest contribution at the smallest sizes and then decreases maintaining a

nearly constant particle emission of 44% for Dp>190 nm. Factor 2 provides 20% of the25

particles at the smallest diameter and its contribution increases to ∼45% and remains

constant for larger particles. Factor 3 has a low overall contribution to particle number

concentrations that slightly increases when increasing the particle diameter. The same
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interpretation applies to Fig. 7c but now considering volume fractions instead of number

fractions. Factor 2 has the largest factor contribution to volume (mass) concentration

for 80<Dp<380 nm whereas factor 1 dominates for Dp<80 nm. The contribution of

factor 3 to volume (mass) concentration as a function of increasing Dp varies from 3%

to ∼50%.5

Figure 8 summarizes the mean contribution of the modeled factors to the aerosol

concentrations (PM10, PM1, MLAC, and N25−606) for weekends, weekdays, and all days

together in the period 31 January–9 March 2006. The mean contribution of local traffic

to the aerosol concentration is similar on weekdays and weekends (2.1 vs. 1.8µg m
−3

for PM10, 1.4 vs. 1.1µg m
−3

for PM1, 0.3 vs. 0.32µg m
−3

for MLAC, and 2264 vs.10

1894 cm
−3

for N25−606). On the other hand, the impact of local RWC on atmospheric

aerosol varies depending on the day of the week and the aerosol variable analyzed.

Factor 3 has a larger impact on aerosol mass concentrations (i.e. PM10, PM1, MLAC)

than on particle number concentrations. This is consistent with factor 3 providing less

but bigger particles that contribute more to the total mass than the particles emitted by15

local traffic emissions (factor 1) which are more in number but have smaller sizes.

To facilitate the comparison between our results and other source apportionments

studies, Table 2 summarizes the emission sources relative contribution to PM10, PM1,

MLAC, and N25−606 concentrations for the whole campaign in Lycksele (31 January–

9 March 2006). The mean contribution of local traffic is displayed whereas minimum20

and maximum mean contributions of local RWC and LRT are presented. Two previous

source apportionment studies of ambient aerosol were performed in Lycksele using

source-receptor modeling (Kristensson, 2005; Hedberg et al., 2006) on measurements

carried out in winter 2001/2002. In our study, the largest impact of local traffic is on

particle number concentrations, accounting for ∼43% of particle number concentra-25

tions in the diameter range 25–606 nm. Kristensson (2005), using COPREM model

on particle number size distributions, attributed 38% of particle number concentrations

between 3 and 850 nm to local traffic in Lycksele in the period 14 January–9 March

2002. Another 38% was classified by Kristensson (2005) as the contribution of local
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RWC whereas LRT accounted for the remaining 24%. This last value is larger than the

possible maximum mean N25−606 value we estimated for the LRT contribution (13%).

This difference could be related to different air quality characteristics (different sampling

years), different DMPS cut-off sizes, and also to the method chosen by Kristensson

(2005) to estimate the average background contribution. The same problem related to5

the interference between local RWC and LRT particle number size distributions was

encountered by Kristensson (2005). To overcome this difficulty, the background con-

tribution to particle number concentration was calculated as the average of measure-

ments at two background stations (Hyytiälä and Pallas) for the winter 2002. Hedberg

et al. (2006) apportioned 70% of PM2.5 mass concentration to local RWC when per-10

forming a PMF analysis on inorganic compounds and using mainly the abundance of

K and Zn to identify this combustion source. This fraction apportioned by Hedberg et

al. (2006) lies within the local RWC contribution intervals we estimated for PM10 and

PM1 mass concentrations and might suggest the local RWC contribution is closer to

the possible maximum fraction (very low background contribution to factor 3) than to15

the minimum possible value (factor 3 is all LRT). Finally, our apportionment of MLAC

can be roughly compared to the radiocarbon analysis results reported by Sheesley et

al. (2008)
1

when sampling in Lycksele from 23 January to 8 March 2006. To correctly

interpret and compare these results, the reader has to bear in mind that
14

C analysis

provides the apportionment of modern and fossil carbonaceous aerosol but does not20

provide information on the location of the emission sources (local or LRT). The aver-

age contribution of fossil total organic carbon (attributed to traffic emissions) was 24%

which coincides with the mean fraction of MLAC we attributed to local traffic emissions.

The other 76% was mostly attributed to wood combustion since biogenic emissions

and combustion of grass fires and incineration of household vegetable waste were not25

observed in the area. Another study in the Nordic region (Glasius et al., 2006) reported

1
Sheesley, R. J., Kruså, M., Krecl, P., Johansson, C., and Gustaffson, Ö.: Source apportion-

ment of elevated wintertime PAH in a northern Swedish town by compound specific radiocarbon
analysis, in preparation, 2008.
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two main sources of ambient aerosol when performing COPREM model calculations

on PM2.5 mass concentrations measured in a residential area in Denmark in winter

2003/2004. The largest contribution to PM2.5 was assigned to long-range transport

(mean 10.65µg m
−3

) with additional and episodically contributions from RWC (mean

4.60µg m
−3

). The regional traffic was found to be of minor importance accounting only5

for 0.83µg m
−3

of PM2.5 concentrations. As discussed by Tunved et al. (2003), there

is a gradient in background aerosol concentrations in the Nordic region with highest

concentrations in the South and decreasing towards the North. Thus, it is expected to

have a larger absolute contribution of LRT to mass concentrations in Denmark com-

pared to Northern Sweden. Local RWC influence on aerosol concentrations might be10

lower in Denmark since winters are milder than in Northern Sweden. This is associated

to lower heat demand (lower emissions) and more unstable lower atmosphere (favors

the vertical dispersion of pollutants).

Figure 9 displays the diurnal contribution of the modeled factors to the PM10, PM1,

MLAC, and N25−606 concentrations for weekdays and weekends. Krecl et al. (2007b)15

showed that measured mean aerosol concentrations were statistically significantly

higher on WE than on WD after 12:00 LT at 95% confidence level when analyzing

the same data set employed in this study. For all aerosol variables, the contribution of

local traffic (factor 1) on weekdays shows a peak concentration at 9:00–10:00 LT and a

second and smaller maximum at 20:00–21:00 LT. During weekdays, local traffic emis-20

sions increase the aerosol concentrations during the morning reaching a peak value

∼11:00–12:00 LT while in the evening its effect is smaller and more diffuse. As shown

before, the mean contribution of local traffic to the aerosol concentration is similar on

weekdays and weekends. Then this large difference between weekends and week-

days for all aerosol variables is attributed by PMF to local RWC as shown in Fig. 9.25

On weekends, the contribution of local RWC to atmospheric aerosol is largest between

18:00 and midnight even when considering the minimum contribution (only factor 2).

This result is in agreement with the findings by Kim et al. (2004) when applying PMF

analysis on particle volume distributions measured in Seattle (USA) during the winter
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season. They identified a local RWC particle emission source based on the distinct di-

urnal pattern of modeled volume concentrations on weekends compared to weekdays.

In Seattle, daytime contributions of this factor during weekends were lower than those

of weekdays and the highest concentrations were observed on weekends between

21:00 LT and midnight.5

4 Conclusions

This work demonstrates that is possible to estimate the emission sources of atmo-

spheric aerosols applying PMF analysis on particle size distributions in a wood smoke-

impacted residential area. The high-temporal resolution of the source apportionment

allows studying in detail the diurnal variation of source contributions to ambient aerosol10

and also provides a better estimation of the time periods when the inhabitants are more

exposed to harmful aerosol concentrations. Although the PMF factors were attributed

to certain emission sources, they might still be influenced by other unknown sources

or among themselves. This PMF source-receptor modeling should be complemented

with chemical speciation analysis to provide a more precise source apportionment in15

relation to local RWC due to the overlapping of sources profiles between RWC and

LRT at this receptor site. In the Nordic region, where LRT can have a large influence

on particle concentrations, DMPS measurements at rural background sites close to the

receptor site of interest should be conducted in future field campaigns.
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Table 1. Summary of the PMF methodological details used in this study.

PMF parameters Selected option

Number of factors (p) 3
PMF mode robust
Outliers distance (α) 4
Fpeak [−1.6:−1.2] in steps of 0.1

Error model σi j=Ci j
+C3 max(

∣

∣xi j

∣

∣ ,
∣

∣yi j
∣

∣), with Ci j=0 and C3=0.25

Missing data Samples were omitted
Model uncertainty 25% samples randomly removed, 300 runs
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Table 2. Summary of modeled sources contributions to PM10, PM1, MLAC, and N25−606 concen-
trations. The mean contribution of local traffic is displayed whereas minimum and maximum
contributions of local RWC and LRT are presented for the period 31 January– 9 March 2006.
PMF was run with Fpeak=−1.4, C3=0.25, and α=4.

Variable Local traffic [%] Local RWC [%] LRT [%]

PM10 18 [36–82] [0–46]
PM1 17 [31–83] [0–52]
MLAC 24 [40–76] [0–36]
N25−606 43 [44–57] [0–13]
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Fig. 1. (a) Fpeak values versus Q robust values for PMF. (b) Coefficient of determination (R
2
)

among g-factors (g1, g2, g3) versus Fpeak values. PMF was run using three factors, C3=0.25,
and α=4. [–] denotes the variable is dimensionless.
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Fig. 2. Time series of modeled PM10 contribution for each factor for Fpeak=−0.1 and −1.4
(a–c), together with total modeled and measured PM10 concentrations (d). PM10 mass con-
centration at Vindeln (rural background site) is also shown in panel c.
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Fig. 3. Scattergram of predicted (PMF-MLR) vs. measured concentrations of: (a) PM10, (b)

PM1, (c) MLAC, and (d) N25−606. The 95% confidence intervals for the slope and intercept are
included in the linear regression equation (in parenthesis). The solid line represents the least
squares line regression and the dotted line indicates the identity line (1:1). The number of

samples n and coefficient of determination R
2

are also shown.
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C3=0.25, and α=4.
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Fig. 9. Model resolved mean diurnal contributions per factor to PM10, PM1, MLAC and N25−606 for
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are also shown with black lines. PMF 3-factor model was run with Fpeak=−1.4, C3=0.25, and
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Appendix A
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Fig. A1. Time series of modeled PM1 contribution for each factor (a–c), together with total
modeled and measured PM1 concentrations (d). PMF was run with Fpeak=−1.4, C3=0.25,
and α=4.
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Fig. A2. Times series of modeled MLAC contribution for each factor (a–c), together with total
modeled and measured MLAC concentrations (d). PMF was run with Fpeak=−1.4, C3=0.25,
and α=4.

5759

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/5725/2008/acpd-8-5725-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/5725/2008/acpd-8-5725-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD

8, 5725–5760, 2008

Wood combustion

contribution to winter

aerosol in Sweden

P. Krecl et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

0

20000

40000
Traffic(a)

0

20000

40000 RWC(b)

0

2000

4000

6000

   
   

   
   

   
   

   
   

   
   

   
  N

25
−

60
6 [c

m
−

3 ]

RWC/LRT(c)

31−Jan 04−Feb 08−Feb 12−Feb 16−Feb 20−Feb 24−Feb 28−Feb 04−Mar 08−Mar
0

20000

40000

 

 
(d) Measured

Total mod.

Fig. A3. Time series of modeled N25−606 contribution for each factor (a–c), together with total
modeled and measured N25−606 concentrations (d). PMF was run with Fpeak=−1.4, C3=0.25,
and α=4.

5760

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/5725/2008/acpd-8-5725-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/5725/2008/acpd-8-5725-2008-discussion.html
http://creativecommons.org/licenses/by/3.0/

