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Abstract

Urban-type PM2.5-fraction aerosol samples were collected and samples of pure atmo-

spheric humic-like substances (HULIS) were isolated from them. Atmospheric con-

centrations of organic carbon (OC), water soluble organic carbon (WSOC) and HULIS

were determined, and UV/Vis spectroscopic properties, solubility and conductivity of5

HULIS in aqueous samples were investigated. Mean atmospheric concentrations of

OC and WSOC were 8.5 and 4.6µg m
−3

, respectively. Hydrophilic WSOC accounted

for 39% of WSOC, carbon in HULIS made up 47% of WSOC, and 14% of WSOC was

retained on the separation column by irreversible adsorption. Average molecular mass

and aromatic carbon abundance of HULIS were both estimated from molar absorp-10

tivity to be 556 Da and 12%, respectively. Both results are substantially smaller than

for standard reference fulvic acids, which imply different mechanisms for the formation

processes of atmospheric HULIS and aquatic or terrestrial humic matter. HULIS were

found to be water soluble as ionic unimers with a saturation concentration of 2–3 g l
−1

.

Their solubility increased again with total HULIS concentration being above approxi-15

mately 4 g l
−1

, which was most likely explained by the formation of HULIS aggregates.

Solubility increased linearly from approximately 5 up to 20 g l
−1

of dissolved HULIS con-

centration. The ionic dissolution was confirmed by electrochemical conductivity in the

investigated concentration interval. Limiting molar conductivity was extrapolated and

this was utilized to determine the apparent dissociation degree of HULIS for different20

concentrations. The dissociation degree was further applied to derive the concentration

dependence of the van’t Hoff factor of HULIS. The van’t Hoff factor decreased mono-

tonically with HULIS concentration; the decrease was substantial for dilute solutions

and the relationship became weak for rather concentrated solutions.
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1 Introduction

The effects of atmospheric aerosols on climate change may be very substantial but

are poorly quantified at present. There is conclusive evidence that both inorganic salts

and organic compounds, in particular the water-soluble components in fine-sized at-

mospheric aerosol particles play an important role. The effects of inorganic salts were5

studied in detail and are well documented. The influence of organic compounds is far

less understood and largely uncertain, particularly in relation to that of the dominant

inorganic aerosol components (Fuzzi et al., 2006; McFiggans et al., 2006). This is

definitely caused by the large number (up to several hundreds or a thousand) and the

structural complexity of the carbonaceous compounds involved, and by the difficulties10

associated with the collection, separation and analytical methods available for them.

Wide ranging identification and quantification of the organic molecules contained in the

aerosol particles is very difficult, and the methods most proven typically resolve at most

only 10–20% of the organic mass into specific compounds (Rogge et al., 1993; Sax-

ena and Hildemann, 1996; Mazurek et al., 1997; Puxbaum et al., 2000). Instead of the15

characterisation at the molecular level, the carbonaceous matter is frequently divided

into some generic or operationally defined groups that are characterized and dealt with

in models. Organic carbon (OC) and elemental carbon (EC) are the main groups of

fine-sized carbonaceous matter. Organic carbon is frequently divided into two ma-

jor physicochemical fractions, i.e., water-soluble and water-insoluble carbon (WSOC20

and WInsOC, respectively). The separation of each main fraction into major chemical

classes of compounds and surrogate molecules is still feasible and this was shown to

be advantageous for characterizing the properties of bulk organic matter and chemical

fractions (e.g., Decesari et al., 2000; Mayol-Bracero et al., 2002). The main disadvan-

tage of this approach is that it suffers from methodological, conceptual and principled25

limits.

One of the most important classes of water-soluble organic compounds is atmo-

spheric HUmic-LIke Substances (HULIS) (Havers et al., 1998; Zappoli et al., 1999;
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Gelencsér et al., 2000; Krivácsy et al., 2000; Decesari et al., 2000; Fuzzi et al., 2001;

Kiss et al., 2002; Decesari et al., 2006). They are present ubiquitously in the tropo-

sphere and make up a major fraction of continental fine-sized water-soluble organic

compounds (Salma et al., 2007, and references therein). HULIS are regarded as

polymeric material with strong polar, poly-acidic, and chromophoric properties, and5

which are comprised primarily of a complex multi-component mixture of aromatic com-

pounds that have aliphatic chains with carboxyl, hydroxyl, methoxyl or carbonyl terminal

groups (Decesari et al., 2000; Krivácsy et al., 2000; Kiss et al., 2002; Graham et al.,

2002; Cappiello et al., 2003; Gelencsér, 2004; Tagliavini et al., 2005; Samburova et

al., 2007). They exhibit strong surface activity (Facchini et al., 1999, 2000; Decesari et10

al., 2001; Kiss et al., 2002; Salma et al., 2006; Varga et al., 2007) by which they influ-

ence the properties of the gas-liquid interface of droplets in the air. HULIS could have

amphiphilic properties as well which can cause aggregation above a critical concen-

tration level. In addition, HULIS are optically active (coloured) and can interact directly

with the sunlight. The exact chemical composition and physicochemical properties of15

HULIS and their formation mechanisms are being studied increasingly and intensively

(Graber and Rudich, 2006, and references therein). Nevertheless, our knowledge on

its water solubility, dissociation and molecular mass is still deficient despite being gov-

erning variables (together with the surface activity and osmolality) in many important

atmospheric processes, like the growth of aerosol particles with relative humidity and20

the activation of cloud droplets (Fuzzi et al., 2006; McFiggans et al., 2006). For in-

stance, the van’t Hoff factor, which represents the average number of ions into which

a molecule dissociates when dissolved, was classified as one of the most significant

sources of uncertainty in the Köhler model involving aggregate organics (Asa-Awuku

et al., 2007; Ziese et al., 2007). Improved knowledge on these properties could lead to25

a better understanding of and quantifying the role HULIS play in the atmospheric and

climatic systems, as well as provides us with insights into the main source processes

and pathways of this mixture.

Pure HULIS samples were isolated from urban-type atmospheric aerosol samples
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and the HULIS-water system was investigated by physicochemical and analytical meth-

ods in order to decide whether HULIS form aggregates (micelles) in aqueous solutions

with atmospherically relevant concentrations or not, to study their solubility, to deter-

mine their dissociation degree and van’t Hoff factor for different concentrations, to es-

timate their average molecular mass and to derive the abundance of aromatic carbon5

within HULIS. The main objectives of the present paper are to report and discuss the

findings achieved, to interpret the results and to formulate some consequences for air

chemistry and cloud physics.

2 Experimental

2.1 Samples and sample treatment10

The aerosol samples were collected in central Budapest from 2 till 9 May, and from

17 till 24 July 2006 as a continuation of our urban carbonaceous aerosol research

(Salma et al., 2004, 2006, and 2007). The sampling site was located in a small park

at Széna Square (latitude 47
◦

37.4
′

N, longitude 19
◦

01.7
′

E, altitude 114 m above the

mean sea level). The site is heavily influenced by vehicular traffic and can be classified15

as a kerbside according to the criteria of the European Environmental Agency. The

daily-mean PM10 mass concentration varied between 25 and 46µg m
−3

with a median

of 35µg m
−3

for the spring period, and ranged from 27 to 54µg m
−3

with a median

of 35µg m
−3

for the summer period. The mean ozone concentration for daylight time

was 57µg m
−3

with an hourly maximum value of 148µg m
−3

for the spring period,20

and the mean was 70µg m
−3

with an hourly maximum value of 156µg m
−3

for the

summer period. The aerosol samples were taken by a DHA-80 high volume aerosol

sampler equipped with a PM2.5 pre-separator (both Digitel Elektronik, Switzerland),

and operated at an air flow rate of 500 l min
−1

for one week. The sampler was placed

in a regular station of the municipal air quality monitoring network with the inlet at a25

height of 4 m above the ground. Whatman QM-A quartz fibre filters were used as
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the collection substrate. The filters were pre-baked at 450
◦

C for at least 8 h before

sampling to remove the possible organic contaminants. The exposed area of the filters

was 154 cm
2
. The samples were kept in a freezer until further treatment or analysis.

The main section of the aerosol filters was utilized for isolation of pure HULIS. The

filters were cut into pieces and extraction was carried out with the high-purity reagent5

Milli-Q water (approximately 1 ml water per 1 cm
2

filter) for 36 h. Removal of the WSOC

from the filters was checked by repeated extraction of a selected filter section and was

found to be quantitative. The water extracts were filtered through a 0.22µm syringe

PVDF membrane filter (Millipore, USA) to remove the filter debris and suspended in-

soluble particles. The pure HULIS were isolated from the solution by the one-step10

solid-phase extraction (SPE) method (Varga et al., 2001; Kiss et al., 2002) based on

the hydrophilic/lipophilic character of the non-dissociated organic compounds. The

pH of the filtrates was adjusted to 2 with HCl, and HULIS were separated by pre-

conditioned SPE columns (Oasis HLB, Waters, USA). Organic compounds with acidic

functional groups that are protonated at pH=2.0 (including aromatic acids, phenols,15

organic nitrates, aliphatic mono- or dicarboxylic acids with more than 3–4 C atoms) are

retained by the column, while the inorganic species and the organic compounds that

are very hydrophilic due to the presence of strong polar functional groups (including

saccharides, amines, aliphatic mono- or dicarboxylic acids with less than 4–5 C atoms)

pass into the effluent (Sullivan and Weber, 2006a, 2006b). The isolation method was20

optimized to separate the fraction that exhibits the key spectral properties of HULIS,

i.e. more than 90% of the fluorescence activity and 70% of the UV activity for humic

and fulvic acids (Varga et al., 2001). The exposed column was rinsed with water to re-

move the remaining inorganic species and dried with nitrogen. The retained organics

were eluted with methanol, and the eluents were evaporated to dryness with a gentle25

nitrogen stream. The resulting dark yellow/brown pulp is regarded to be consisted of

pure HULIS. The samples were kept in a refrigerator until further dissolution.

The water solubility of pure HULIS was investigated by adding 600µl water to one of

the HULIS samples with a mass of approximately 18 mg. The aqueous sample was put

1986

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/1981/2008/acpd-8-1981-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/1981/2008/acpd-8-1981-2008-discussion.html
http://www.egu.eu


ACPD

8, 1981–2011, 2008

HULIS-water system

I. Salma et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

into ultrasonic bath for 15 min, after which it was allowed to stand in an ultra-thermostat

at a constant temperature of 20
◦

C for a day. The pH of the aqueous sample was mea-

sured by a glass microelectrode. An aliquot with a volume of 160µl was taken out

from the aqueous sample, this was filtered through a syringe PVDF membrane filter

with a pore size of 0.22µm and a dead volume of 10µl (Millipore, USA). The dissolved5

OC concentration was measured by a TOC analyser (see Sect. 2.2). The remaining

volume of the aqueous sample was diluted further with water; the sample preparation

described above was repeated, and the pH and dissolved OC concentration were de-

termined. A series of 13 HULIS aqueous samples with consecutive dilution factors

of 1.0, 1.2, 1.2, 1.2, 1.2, 1.2, 1.4, 1.5, 2.0, 1.5, 1.6, 1.7 and 1.6 was prepared and10

measured in this way.

The conductivity of HULIS aqueous samples was investigated by adding 600µl wa-

ter to one of the pure HULIS samples with a mass of approximately 6 mg. The aqueous

sample was put into ultrasonic bath for 15 min, after which it was allowed to stand in

an ultra-thermostat at a temperature of 20
◦

C for one day. The pH of the aqueous sam-15

ple was measured by a glass micro-electrode, and its conductivity was determined

by using electrochemical impedance spectroscopy (EIS, see Sect. 2.2). After the EIS

measurement, an aliquot of the HULIS aqueous sample was taken out, it was filtered

through the syringe PVDF membrane filter with a dead volume of 10µl, and the dis-

solved OC concentration in the filtrate was measured by the TOC analyzer. The re-20

maining volume of the aqueous sample was diluted further with water, and the sample

preparation and measurements were accomplished as described above. A series of

eight HULIS aqueous samples with consecutive dilution factors of 1.0, 1.9, 2.1, 2.0,

2.6, 1.6, 1.9 and 10 was prepared and measured in this way.

Standard Suwannee River Fulvic Acid (SRFA, code 2S101F) was obtained from25

the International Humics Substances Society (IHSS, based in St. Paul, USA)

for comparative purposes. Its detailed chemical characterization can be found at:

http://www.ihss.gatech.edu/. The SRFA was chosen since several previous studies re-

ferred to it as representative of atmospheric HULIS. The SRFA was dissolved in Milli-Q

1987

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/1981/2008/acpd-8-1981-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/1981/2008/acpd-8-1981-2008-discussion.html
http://www.egu.eu
http://www.ihss.gatech.edu/


ACPD

8, 1981–2011, 2008

HULIS-water system

I. Salma et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

water, and the solutions were used for further experiments without any sample treat-

ment.

2.2 Measuring methods and data treatment

The organic carbon content of the aerosol samples was determined directly from

punches with an area of 1 cm
2

of the original quartz filters by the thermal-optical trans-5

mission (TOT) method (Birch and Carry, 1996) using a Sunset Lab (USA) instrument

at Ghent University. The NIOSH2 temperature program suggested for heavily loaded

filters and large EC abundances was used in the analysis (Schauer et al., 2003).

Concentration of OC for the filtered aerosol water extracts, effluents of the SPE

columns and for HULIS solutions were measured by a Multi N/C 2100S total carbon10

analyzer (Analytik Jena, Germany). The OC was derived in two steps as the difference

between total carbon and inorganic carbon. The injection volume was 500µl for both

steps, and three replicate injections were carried out. The measured concentration

levels were at least two orders above the detection limit for OC (which was 50 ppb),

and the relative uncertainty of the mean OC calculated from the three individual results15

was less than 2%.

The UV/Vis spectra of the aqueous HULIS and SRFA solutions were recorded in the

range of 190 to 500 nm with a Lambda 12 spectrophotometer (Perkin-Elmer, USA) in a

quartz cuvette with a path length of 1 cm using Milli-Q water as the blank sample.

The conductivity of HULIS aqueous samples was determined using electrochemi-20

cal impedance spectroscopy. Its major advantage is that the method measures the

variation of the impedance with frequency, which allows a high-precision and reliable

determination of the solution resistance (Láng et al., 2001; Hantz et al., 2004). A

cylindrical electrochemical measurement cell with an internal diameter of 4 mm and

effective volume of 500µl was made of glass and it was equipped with Pt working25

electrodes. The cell constant was derived with a KCl solution with a concentration

of 0.02 mol l
−1

. All measurements were performed at a constant temperature of 20
◦

C

applying a sinusoidal perturbing signal with an amplitude of 5 mV or 10 mV over a fre-
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quency range of 1 Hz to 13 kHz. Each aqueous sample was measured at least three

times, and the resistance of the solution was calculated by extrapolating the real part

of the complex impedance to the high frequency limit. The corresponding results were

averaged, and the conductivity was finally derived from the average ohmic resistance

and cell constant. The relative uncertainty of the determinations is estimated to be less5

than 2%.

3 Results

3.1 Atmospheric concentrations and partitioning of carbonaceous fractions

The mean atmospheric concentrations of OC and EC in the PM2.5-fraction aerosol

were 9.0 and 3.5µg m
−3

, respectively for the spring period, and they were 7.9 and10

3.5µg m
−3

, respectively for the summer period. Water-soluble organic carbon ac-

counted for 58% of the OC; the rest (42%) was regarded to be WInsOC. The mean

atmospheric concentrations of HULIS for the spring and summer periods were 4.7 and

3.8µg m
−3

, respectively using the organic matter-to-organic carbon mass conversion

factor of 1.81 derived especially for HULIS (Salma et al., 2007). The contribution of15

HULIS carbon (HULIS-C) to OC was 28% for both seasons. Most values and ratios

agree reasonably well with the data obtained earlier for central Budapest for spring

periods but the WSOC and HULIS concentrations are larger than the values reported

previously (Salma et al., 2004, 2007). This can most likely be explained by the fact that

the sampling artefacts for carbonaceous species were not taken into account in the20

present work. During the collection periods, the meteorological conditions favoured

photochemical reactions and formation of semi-volatile organic species and, conse-

quently, enhanced the extent of the sampling artefacts. Aerosol samples collected by

high-volume devices and for relatively long times are especially susceptible to sampling

artefacts.25

The concentrations of TOC in the filtrated aerosol water extract samples, SPE ef-
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fluents, and SPE eluents allowed us to determine the WSOC partitioning between the

separated chemical fractions for a real aerosol. It is noted here that the isolation pro-

cedure described in Sect 2.1 was extended by one more step for the purpose of this

particular experiment, i.e., the SPE column activated with methanol was dried with ni-

trogen in order to remove the methanol residues. It was observed that 39% of the5

total WSOC passed through the SPE column with the effluent (this chemical fraction is

called hydrophilic WSOC), and the rest was adsorbed on the stationary phase. Elution

from the column yielded 47% of the total WSOC, which implies that 14% was retained

on the column by irreversible adsorption. It will be shown in Sect. 3.2 that the ab-

sorbance at a wavelength of 280 nm can be regarded as one of the most appropriate10

optical characteristics for HULIS, and, therefore, the partitioning of HULIS was deter-

mined by this absorbance as well. The absorbance for eluent represented 68% of the

absorbance of the filtered aerosol water extract sample (which agrees well with the op-

timized data of 70%, see Sect. 2.1), while the retained organic compounds accounted

for 15% of the absorbance of the filtered aqueous extract in agreement with the data15

derived for the WSOC. The share of the irreversible sorption is comparable to that of

approximately 25% and of 10–15% obtained by other (independent) isolation methods

(Limbeck et al., 2005; Sulliwan and Weber, 2006a, respectively).

The relative amounts of WSOC in the hydrophilic and irreversibly bound chemical

fractions were linked to their anthropogenic and biogenic origin (Sullivan and Weber,20

2006b). Following the assumptions of these authors, biogenic emissions in central

Budapest would account for at least 15% of the WSOC. The situation is likely much

more complex because 1) biogenic material dominates the WInsOC fraction (Szidat et

al., 2004; Puxbaum and Tenze-Kunit, 2003), which made up 42% of OC for the present

samples, 2) HULIS can also be formed from biogenic precursors (e.g., Limbeck et25

al., 2003; Kalberer et al., 2004; Baltensperger et al., 2005), and 3) some organics of

biogenic origin can show up in the hydrophilic WSOC chemical fraction as well. Further

investigations utilizing molecular markers are definitely needed for estimating the real

contribution of biogenic sources.
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3.2 Molar absorptivity

Selected UV/Vis absorption spectra of HULIS and standard SRFA aqueous solutions

are shown in Fig. 1 as examples. It is seen that the spectra of HULIS and diluted SRFA

solutions are similar. Nevertheless, the spectra are actually featureless, and they do not

really give detailed information on the chemical structure of the molecules. The maxi-5

mum of the absorbance was reached at a wavelength of around 220–240 nm, depend-

ing on the solution concentration. The absorbance decreased monotonically from the

maximum with the wavelength for diluted solutions, which is typical for double-bounded

and aromatic chemical structures. A shoulder appeared at around 260 nm, which was

more pronounced for SRFA than for HULIS. The spectra of more concentrated SRFA10

solutions exhibited a plateau extending from approximately 230 up to 360 nm. This was

the result of absorbance overloading. There was no plateau for the HULIS because its

solutions were much more diluted than for the SRFA. The absorbance at a wavelength

of 280 nm was chosen as one of the most useful optical properties because the π–π*

electron transition for aromatic components, like phenolic derivatives, benzoic acids,15

polyenes and polycyclic aromatic hydrocarbons, which are regarded to be the precur-

sors or structural subunits of humic substances, occurs in the range of 270–280 nm

(Traina, 1990). The absorbance at a wavelength of 254 nm was also evaluated for

comparative purposes since some studies dealt with absorbance at this value (Schäfer

et al., 2002; Dinar et al., 2006), and since it is located closer to the maximal absorbance20

than the wavelength of 280 nm.

Molar absorptivity (ε) defined as the absorbance per one mole of C was calculated

for HULIS and SRFA solutions, and they were summarized in Table 1. The molar ab-

sorptivity for SRFA seemed to be more or less constant for the diluted solutions, and

it decreased with OC for the more concentrated solutions. Representative molar ab-25

sorptivity for the SRFA was obtained by averaging the data for the diluted solutions

which yielded 500 and 378 l (mol C)
−1

cm
−1

for the wavelengths of 254 and 280 nm,

respectively. The molar absorptivity for HULIS decreased monotonically with OC in the
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concentration range examined. The representative molar absorptivities for the SRFA

agree well with the data of ∼450 l (mol C)
−1

cm
−1

measured for the IHSS fulvic acid

with a concentration of 100 mg C l
−1

(Schäfer et al., 2002), and they are comparable to

the molar absorptivities of 416 and 306 l (mol C)
−1

cm
−1

at the wavelengths of 254 and

280 nm, respectively obtained for bulk SRFA (reported without actual OC concentra-5

tions, Dinar et al., 2006).

3.3 Molecular mass and aromatic carbon abundance

The molar absorptivities derived were utilized to estimate the average relative molecu-

lar mass and percentage of the aromatic carbon content (sometimes called aromatic-

ity) of HULIS. The method applied is based on the empirical correlation relationship be-10

tween molar absorptivity and molecular mass (or size), and between molar absorptivity

and aromaticity. The relationships were established for humic substances originating

from terrestrial and aquatic sources (e.g., Chin et al., 1994; Peuravuori and Pihlaja,

1997; Tombácz, 1999; Schäfer et al., 2002). It is assumed in the method that the

relative amount of aromatic moieties (and thus the molar absorptivity) increases with15

increasing molecular mass of humic substances. A weakness of the method is that the

molar absorptivity depends on both the type and concentration of the chromophores

in the molecules. Nevertheless, this simple method is still valuable because the type

of the chromophores in HULIS and humic substances can be regarded very similar

since their relevant optical properties were shown to be almost identical or closely fol-20

low each other (Graber and Rudich, 2006, and references therein). The correlation

equations utilized are given in Table 1. It is noted that the relationships for the data

obtained by Chin et al. (1994) and Schäfer et al. (2002) were actually derived by Dinar

et al. (2006). The average molecular mass and aromaticity for the HULIS and SRFA

samples are also shown in Table 1. It can be seen that the molecular masses obtained25

by the correlation of Schäfer et al. (2002) were systematically smaller than those by the

equation of Chin et al. (1994). For the representative molar absorptivities of the SRFA

solutions (see Sect. 3.4), the average molecular mass ranged from 632 to 1040 Da
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with an overall average value of 836 Da. The molecular mass of SRFA is expected

to be smaller than 1000 Da as determined by various techniques (Brown and Rice,

2000; Leenheer et al., 2001, Kujawinski et al., 2002). The average molecular mass

of HULIS varied between 373 and 763 Da with an overall average value of 556 Da.

The average molecular mass of HULIS isolated from rural fine-sized aerosol samples5

by the same SPE method as in the present work was determined by HPLC-MS, and

by vapour pressure osmometry, and the values obtained were between 200–300 Da,

and between 215–345 Da, respectively (Kiss et al., 2003). Our smallest values (de-

rived by the equation of Schäfer et al. (2002)) were the closest to this range, but still

somewhat larger. The difference can most likely be explained by the diverse measuring10

approaches utilized. Samburova et al. (2005) applied size exclusion chromatography –

UV spectroscopy, and laser desorption/ionization mass spectrometry to determine the

molecular mass distribution of PM10-fraction urban HULIS, and they derived an upper

limit of approximately 700 Da. Our values are in line with the observations. Dinar et

al. (2006) estimated the molecular mass for HULIS isolated from fresh smoke particles,15

slightly aged wood burning smoke particles, and local photochemical pollution particles

to be 610, 410, and 500 Da, respectively using the relationship of Schäfer et al. (2002).

Our data are in good agreement with the data for the photochemical pollution particles.

More importantly, our results prove that the average molecular mass of HULIS for the

urban environment is markedly smaller than for aquatic fulvic (or humic) acids. It is one20

of the few important differences between atmospheric HULIS and humic substances of

aquatic and terrestrial origin, and this implies distinct mechanisms for their formation

processes.

Aromaticity is a property associated with the extra stability of planar, conjugated sys-

tems (with n atoms in the ring) containing the maximum number (4n+2) of electrons25

in the π-bonding molecular orbitals. The presence of aromatic systems influences the

reactivity of the functional groups directly attached to the aromatic system. Aromatic

carbon abundance can depend on the formation pathways of HULIS, and on the emis-

sion sources of its precursors. HULIS in polluted urban environments can be formed as
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a secondary aerosol from anthropogenic precursors mainly aromatics (Decesari et al.,

2002), while for rural or remote regions, formation from dienes (like isoprene) is pre-

ferred (Gelencsér, 2004). Hence, comparison of the percentage of the carbon atoms in

aromatics can supply useful information on the source regions or formation processes.

The average share of the aromatic carbon for the diluted solutions of SRFA was de-5

rived to be 25%. It agrees well with the certified aromatic carbon abundance of 22%

determined by
13

C-NMR method (IHSS). At the same time, it is substantially larger

than the overall mean for HULIS, which was 12%. Dinar et al. (2006) estimated (based

on the correlation equation of Peuravuori and Pihlaja, 1997) the aromaticity to be of 20,

10, and 16% for HULIS isolated from fresh smoke particles, slightly aged wood burning10

smoke particles, and local photochemical pollution particles, respectively. Our average

value for urban HULIS is well comparable with their corresponding data of 16%. The

easiest explanation for the difference between the percentage of the aromatic carbon

content in the SRFA and HULIS is related to the fact that the relative aromatic con-

tent of carbon increases with molecular mass, and the SRFA exhibits larger average15

molecular mass than HULIS.

3.4 Dissolution and colloidal properties

The relationship between the dissolved HULIS concentration and total (thus dissolved

and insoluble) HULIS concentration in the aqueous samples is displayed in Fig. 2.

The uncertainty of the concentration data is mainly determined by the micro-chemical20

operations during the sample preparation. It is seen that the dissolved HULIS con-

centration increased linearly in the beginning (the correlation coefficient between the

four data pairs for the most diluted solutions was R=0.996) with the total concentra-

tion. The slope of the limiting line equals to 1.0 within the experimental uncertainty,

which indicates that the isolated HULIS is completely water soluble in small concen-25

trations (as expected). This was caused by classical (ionic) dissolution of unimers.

The relationship between them started to level off from a dissolved HULIS concen-

tration of approximately 0.6 g l
−1

, and this concentration seemed to reach a more or
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less constant value of ca. 3 g l
−1

. This behaviour can be explained by the fact that

the different components of HULIS gradually reach their solubility limit, after which the

aqueous sample becomes saturated with respect to these components, and the en-

veloping curve results in a levelling off feature. The explanation was confirmed by the

electrochemical conductivity measurements (cf. the insert of Fig. 2 with Fig. 3) dis-5

cussed in detail in Sect. 3.5. The presence of some insoluble brown matter within

the bulk volume of these aqueous samples and on the walls of the vial could be ob-

served visually. The dissolved concentration increased again rather substantially with

total HULIS concentration from approximately 7 g l
−1

, and the increase became lin-

ear above a total concentration of 12 g l
−1

. The correlation coefficient for the five data10

pairs of the most concentrated solutions was R=1.00. The linear tendency was main-

tained up to a dissolved HULIS concentration of approximately 20 g l
−1

. The slope of

the line was, however, substantially smaller than 1.0, implying that not all components

were dissolved. One of the few possible explanations for this increased solubility can

be given by the solubilization of some insoluble components of HULIS by aggregates15

(e.g., micelles) formed from HULIS. Unfortunately, it was not feasible to detect micelles

or critical micelle concentration (CMC) by the techniques utilized in the present inves-

tigations. Nevertheless, a CMC between 5 and 10 g l
−1

was observed for alkali metal

humates separated from soil samples (Tombácz, 1999). Their acidic dissociation was

found to be of crucial importance in the micelle formation phenomenon, and the effects20

of the origin of the samples, salting-out, ionic strength and polyvalent cations were also

observed (Tombácz, 1999). The solution pH in the present work increased from 2.2 to

5.5 with dilution, which could also affect the solubility. Taking into consideration this, the

reported CMC range corresponds well with our value of 3–4 g l
−1

. Unfortunately, the

amount of the spare HULIS aliquot was not satisfactory to identify the micelles directly25

by the light scattering method.

The phenomenon observed can have consequences on the concentration of HULIS

in the solution since the aggregates represent a latent amount. Furthermore, it is

known that both aquatic and terrestrial humic matter form stable complexes with and
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http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/1981/2008/acpd-8-1981-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/1981/2008/acpd-8-1981-2008-discussion.html
http://www.egu.eu


ACPD

8, 1981–2011, 2008

HULIS-water system

I. Salma et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

solubilize metal ions. The present study implies that similar processes may occur within

cloud droplets containing large amounts of HULIS as a result of their colloidal be-

haviour.

3.5 Dissociation degree and van’t Hoff factor

Electrochemical conductivity (κ) of pure HULIS solutions as a function of dissolved5

HULIS-C concentration is displayed in Fig. 3. The character of the curve corresponds

to that of the HULIS dissolution curve up to a dissolved HULIS concentration of approx-

imately 2 g l
−1

shown on the insert of Fig. 2. The first and last three experimental data

points were fitted separately by lines in order to obtain the limiting expressions and the

intersection point of the lines. The intersection occurred at a HULIS concentration of10

0.54 g l
−1

. The value is in good agreement with the declination point at approximately

0.6 g l
−1

on the dissolution curve. All this supports the mechanism of ionic (classical)

dissolution outlined in Sect. 3.4. The presence of some insoluble HULIS could be

visually observed in this case again on the walls of the glass vial in the three more con-

centrated aqueous samples. Molar conductivity data (Λ) were calculated as Λ=κ/c,15

where c is the molar concentration of dissolved HULIS, adopting the smallest average

molecular mass of M=373 g mol
−1

derived in Sect. 3.3 (see the discussion the effect

of M on dissociation degree below). Molar conductivity exhibited smaller values in

more concentrated solutions, and it increased significantly with decreasing concentra-

tion. Molar conductivity in dilute solutions can be expressed by Kohlrausch’s empirical20

equation: Λ=Λ0−k c1/2
, where Λ0 is the molar conductivity at infinite dilution (limit-

ing molar conductivity) and k is a constant. The limiting molar conductivity of HULIS

was derived by linear extrapolation to be Λ0=534 S cm
2

mol
−1

. The value is compa-

rable to other ordinary electrolytes in aqueous solution but HULIS can contain up to

several carboxylic groups per molecule, which property has to be taken into account25

when comparing its conductivity. The limiting molar conductivity for HULIS was utilized

further to derive an apparent dissociation degree (α) that can be expressed as α=Λ/Λ0

according to the Arrhenius electrolytic theory of dissociation. It is definitely worth men-
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tioning that both Λ and Λ0 vary to the same extent with the molecular mass of HULIS,

and, therefore, the apparent dissociation degree derived as their ratio is independent

from the molecular mass actually adopted. This means that the uncertainty related to

the molecular mass of HULIS does affect the limiting molar conductivity but, advan-

tageously, it does not influence the value of the dissociation degree. Dependence of5

the dissociation degree on dissolved HULIS concentration is displayed in Fig. 4. It is

seen that HULIS dissociate completely in very dilute solutions (as expected), and that

the dissociation degree decreases with concentration. The change is rapid in the be-

ginning, it is slower above a concentration of approximately 1 g l
−1

, and was expressed

by a linear line (with a small slope) for concentrations larger than ca. 2.5 g l
−1

. The10

extrapolated line reaches a dissociation degree of zero at a concentration of 19 g l
−1

.

The uncertainty of this value can be large since it was extrapolated from a distant con-

centration interval. Nevertheless, all this implies that in the initial stage of cloud and fog

droplet formation on pure HULIS aerosol particles, variation in the dissociation degree

of HULIS is modest, but changes substantially in the concentration range relevant for15

activation of HULIS droplets.

The dissociation degree can be related to the van’t Hoff factor (i ) by the equation:

i=1+α · (ν−1), where ν>1 is the maximum number of ions the molecule dissociates to

when dissolved (stoichiometric dissociation number). Considering that HULIS contain

up to several (e.g., 2, 3 or 4) carboxylic groups per molecule (Tagliavini et al., 2005),20

the van’t Hoff factor equals ν, which is 3, 4 or 5, respectively in their infinitely diluted

solutions. The factors did decrease substantially and monotonically (corresponding to

the change in the dissociation degree) with the concentration as shown in Fig. 5. This

dependence was very remarkable in the beginning but became weak for rather con-

centrated solutions. The van’t Hoff factors reached 1.3, 1.4, and 1.5, respectively at a25

concentration of approximately 10 g l
−1

. Hence, for concentrated solutions, their mag-

nitude is significantly smaller than the stoichiometric dissociation number but the vari-

ability is not large. This can be important for one of the atmospherically relevant cases,

for growing cloud condensation nuclei. Van’t Hoff factors can be computed with ex-
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isting thermodynamical models for inorganic salts or simple organic compounds (Ray-

mond and Pandis, 2002) but modelling aggregate organic compounds-water systems,

or complex organic compounds-inorganic salts-water systems is a rather challenging

task. Van’t Hoff factors can be determined experimentally from water activity (Varga et

al., 2007) but these measurements are sparse. For this reason, the van’t Hoff factors5

for organics and their dependency on solution concentration are usually unknown, and

in many studies (e.g., Facchini et al., 1999; Gysel et al., 2004; Henning et al., 2005;

Svenningsson et al., 2006; Asa-Awuku et al., 2007), the missing data were approxi-

mated by constants of the stoichiometric dissociation number i=ν (assuming complete

dissociation), or they were set equal to i=1 (if the organic compound was not expected10

to dissociate). The former approach could lead to substantial underestimation of the

critical super-saturation, while the latter case could oversimplify the real situation (Kiss

et al., 2005; Varga et al., 2007). To our knowledge, no experimentally determined

van’t Hoff factors for HULIS were presented earlier. Still, our results can be compared

to some indirect conclusions that arose from empirical parameterization. It was ob-15

served, for instance, that a van’t Hoff factor of approximately 1.3 for standard reference

humic samples explained well the measured activation diameters in laboratory cloud

condensation nuclei experiments (Dinar et al., 2006).

4 Conclusions

In the vast majority of studies, the properties of HULIS resemble those of aquatic and20

terrestrial fulvic and humic substances. The main differences that were presented and

proved here include smaller molecular mass and smaller aromatic carbon abundance.

The differences are most likely caused by different formation mechanisms. The iso-

lation of HULIS from different source types (as primary and secondary ones) should,

therefore, be achieved, and the fractions should be studied separately. At the same25

time, HULIS can be regarded as inherently composite materials for which uniform be-

haviour and properties cannot always be expected. Spontaneous change in the aggre-

1998

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/1981/2008/acpd-8-1981-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/1981/2008/acpd-8-1981-2008-discussion.html
http://www.egu.eu


ACPD

8, 1981–2011, 2008

HULIS-water system

I. Salma et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

gation and conformational states can take place under even slightly changing solution

conditions, which can cause a part of the differences. The main external factors can

include solution pH, ionic strength, the presence of polyvalent metal ions and of disso-

ciated cationic organic compounds, and therefore, explicit studies on the interactions

between pure HULIS and other water-soluble aerosol constituents are also very desir-5

able to assess the role of HULIS in real atmospheric aerosol particles. Some of the

differences observed may well be the results of the diverse experimental methods and

approaches applied. As far as the different classes of constituents within HULIS are

concerned, two subsets were already observed in a previous study on the surface ten-

sion properties of pure HULIS solutions (Salma et al., 2006). The subsets of interest10

exhibited very large surface activity. Organo-sulphates, which were recently detected

in PM2.5-sized secondary organic aerosol particles (Surrat et al., 2007), could be a

possible candidate for one of the subsets. Further investigations are also definitely

required in this topic.

It should be noted that characterisation of HULIS has been performed most fre-15

quently on samples separated from aqueous extracts since it is this chemical fraction

that is of global importance due to its climatic and environmental impacts. Never-

theless, a subset of HULIS is not extractable in water, which indicates that there is a

need for further investigations on the chemical entities of both water-soluble and water-

insoluble material.20
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Table 1. Molar absorptivity (ε) determined at wavelengths of 254 and 280 nm, molecular mass

(M) and percentage of aromatic carbon content (Ar ) derived for atmospheric HULIS and stan-

dard SRFA samples. Data affected by absorbance overloading were put in parenthesis.

OC ε (254 nm) ε (280 nm) Molecular mass
a

Molecular mass
b

Aromaticity
a

Aromaticity
c

[mg C l
−1

] [l (mol C)
−1

cm
−1

] [l (mol C)
−1

cm
−1

] [%] [%]

HULIS

13 233 173 763 432 15 13

52 210 144 725 414 14 11

107 166 114 686 380 12 10

136 156 108 677 373 12 9

SRFA

32 500 378 1037 637 26 25

41 505 380 1040 640 26 25

62 494 374 1032 632 25 24

201 (217) (218) (824) (420) (18) (15)

a
Chin et al. (1994): M=534+1.33·ε, Ar=6.74+0.05·ε, at 280 nm

b
Schäfer et al. (2002): M=253+92.1 ε, at 254 nm

c
Peuravuori and Pihlaja (1997): Ar=3.001+0.057 ε, at 280 nm
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Fig. 1. UV/Vis spectra of atmospheric HULIS (Panel (a)) and standard SRFA (Panel (b)) aque-

ous solutions with different concentrations.
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Fig. 2. Dependence of the dissolved HULIS concentration (HULISDIS) on the total HULIS con-

centration (HULISTOT) in aqueous samples. The range of small concentrations is also displayed

in an insert. The connecting curves represent eye guides only. The limiting linear lines (dashed

lines) and their analytical expressions are also shown.
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Fig. 3. Electrochemical conductivity (κ) of pure HULIS solutions with different dissolved carbon

concentration (HULIS-C). The connecting curve represents an eye guide only. The limiting

linear lines (dashed lines) and their analytical expression far before and after the intersection-

point, the concentration for the intersection-point, and the solution pH values measured are

also indicated.
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Fig. 4. Dissociation degree (α) of pure HULIS solution with different dissolved HULIS concen-

tration (HULISDIS). Solution pH values measured are also indicated. The connecting curve

represents an eye-guide only.
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Fig. 5. Concentration dependence of the van’t Hoff factor for pure HULIS solution for stoichio-

metric dissociation numbers of 3, 4 and 5.
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