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Abstract If a non-periodic sequence X is the image by a morphism of a fixed
point of both a primitive substitution o and a primitive substitution 7, then
the dominant eigenvalues of the matrices of o and of 7 are multiplicatively
dependent. This is the way we propose to generalize Cobham’s Theorem.

1 Introduction

In 1969 A. Cobham [5] proved the following result (latter called Cobham’s
Theorem): Let p and q be multiplicatively independent positive integers and
E a subset of N. The set E is recognizable by both a p-automaton and a
q-automaton if and only if E is ultimately periodic.

Later A. Cobham [6] showed that a subset E of N is p-recognizable for
some integer p if and only if its characteristic sequence (z,)nen (€. z, =1
if n belongs to £ and 0 otherwise) is p-substitutive (i.e. the image by a letter
to letter morphism of a fixed point of a substitution of constant length p).
There are several equivalent definitions of p-substitutive sequences, see for
instance [6], [4] and [1].

Hence Cobham’s Theorem can be formulated as follows: Let p and q be
multiplicatively independent positive integers and X be a sequence on a finite
alphabet. The sequence X is both p-substitutive and q-substitutive if and only
if it is ultimately periodic.

A classical result concerning matrices asserts that a square matrix with
non-negative coefficients always has a real eigenvalue which is larger (not



necessarily strictly) than the modulus of all other eigenvalues of M; moreover
such an eigenvalue is a Perron number (see for instance [15]). We say that it
is the dominant eigenvalue of M.

One can check that the dominant eigenvalue of the matrix of a substi-
tution of constant length p is p. To extend the notion of p-substitutive
sequences we will say that a sequence is a-substitutive if and only if it is the
image by a letter to letter morphism of a fixed point of a substitution o such
that « is the dominant eigenvalue of the matrix of o.

Consequently a natural generalization of Cobham ’s Theorem is:

Let o and (B be two multiplicatively independent Perron numbers and X
a sequence on a finite alphabet. The sequence X is both a-substitutive and
B-substitutive if and only if it is ultimately periodic.

An answer to this conjecture has been given by S. Fabre [8, 9, 10] in the
case where « is a pisot number and (3 a positive integer. Recently, using the
formalism of the first order logic A. Bes [2] and I. Fagnot [11] obtained a
partial answer in the case where o and 3 are pisot numbers.

In this paper we give a positive answer to this conjecture in the case
where the substitutions are primitive without any assumption concerning
the eigenvalues o and [:

Let o and (B be two multiplicatively independent Perron numbers and X
a sequence on a finite alphabet. If a sequence X is both a-substitutive and
B-substitutive then X is periodic.

There are other ways to generalize Cobham’s Theorem, some of them can
be found in [2], [9], [11], [17] and [21]. Related works can be found in [3], [13]
or [16].

Section 2 of this paper contains the basic definitions we need. In Section
3 we define the main notion of this paper, the return word, which was first
introduced in [7]. We review some properties of return words obtained in [7].
Section 4 is an intermediate step to prove the main result where we establish
helpful morphism relations. Section 5 is split into two subsections. In the
first one we prove a result (Theorem 13) stronger than our main theorem
though only valid for fixed points:

If two primitive substitutions have the same non-periodic fized point, then



they have some powers which have the same eigenvalues, except perhaps 0
and the roots of the unity.

In the second one we prove the main theorem. An example is used to show
that for substitutive primitive sequences we cannot have a better result. The
aim of Section 6 is to show that there is more than only relations between
eigenvalues. Primitive substitutions sharing a same fixed point have some
powers which coincide on some sets of return words.

2 Definition and terminology

2.1 Words and sequences

We call alphabet a finite set of elements called letters. Let A be an alphabet,
a word on A is an element of the free monoid on A, denoted by A*, i.e. a
finite (possibly empty) sequence of letters. Let x = xgzy - - - x,_1 be a word,
its length is n and is denoted by |z|. The empty-word is denoted by €, |¢| = 0.
The set of non-empty words on A is denoted by AT. The elements of AN
are called sequences. If X = XoX;---is a sequence (with X; € A, i € N),
and [, k are two non-negative integers, with [ > k, we denote the word
X Xpq1 -+ Xy by X and we say that X, is a factor of X. If k = 0, we
say that Xjo is a prefir of X and we write X[o; < X. The set of factors of
length n of X is written L,(X), and the set of factors of X, or language of
X, is represented by L(X). If u is a factor of X, we will call occurrence of u
in X every integer 4 such that X[; i1, —1) = u. When X is a word, we use the
same terminology with the similar definitions. Let u and v be two words, we
denote by L, (v) the number of occurrences of v in v. A word w is a suffiz of
the word v if v = xu for some x belonging to A*.

The sequence X is ultimately periodic if there exist a word u and a non-
empty word v such that X = wv¥, where v* is the infinite concatenation of
the word v. Otherwise we say that X is non-periodic. 1t is periodic if u is
the empty-word.

A sequence X is uniformly recurrent if for each factor u the greatest
difference of two successive occurrences of u is bounded.



2.2 Morphisms and matrices

Let A, B and C be three alphabets. A morphism 7 is a map from A to
B*. Such a map induces by concatenation a map from A* to B*. If 7(A) is
included in B¥, it induces a map from AN to BN. All these maps are written
T also.

To a morphism 7, from A to B*, is naturally associated the matrix
M; = (m;;)iep,jea Wwhere m; ; is the number of occurrences of 7 in the word
7(j). To the composition of morphisms corresponds the multiplication of
matrices. For example, let 74 : B — C*, 5 : A — B*and 73 : A — C* be
three morphisms such that 775 = 73, then we have the following equality:
M, M., = M,,. In particular if 7 is a morphism from A to A* we have
M = M.

A non-negative square matrix M always has a non-negative eigenvalue r
such that the modulus of all its other eigenvalues do not exceed r. We call
it the dominant eigenvalue of M (see for instance [12]). A square matrix is
called primative if it has a power with positive coefficients. A morphism from
A to A* is called primitive if its associated matrix is primitive. In this case
the dominant eigenvalue is a simple root of the characteristic polynomial, and
is strictly larger than the modulus of all other eigenvalues. This is Perron’s
Theorem ([12], p. 53).

2.3 Substitutions and substitutive sequences

Definition 1 A substitution is a triple T = (1, A, a), where A is an alphabet,
7 18 a morphism from A to AT and a is a letter of A such that the first letter
of (a) is a.

Let 7 = (7, A, a) be a substitution. There exists a unique sequence X =
(2,)nen of AN such that 2y = a and 7(X) = X (for more details we refer the
reader to [20]). We will say that X is the fized point of T and we will denote
it by X,.

In this article we only consider primitive substitutions, i.e. substitutions
with primitive associated matrices. If 7 = (7, A, a) is a primitive substitution
it is not difficult to see that its fixed point is uniformly recurrent (see [20]).

Let A and B be two alphabets, we say that a morphism ¢ from A to B*
is a letter to letter morphism when o(A) is a subset of B. A sequence Y



is substitutive if there exist a primitive substitution 7 and a letter to letter
morphism ¢ such that Y = ¢(X,). We will also say that Y arises from 7. It
is a-substitutive if « is the dominant eigenvalue of 7. We can remark that
each substitutive sequence is uniformly recurrent. In particular, it is periodic
whenever it is ultimately periodic.

From the proof of Proposition 9 in [7] we deduce the following proposition:

Proposition 1 Let A and B be two alphabets, X be a a-substitutive sequence
on A and ¢ : A — BT be a morphism. There exists a positive integer k such
that the sequence p(X) is a*-substitutive.

This proposition allows us to consider only letter to letter morphisms without
loss of generality.

3 Return words

In this section we define the main notion used in this paper, the return words.
It was introduced in [7] where we stated and proved some of its properties
we recall here. We will use them very often in the sequel.

3.1 Definition

Let X be a uniformly recurrent sequence on the alphabet A and u a non-
empty prefix of X. We call return word on u every factor Xj; ;_y), where i
and j are two successive occurrences of u in X. For example let

X = ababcababbbabababcababbbababaccababace - - -

be a sequence. The words ababc, ababbb, ab, ababacc are return words on
abab of X.

The reader can check that a word v is a return word on v of X if and only
if vu belongs to L(X), u is a prefix of vu and u has exactly two occurrences
in vu. For the details we refer the reader to [7]. The set of return words on
u is finite, because X is uniformly recurrent, and is denoted by Rx,. The
sequence X can be written naturally as a concatenation

X:momlmg--- ,miERx,u, iGIN,

bt



of return words on wu, and this decomposition is unique. We enumerate the
elements of Rx, in the order of their first appearance in (m,,)n,en. This
defines a bijective map

@X,u : RX,u - 7?/X,u C A”

where Ry, = {1,---,Card(Rx.)}

The map ©Ox, defines a morphism and the set ©x ,(RY,) consists of
all concatenations of return words on u. We denote by D,(X) the unique
sequence on the alphabet Rx , characterized by

We call it the derived sequence of X on u. It is clearly uniformly recurrent.
We remark that

LX) (Oxu(R.) = Oxu(L(Du(X))).
When it does not create confusion we will forget the “X” in the symbols

Oxu, Rxv and Rx .

3.2 Some properties of return words

The following proposition points out the basic properties of return words
which are of constant use throughout the paper.

Proposition 2 (Proposition 6 in [7]) Let X be a uniformly recurrent se-
quence and u a non-empty prefix of X.

1. The set Rx, is a code, i.e. Ox, : Ry, — Ox..(RY%,) is one to one.

2. If u and v are two prefixes of X such that u is a prefix of v then each
return word on v belongs to ©x ,(RX,), i.e. it is a concatenation of
return words on u.

3. Let v be a non-empty prefiz of Dy(X) and w = Ox ,(v)u. Then

e w is a prefir X,

® Ox,,Op,(x)0 = Ox,w and



o Dy(Du(X)) = Du(X).

Lemma 3 (Lemma 10 in [7]) Let X be a non-periodic uniformly recurrent
sequence, then

my, = Inf{[v];v € Rx x,,,} — +00 when n — +oo.

0,n]

3.3 Substitutive sequences and return words

When we apply return words to primitive substitutions we obtain some useful
results. The following proposition states that each derived sequence of a fixed
point of a primitive substitution is a fixed point of a primitive substitution
too.

Proposition 4 (Proposition 19 in [7]) Let 7 = (1, A, a) be a primitive sub-
stitution and u be a non-empty prefix of X,;. The derived sequence D,(X;)
is the fized point of a primitive substitution 1, = (T, Ry, 1) where T, satisfies

O,y = T7O,.

The map O, being one to one the previous equality completely charac-
terized 7,. Such a substitution is called return substitution (on u). Moreover
we can remark that (7%), = (7,)".

The two following theorems were established in [7] to obtain a charac-
terization of substitutive sequences: A non-periodic uniformly recurrent se-
quence Y is substitutive if and only if the set of its derived sequences is

finite.

Theorem 5 (Theorem 18 in [7]) Let Y be a non-periodic substitutive se-
quence. There exist three positive constants Hi, Hy and Hs such that: For
all non-empty prefives u of Y,

1. for all words v belonging to Ry, Hilu| < |v| < Hs|u|, and

2. Card(Ry7u) S Hg.

Theorem 6 (Theorem 20 in [7]) Let T = (7, A, a) be a primitive substitution.
The set of the return substitutions of T is finite.



4 Eigenvalues and return words

We establish some morphism relations between the substitutions and their
return substitutions, then we find their common eigenvalues.

In this section 7 = (7, A, a) will be a primitive substitution and u, v two
prefixes of X such that |u| < |v]. We recall that we have

©,7, =70, and O,7, = 70, (1)

The word u is a prefix of v, hence a return word on v is a concatenation of
return words on u. This allows us to define the morphism A, from R, to R},
by ©,\ = ©,. Thus we obtain the relation

Tul = ATy.

Let k be an integer such that |v| < |[7%(u)|. The image by 7% of a return
word on u is a concatenation of return words on v. We define a new morphism
Kk, from R, to R}, by O,k = 786,. We deduce the following morphism
relations:

TR = KTy,

kA = 1F and
— Lk

Ak = T,

Consequently we have the following proposition:

Proposition 7 Let 7 = (1, A, a) be a primitive substitution and u, v be two
prefizes of X, such that |u| < |v|. Then there ezist an integer k > 1 and two
morphisms A : R, — RI and k : R, — R} such that

Tok = KTy, Tul = ATy, KA = Tf and Ak = 7'5.

Corollary 8 All the return substitutions of a primitive substitution have all
the same non-zero eigenvalues.

Proof: This is a straightforward consequence of Proposition 7. The details
are left to the reader. O

By primitivity, there exists an integer ny such that for all n > ng all
images by 7" of letters have at least two occurrences of u. Let [ be an integer
larger than ng and K; be the matrix defined by

Ki = (Lo, cu(T (b)1)) cery pea;

8



we recall that Le, (). (7! (b)u) is the number of occurrences of O, (c)u in 7 (b)u.

Let b be an element of A. We set 7!(b)u = apay - - - apapsy - - “Qpypy)- Let
i be the first occurrence of u in 7/(b) and j the greatest occurrence of u in
Tl(b)u such that a;---a;_; is a concatenation of elements of Rx.,. We set
T = apaycccGi1, Y = AjAj41c Qpppy and W = a;a;41 -+ aj_1. The word w
is a concatenation of return words on u and Le, (g (wu) = Le, ay. (7' (b)u).
We remark that the length of z is less than Hs|u| and that the length of y is
less than (Hy + 2)|u| where Hj is the constant given by Theorem 5.

Let ¢ be a letter of A,

Lc<Tl<b)) = Lc<x) + Z Lc<@u<d>>L®u(d)u<wu) + Lc<y)

= Le(a) + 3 Le(Ould) Lowian(r () + Lely).

We observe that the number of occurrences of ¢ in both x and y is less
(Hy + 2)|u|. Then we have

My = M} = Mo, K + Qi, (2)

where (J; is a non-negative integral matrix whose coefficients are less than
(Hs 4 2)|u|. For this reason the set {Q;;1 € N} is finite.
Let b and ¢ be two elements of R,. We set

Peb = Loy (@u(T (Ou(b))u) — ZAL®u(c)u(71(d)u)Ld(@u(b)) :

We can bound p,; independently of I. Let zy be a word of length 2 occurring
in ©,(b). We set 7(zy) = vo - - vp_10% - - v, Where k = |7!(x)|. Let j be the
greatest occurrence of u in 7!(xy) less or equal to k — 1 and i be the smallest
occurrence of u in 7!(zy) larger or equal to k. We have

[Low(u(vi - vj—1t) = (Lo, (u(vi - - ve-1u) + Loy, u(ve - - - vj—1u))| <
2(Hy + 1)|u|  2(Hy+1)

H1|u| H1
Where H; is the constant given by Theorem 5. Hence

2(Hy+ 1)
H,

<
0.0) < =

Pep S



Moreover we have

Lo(L(b)) = Lo, (0u(T'(04(b))u) = dZAL®u(c)u(7_l(d)u)Ld(@u(b)) + Pep -

Consequently we have

M. =M. =KMe, + P, . (3)

Tu

where P, is an integral matrix; the absolute values of its coefficients are less
than 2(Hy + 1)Hs|u|/H;. Therefore the set {P;1 € N} is finite.

Proposition 9 Let 7 be a primitive substitution and u a prefix of X,. The
substitutions T and T, have the same eigenvalues, except perhaps 0 and roots
of the unity.

Proof: Let u be a prefix of X, and a a non-zero eigenvalue of M, which is not
a root of the unity. There exists a vector z # 0 such that (Tz)M, = a(Tz).
According to the relation (1), we have

(T'Z‘)Meu MTu - O{(T.Z')M@u .

We have to prove that (Tz)Me, is different from zero.

Suppose it is false. From equality (2) it follows that o!(Tz) = (T2)Q; for
all integers [ larger than ng. But the set {Q;,! € N} is finite. Hence there
exist two distinct integers [; and lo, larger than ng, such that Q;, = @Q;,. And
finally we have o = 0 or a*~"2 = 1, which contradicts our assumption on a.

In the same way, it follows from equality (3) that if x4 is a non-zero
eigenvalue of M, which is not a root of the unity, then y is an eigenvalue of
M. This completes the proof. a

It is easy to check that if 7:{0,1} — {0,1}" is the Fibonacci substitu-
tion, i.e. 7(0) = 01 and 7(1) = 0, then we have 7 = 7p;. Hence 7 and 7,
have the same eigenvalues. On the other hand the set of eigenvalues of the
Morse substitution, ¢(0) = 01 and o(1) = 10, is {0,2} and the eigenvalues
of og11 are 0,0, —1 and 2.

10



5 A generalization of Cobham’s Theorem

The proof of the generalization we announced requires several steps. In
Proposition 10 and Proposition 11 we work under special assumptions. Propo-
sition 11 shows why these assumptions are relevant for our purpose and
Lemma 12 proves that it is always possible to work under these assumptions.
This leads to a stronger theorem than the generalization though only valid
for fixed points as announced in the introduction.

For convenience in the sequel we will use alphabets {1,2,--- k}.

5.1 Some technical results

Proposition 10 Let 7 = (7, A,1) be a primitive substitution and u be a
prefiz of X, such that:

1. For all letters b of A, 7(b) begins by 1,

2. The substitutions 7 and T, are defined on the same alphabet and are
tdentical,

3. The fixed point of T is non-periodic,
4. For all letters b and ¢ of A, b has at least one occurrence in ©,(c).

Let J be an infinite set of positive integers. Then there exist an infinite
subset I of J, a strictly increasing sequence of positive integers (L,)per and a
morphism v : A — A" such that for all p in I.

Oy =10y =1

Proof: Hypothesis 2 says that A = R,. It is easy to check that the morphism
©, : A — A* defines a substitution 0, = (0,,A4,1). We put © = 0O,.
Hypothesis 4 implies that this substitution is primitive.

As the substitutions 7, and 7 are identical (hypothesis 2), they have the
same fixed point X, and we have seen that the fixed point of 7, is D, (X;)
(Proposition 4), hence D,(X;) = X,. Consequently, we have X, = O(X;),
i.e. X, is the fixed point of © = (0, A, 1).

Moreover we can remark that 76 = O7.

The word u is a prefix of D,(X,), hence we can consider the sequences
(D2(X,))o1 defined by

11



DL(X,) =D,(X,) and D" (X,) = D,(D*(X,)) for all n > 1.
Let us prove by induction that for all n > 1 we have:
i) DM(X,) = D,, (X,) = X,, with w, = 0" (u) - - O(u)u,
ii) " =0,,, and
i) 7 =7y,

For n = 1 it suffices to remark that w; = .
Now suppose that points i), ii) and iii) are satisfied for some positive
integer n. We have

DIHI(X,) = Du(DI(X,)) = Du(X,) = X,
and Proposition 2 implies that:
e DIH(X,) = Dy(D,,, (X,)) = Du(X,) and
¢ O, =0,,0p, (x.)u=0"0x, ,=060""

where

w = O, (u)w, = 0"(u)0" H(u) - O(u)u = Wy ;.

Hence points i), ii) are satisfied for n + 1.

The substitution 7, is the return substitution on u of 7, consequently
OTw,1 = Tw,©; that is to say O7,,,, = 70. But ©7, = 70 and the map ©
is one to one hence 7, , = 7, = 7. This completes the proof by induction
of points 1), ii) and iii).

We denote the dominant eigenvalues of M, and Mg respectively by a and
B. We recall (see for instance [20]) that there exists a positive number r such
that for all b in A and all £ in N

1 1
;Ozk < |7'k(b)| < ra® and ;ﬁk < |@k(b)\ < rpk.

From this we deduce that there exists two constants ¢; and ¢y such that for
all positive integers n

18" < |wy| = 10" (u) - O(u)u| < co8™.

12



From hypothesis 1 it follows that there exists an integer kg such that u is a
prefix of all images of letters by 7. For every integer k, larger than kg, we
define [), to be the greatest integer n such that w, is a prefix of 7#=1(1). For
all positive integers we have

af < Jwy | < O] < fwg ] < 2B

Thus we obtain

0] < 2200 < P2y
€1 €1
Let k be an integer larger than ky. For all letters b of A the word w;, is a
prefix of 7%(b). Hence all images by 7% of words are concatenations of return
words on wy, . This remark allows us to define the morphism ~;, from A to

AT, by Oy, e = 7. We have:
Ouwy, 15Ow,, = T*Qk = @Mk,
The map @wlk = O is one to one hence ’Vk@wlk = 7% and finally

Moreover for all b in A

TH )] + fw| _ 2Beal T (0)] _ 2’08
Hy|lw,| 7 Hiel|m1(1)| = Hie

)] = Ly, (P B)wy) =1 <

where H; is the constant of Theorem 5. We have proved that the length of
the images by 7 of letters are bounded independently of k. Hence the set
{Vk; k > ko} is finite. Thus there exists an infinite set 7, included in J, such
that ~y, = v, for all elements p and ¢ of I.

Let p be an element of I, we write v = ~,. Equality (4) gives Oy =
vO% = 7P From this last equality it follows that the sequence (I,),es is
strictly increasing. a

Proposition 11 Let 7 = (71, A,1) be a primitive substitution and u be a
prefix of X, satisfying the hypothesis of Proposition 10. Let J be an infi-
nite set of positive integers. Then there exist an infinite subset I of J and
a strictly increasing sequence of positive integers (l,)per such that, for all
distinct integers p and q belonging to I, p < q, we have:

13



e The non-zero eigenvalues of T97P are eigenvalues of @Zq*lﬂ,

e O, is a primitive substitution and the non-zero eigenvalues of Ola~lr,
except perhaps roots of the unity, are eigenvalues of T47P.

Proof: We set © = ©,.. As in the proof of Proposition 10 we can remark that
© defines a primitive substitution © = (0, A, 1). There exist an infinite set [
of integers, a strictly increasing sequence of integers (I,),e; and a morphism
v from A to AT such that for all p in

Oy = 4O = 7P

Let p < ¢ be two elements of I. From the previous equalities and from the
fact that O = 70 (because 7 = 7,) we obtain

79 = @lq_lp@lpfy — @lq_lpr — Tp@lq_lp. (5)

Let o be a non-zero eigenvalue of M q—» = M?7P and x one of its eigen-
vectors. Equality (5) implies

la=lp A\ oo — Ny — P
Mg "MPyx = M!x = aMPz.

But the vector M@ PPg is different from zero and therefore so is MPz. Thus
a is an eigenvalue of ©%~!». This completes the first part of the proof.

It remains to prove the second part. Let ky be an integer such that
minye 4|0 (b)| > 2maxyea|7P(b)|. Let k be a positive integer such that k(I,—
l,) > ko. For all letters b of A we can write ©*la=l)(b) = urP(w)v, where
u and v are respectively a suffix and a prefix of an element of 7°(A), and w
is a non-empty word of L(X;). Hence there exist two integral matrices with
non-negative coefficients, Sy and P, such that

Mg(lq*lp) = MPS, + P, (6)

where the coefficients of Py, are less than 2maxyc4|7P(b)|. The set {FP;;j >
k(l, —1,)} is finite because the coefficients are bounded independently of k.
Consequently there exist two integers ky and ky such that Py, = Py, .

Let o be a non-zero eigenvalue of M(lg ' which is not a root of the unity,
and z one of its associated left eigenvectors. Equality (5) leads to

_ lg—1
PJIP — q_ o=l o P
aMPMTP =aM! =aMg "M = axM?.

14



But Py, = P,, so xM? is different from zero. Otherwise, by equality (6) we
would have a*'z = o*22. Which contradicts our hypothesis on «. a

Lemma 12 Let (1,A,1) and 0 = (0,A,1) be two primitive substitutions
having the same non-periodic fized point X. There exist an integer [, a prefix
v of X, and an arbitrarily long prefir u of D,(X) such that the word u and
the substitution 7., and u and the substitution o', both satisfy the hypothesis

of Proposition 10.

Proof: Let (X(™),cn be the sequences defined by: X(© = X and X"*+Y ig
the derived sequence of X™ on the prefix 1 (the first letter of X (™). For all
integers n we call A™ the alphabet of X(™. Let (u(),>; be the sequence
of words defined by:

u =1 and u"tV = @X7u(n)(1)u(").

According to Proposition 2, for all integers n larger than 1, the word u(™ is
a prefix of X, such that

@X,lgx(l)J tet @X(n—l)’l = @X7u(n) and X(n) = Du(n) (X)

The sets {7,,u < X} and {o,,u < X} are finite by Theorem 6. Hence,
there exists an infinite set I of positive integers such that for all integers p
and ¢ of I, we have 7,4, = T, and o, = 0,w. We remark that the fixed
point of the substitutions 7,4 = (T,m, AP, 1) and o, = (o,m, AP, 1) is
X® =D, (X).

Let p and ¢ be two elements of I with p < ¢q. By definition of (X™),cp
we have

X@ =1p,...D, (X(p))
N

(g—p) times

Hence (Proposition 2) there exists a prefix u of X such that
° Dﬂ()((p)) =X,
hd @X(z)),1@x(z)+1)71 T @X(q—l),l = @X(p)7u )

® Oxt yTuw = TuwOxw , and Oxu) 4Oy = T, O x k) 4

15



From the last equalities it is clear that (7,e))y = Tu@ and (0, )u = Tuw;
where (7,4 )y and (o,m ). are respectively the return substitutions on u of
Tuw and o,m).

From the definition of (u™),>; we deduce that the sequence (|u™]),>;
is strictly increasing. Thus it follows from Lemma 3 that

lim min{|@x(0)7u(j)(b)| = |@X(0),1@X(1),1 s @X(j)71(b)|; be A(jJrl)} = +00.

j—+oo

and consequently that

jli)rjpoo min{|Ox ) 1Oxw+n 1 - Oxw 1(D)];b € A(JH)} = 400.
Therefore we can suppose that ¢, and consequently u, is such that each letter
of A®) (the alphabet of X®) has at least one occurrence in each return
word on u of X® . (We recall that the set of return words on u of X® is
{@X(P),u(b) = @X(p),1@x(p+1),1 e ~@X(q,1)’1(b); be A(q)}-)

The word O, (1)ul?) is a prefix of X hence we can choose an integer !
such that the word © x e (1)ul?) is a prefix of 7/(1) and ¢'(1). Thus the first
letter of each image of 7, and o', is 1.

We set v = ul® and v = 7!. The substitution (v, A® 1) and the prefix
u of X®) (which is the fixed point of ) fulfill the hypotheses of Proposition
10. Indeed we chose the integer [ to satisfy hypothesis 1. Hypothesis 2 is
also satisfied because

where 7, is the return substitution on uw. Hypothesis 3 does not set any
difficulty. Hypothesis 4 follows from the choice of q.
It is clear that O'L o and u also satisfy the same hypotheses. a

Theorem 13 If two primitive substitutions have the same non-periodic fixed
point, then they have some powers which have the same eigenvalues, except
perhaps O and roots of the unity.

Proof: It follows from Lemma 12, Proposition 11 and Proposition 9. a
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5.2 Proof of the main result

Theorem 14 Let X be a substitutive sequence arising from T = (7, B, 1),
and also from o = (0,C,1). If X is non-periodic then the dominant eigen-
values of T and of o are multiplicatively dependent.

Proof: Let A be the alphabet of X. There exist a morphism ¢, from B to
A, and a morphism ¢ from C to A such that ¢(X,) = p(X,) = X.

Recall that by Theorem 6, if a sequence is substitutive then its set of
derived sequences is finite. Hence there exist three sequences, (u™),en,
(V™) en and (w™),en, of prefixes of respectively X, X and X, such that
for all integers n we have:

® D, (Xr) = Dy (X7),

¢ Dy (X) = Dyinsn (X),

e Dy (Xy) = Dynsn (Xo),

o ¢(u") = p(w™) =v" and [p™] < o+,

Let n be an integer. The images of words by ¢©,,x) are concatenations
of return words on v™. The map O, : R, — A" being one to one, this
allows us to define a morphism A\, by ©,m A, = ¢O,m . In the same way we
define the morphism ~, by ©,m 7, = ¢O,m. In the proof of Theorem 21
in [7], it is proved that the set {\,;n € N}, and also the set {v,;n € N},
are finite. For this reason we can suppose that for all integers n we have
An = Ang1 and ¥, = Yo

Let i be an integer. The sequence X, (resp. X,) is uniformly recurrent
hence, according to Lemma 3, there exists an integer j larger than 7 such that
each word wu®, where w is a return word on u(, has at least one occurrence
in each return word on u'9). Consequently we can define a primitive substitu-
tion 0 by ©,»0 = O,i). In the same way we define a primitive substitution
p by ©,mp = 6O,u5. We have p); = \;d. Indeed

@v(i)p)\j = @U(j))\j = (b@u(j) = ¢@u(i)5 = @v(i) )\16 = @v(i) )\jé.

A standard application of Perron’s Theorem ([12], p. 53) shows that §
and p have the same dominant eigenvalue.
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We recall that D, (X;) = D, (X;). Hence ¢ has the same fixed point
as T, , that is to say D,u (X;). It follows from Theorem 13 and Proposition
9 that the dominant eigenvalues of 6 and 7 are multiplicatively dependent.

In the same way we prove that p and ¢ have multiplicatively dependent
dominant eigenvalues. This completes the proof. O

Could we obtain a result analogous to Theorem 137 That is to say con-
cerning all eigenvalues. The answer is negative. Here is a counterexample:
Let 7 = (7,{a,b},a) and o = (0,{a,b,c},a) be two substitutions defined
respectively by

a — abab

a — abab
and b — acce

b — abbb
¢ — abbc

Eigenvalues of the substitution 7 are 1 and 4. Those of ¢ are 1, -2 and
4. Let ¢ : {a,b,c} — {a,b} be the morphism defined by ¢(a) = a and
o(b) = o(c) = b, then ¢(X,) = X,. The sequence X, arises from two
substitutions, one has the eigenvalue -2 and the other does not.

To prove the reciprocal of Theorem 14 we need a result due to D. Lind
(Theorem 15). A Perron number is an algebraic integer that strictly domi-
nates all its other algebraic conjugates. It follows easily from Perron’s Theo-
rem that the dominant eigenvalue of an integral primitive matrix is a Perron
number. The following theorem shows the reciprocal is true.

Theorem 15 ([14]) If a is a Perron number then there exists a primitive
integral matriz with dominant eigenvalue o.

Here is the reciprocal of Theorem 14.

Proposition 16 Let Y be a periodic sequence on the alphabet B and o a
Perron number. There exists an integer k such that'Y is o -substitutive.

Proof: There exists a word m such that Y = m“. According to Theorem
15 there exists an integral primitive matrix M with dominant eigenvalue «.
There exists an integer k such that:

1. The matrix M* has strictly positive coefficients and
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2. The sum of the coefficients of any column of MF* is larger than the
length of m.

It is easy to construct a primitive substitution 7 = (7, A, 1) with associ-

ated matrix M*. The dominant eigenvalue of this substitution is o*.

Let D be the alphabet {(b,7);b€ A , 0 <1i <|m|—1}. We define the
morphism ¢ : A — DT by ¢(b) = (b,0)---(b,|m| — 1). The length of an
element of 7(A) is larger than |m|. This allows us to define the substitution
¢ =(¢,D,(1,0)) in the following way: For all (b, k) of D

¢((b,k)) = P(T()pn) if k< |m|—1,
C((0,Im[ = 1)) = (T()[m|-1,rm)-1)) otherwise.

These morphisms are such that (¢ = 7. Hence the substitution ( is
primitive. Its fixed point is ¥(X,) and its dominant eigenvalue is aF.

Let ¢ : D — B be the letter to letter morphism defined by ¢((b,4)) =
myq. It is easy to see that ¢(X) =Y. It follows that Y is a*-substitutive.

|

6 Substitutions sharing the same fixed point

In this last section we use the circularity of primitive substitutions, proved in
[18, 19], to obtain further results about substitutions sharing the same fixed
point.

Definition 2 Let 7 = (1, A, 1) be a substitution and x a factor of X,. We
say that (u,w,v) is an interpretation of = if x = ur(w)v and u, v are re-
spectively a suffiz and a prefix of the image, by T, of some letters and w is a
factor of X,.

Definition 3 We say that a substitution 7T s circular with synchroniza-
tion delay D when: If a factor of X, admits two distinct interpretations,
(u,w,v) and (x,y,z2), and i is an integer such that |ut(wj,—1))| > D and
|7 (Wig1,jw-17)v| > D, then there exists an integer j such that ut(wy,;-1]) =
7 (Yjo,j-1)) and w; = y;.

Theorem 17 ([18, 19]) A primitive substitution is circular.
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In the following proposition we prove that a primitive substitution is one
to one on the set of return words on a sufficiently long prefix of its fixed
point.

Proposition 18 Let 7 be a primitive substitution with a non-periodic fixed
point X. There exists an integer ng such that for all prefizes u of X of length
larger than ng the substitution T is one to one on L(X)NOxu(Ry.,,).

Proof: The substitution 7 is circular with synchronization delay D (Theorem
17). According to Lemma 3, there exists an integer ny such that for all
prefixes u satisfying |u| > ng the length of all return words on w is larger
than D.

Let u be a prefix of X larger than max(ng, D) and v, w be two elements
of L(X)NOx.(RX,) such that 7(v) = 7(w). Let [ be the smallest integer n
such that |7(vj)| > D. This integer is smaller than |u| because

[ < ‘T(U[071_1])| < D < \u\

It follows that vjoy is a prefix of u. Hence we have vjg; = wjo;. Moreover
we have 7(vu) = 7(wu) and |7(u)| > D, thus according to Theorem 17 we
obtain vy jy|—1] = W[41,jw|-1] and consequently v = w. O

Corollary 19 Let 7 be a primitive substitution with a non-periodic fixed
point X. There exists an integer ng such that, for all prefives u of X of
length larger than ng, the substitution T, is one to one on L(X).

Proof: It follows directly from Proposition 18. a
To obtain the main result of this section we need an intermediate lemma.

Lemma 20 Let 7 = (7, A, 1) be a primitive substitution, with fived point X,
and u be a prefix of X satisfying the hypothesis of Proposition 10. Let J be
an infinite set of positive integers. There exist a subset I of J and a strictly
increasing sequence of positive integers (l,)per such that for all integers p and
q, p < q, belonging to I, we have 7977 = Qla~lv,

Proof: There exist an infinite subset of J, and a strictly increasing sequence
(I,)per such that for all integers p and ¢, p < ¢, we have

79 = PQla~lr,
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This follows from equality (5) obtained in the proof of Proposition 11. Let
p and ¢ be two elements of I. It follows from Proposition 2 that X, has a
prefix w such that ©,, = O~  Remark that the substitutions 7 and 7, are
identical. From Lemma 3 and Corollary 19 we deduce that we can choose ¢
sufficiently large in order that 7, is one to one on L(X,,). But 7 = 7, hence
T is one to one on its language. This implies that 7977 = @~ a

To end this paper we prove a strong relation between two primitive sub-
stitutions sharing the same fixed point.

Proposition 21 Let 7 and o be two primitive substitutions having the same
non-periodic fized point X. There exist a prefiz u of X and two integers i
and j such that

7t =0,

Proof: There exist a prefix u of X and a prefix v of D,(X) such that 7,
and v, and o, and v, both satisfy the hypothesis of Proposition 10. This is
Lemma 12. It follows from Lemma 20 that there exist two integers ¢ and j
such that 7¢ = 0. O

With the same hypothesis an equivalent formulation of the previous result
is: There exists a prefix u and two integers 7 and j such that 7* and o7 coincide
on L(X)NOxu(Rx,)-
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