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Abstract

In order to estimate the air-surface mercury exchange of grasslands in temperate cli-

mate regions, fluxes of gaseous elemental mercury (GEM) were measured at two sites

in Switzerland and one in Austria during summer 2006. Two classic micrometeorolog-

ical methods (aerodynamic and modified Bowen ratio) have been applied to estimate5

net GEM exchange rates and to determine the response of the GEM flux to changes

in environmental conditions (e.g. heavy rain, summer ozone) on an ecosystem-scale.

Both methods proved to be appropriate to estimate fluxes on time scales of a few

hours and longer. Average dry deposition rates up to 4.3 ng m
−2

h
−1

and mean deposi-

tion velocities up to 0.10 cm s
−1

were measured, which indicates that during the active10

vegetation period temperate grasslands are a small net sink for atmospheric mercury.

With increasing ozone concentrations depletion of GEM was observed, but could not

be quantified from the flux signal. Night-time deposition fluxes of GEM were measured

and seem to be the result of mercury co-deposition with condensing water. Effects of

rain and of grass cuts could also be observed, but were of minor magnitude.15

1 Introduction

The continued use of mercury in a wide range of products and processes and its re-

lease into the environment lead to exposition of mercury in ecosystems yet unspoiled.

Its long atmospheric lifetime of about 1 to 2 years (Lin and Pehkonen, 1999) enables

elemental mercury (Hg
0
) to migrate to remote areas far away from its emission source,20

and once deposited to terrestrial or aquatic surfaces it is exposed to the formation of

even more toxic methylmercury (IOMC, 2002). A suite of factors determines the ulti-

mate fate of elemental mercury and its eventual immobilisation at the Earth’s surface.

Depending on atmospheric chemistry, meteorological conditions and physicochemical

properties of the soils mercury may be cycled fairly rapidly between terrestrial surfaces25

and the atmosphere (Gustin and Lindberg, 2005). However, it remains unclear whether
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deposited mercury is retained in background soils or whether terrestrial surfaces are

even a net source of mercury (Pirrone and Mahaffey, 2005). Once deposited, mer-

cury may be sequestered (e.g. adsorbed to soil organic matter and clay minerals), re-

moved from the soil by leaching and erosion or re-emitted (Gustin and Lindberg, 2005).

Mercury sequestered by terrestrial ecosystems might eventually be disconnected tem-5

porarily from the atmosphere-biosphere cycle, which would lead to a decrease in the

pool of atmospheric mercury.

The function of vegetation in the mercury exchange with the atmosphere remains

unclear. Mercury may be taken up by leaves or transferred from the soil through the

plant to the atmosphere (Gustin and Lindberg, 2005; Millhollen et al., 2006). Foliar10

uptake has been suggested to be an important pathway for atmospheric mercury to

enter terrestrial ecosystems and may represent a significant, but poorly quantified sink

within the biogeochemical cycle, possibly accounting for over 1 000 tons of mercury

per year (Obrist, 2007). Du and Fang (1982) measured Hg
0

uptake of several C3 and

C4 plant species and demonstrated that stomatal and biochemical processes control15

the uptake. Atmospheric mercury concentration was found to be the dominant factor

associated with foliar mercury concentrations in different forb species (Fay and Gustin,

2007), and the successful application of different grass species in biomonitoring stud-

ies (De Temmerman et al., 2007) suggest that mercury uptake by plants is indeed of

significance.20

With innovations in sensitive measurement techniques in the last decade it is now

possible to measure atmospheric mercury background concentrations currently rang-

ing from 1.32 to 1.83 ng m
−3

(Valente et al., 2007). Such instruments also allow the

estimation of air-surface exchange fluxes of gaseous elemental mercury (GEM) by ap-

plying micrometeorological methods. They are based on vertical concentration profiles25

and permit spatially averaged measurements without disturbing ambient conditions –

an essential element of long-term studies.

During our previous work on GEM exchange of a montane grassland in Switzerland

we determined mean deposition rates of 5.6 ng m
−2

h
−1

during the vegetation period
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(Fritsche et al., 2008). In the current study that work is extended to another mon-

tane and one lowland grassland site along the Alps with the aim to determine whether

all temperate grasslands are net sinks for atmospheric mercury or whether GEM ex-

change is site specific. Two classical micrometeorological methods are applied to es-

timate the GEM fluxes: the aerodynamic method and the modified Bowen ratio (MBR)5

method. By performing these measurements during the vegetation period, we also

attempt to capture changes in the GEM flux caused by alteration of environmental

conditions, e.g. grass cuts, heavy precipitation, and elevated summer ozone concen-

trations.

2 Experimental10

2.1 Site description

For our GEM flux measurements we selected three grassland sites in Switzerland and

Austria with existing micrometeorological towers. The first site, Fruebuel, is located on

an undulating plateau 1 000 m a.s.l. in central Switzerland. It is intensively used for

cattle grazing and is bordered by forest, wetlands and other grasslands. The second15

location, Neustift, is an intensively managed, flat grassland in the Austrian Stubai Val-

ley at an elevation of 970 m a.s.l. This previously alluvial land lies between the Ruetz

river and pastures and is primarily used for hay production. The third site is situated

in Oensingen on the Swiss central plateau (Mittelland) at 450 m a.s.l. between the Jura

and the western Alps. It serves as an experimental farmland with extensive manage-20

ment and neighbours agricultural land that borders on a motorway in the north-west.

All three sites are equipped with eddy covariance (EC) flux towers. The stations in

Neustift and Oensingen are affiliated with the CarboEurope CO2 flux network and are

operated by the Institute of Ecology, University of Innsbruck, Austria and the Federal

Research Station Agroscope ART, Switzerland, respectively. At Fruebuel the EC flux25

tower is operated by the Institute of Plant Science, ETH Zurich to investigate green-
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house gas fluxes from agricultural land in the context of a changing climate.

Details about the meteorological and pedological conditions of all three sites are

listed in Table 1. The predominant wind direction at Fruebuel is SW to SSW, showing

a distinct channelled flow as a result of the local, undulating, sub-alpine topography.

The largest contributions to the footprint are within approximately 60 m of the eddy5

covariance tower. Neustift on the other hand represents a site with the characteristic

wind regime of an Alpine valley – the wind blowing into the valley from NE during the

day and blowing out of the valley from SW during the night. Vegetation is uniform for

around 300 and 900 m in the directions of the day- and night-time winds, respectively,

with the footprint maximum lying within these boundaries for more than 90% of all10

cases. In Oensingen the fetch length is about 70 m along the dominant wind sectors

(SW and NE) and 26 m in the perpendicular axis. The fraction of the field contributing to

the measured EC CO2 flux is >70% during most of the daytime, whereas during night-

times, this fraction is generally lower and highly variable due to very stable conditions.

The gleyic cambisols at Fruebuel and the stagnic cambisols at Oensingen are rather15

deep (>1 m), while the gleyic fluvisol in Neustift is very shallow (<30 cm). Total mercury

concentrations at all sites are representative of uncontaminated background soils (see

Table 1), although the Hgtot concentration at Fruebuel lies at the threshold value of

100 ng g
−1

. We performed our measurements between June and September 2006 for

two weeks at each site.20

2.2 Micrometeorological methods

A variety of micrometeorological techniques to estimate atmosphere-surface exchange

fluxes of trace gases have been developed (Dabberdt et al., 1993; Lenschow, 1995;

Baldocchi, 2006; Foken, 2006). Of these, the eddy covariance approach would be

most straightforward, but is currently not feasible for GEM as no fast-response sensor25

is yet available (Dabberdt et al., 1993; Lindberg et al., 1995). We therefore resorted to

two more empirical methods. The first, the aerodynamic technique, is an application of

Fick’s law of diffusion to the turbulent atmosphere (Baldocchi, 2006). Translated to an
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atmospheric trace gas the general relationship for the flux is

Fx = −Kx
∂cx
∂z

(1)

where Fx is the vertical trace gas flux, Kx the eddy diffusivity and ∂cx/∂z the con-

centration gradient of an arbitrary, non reactive trace gas x (Dabberdt et al., 1993;

Lenschow, 1995; Baldocchi, 2006). Corresponding equations have been formulated5

for the momentum flux (QM ) as well as the fluxes of sensible (QH ) and latent heat (QE ).

It is assumed that the sources and sinks of these scalars are equal and thus similarity

between the eddy diffusivities (Kx = KH = KE ) are implied.

The eddy diffusivity Kx is expressed by the aerodynamic method as

Kx =
k × u

∗
× z

Φh(z/L)
(2)10

where k denotes the von Karman constant (0.4), u
∗

the friction velocity, z the mea-

surement height, Φh(z/L) the universal temperature profile and L the Monin-Obukhov

length. Generally the eddy covariance technique is used to determine the friction ve-

locity and L is calculated from u
∗
, air temperature, air density and the sensible heat

flux. By combination of Eq. (1) and (2) and subsequent integration we obtain15

FGEM = −

k × u
∗
× (cGEMz2

− cGEMz1
)

log(z2/z1) + ψz2
− ψz1

(3)

where ψz1
and ψz2

are the integrated similarity functions for heat at the measured

heights. A more detailed description of this method is given in Edwards et al. (2005).

The second method employed is the modified Bowen ratio method, which is a slightly

more direct technique to estimate the GEM flux. This method uses directly measured20

fluxes of a surrogate scalar (i.e. sensible heat or a second trace gas) and the vertical
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gradient of this scalar. In our studies we measured the fluxes of CO2 with eddy covari-

ance and its vertical gradient concurrently with the GEM gradients. The GEM flux is

then calculated as

FGEM = FCO2
×

∆cGEM

∆cCO2

(4)

Further details and previous applications of this method are described by e.g. Meyers5

et al. (1996) and Lindberg and Meyers (2001).

2.3 Instrumentation

Air concentrations of GEM were measured in 5-min intervals with a dual cartridge mer-

cury vapour analyser (Tekran 2536A, Tekran, Toronto, Canada). With this instrument

mercury is preconcentrated by amalgamation and detected via cold vapour atomic10

fluorescence spectrometry; further details of its operation principals are described in

e.g. Lindberg et al. (2000). The instrument was calibrated automatically every 24 h by

means of an internal mercury permeation source. Additional, manual calibrations were

performed prior to each measurement campaign by injecting mercury vapour with stan-

dard gas tight syringes from a mercury vapour generation unit (Model 2505, Tekran,15

Toronto, Canada).

In order to compute GEM fluxes by the MBR method CO2 concentrations were mea-

sured with a closed path infrared gas analyser (LI-6262, LI-COR Inc., Lincoln, Ne-

braska, USA) at a frequency of 1 Hz. Before each campaign the gas analyser was

calibrated with argon as zero gas and pressurised air with 451 ppm CO2 as span gas.20

The zero-offset of argon relative to a N2/O2 gas mixture was 0.4 ppm.

Meteorological data (air temperature, net radiation, PAR, humidity, wind speed, wind

direction) were recorded by the micrometeorological instrumentation of the towers at

the study sites. Carbon dioxide and water vapour fluxes were determined by eddy

covariance using three-dimensional sonic anemometers and open path infrared gas25
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analysers (Solent R2 and R3 [Gill Ltd., Lymington, UK] and LI-7500 [LI-COR Inc., Lin-

coln, Nebraska, USA]).

2.4 Measurement setup

Vertical concentration gradients were determined by measuring GEM and CO2 at

5 heights above ground (0.2, 0.3, 1.0, 1.6 and 1.7 m). The same setup was installed5

at all three sites, although the lowest sampling heights had to be adjusted to the local

height of the vegetation (10–60 cm at Fruebuel and Neustift, and 10–20 cm at Oensin-

gen). The sampling lines consisting of 1/4”-tubing were mounted to a mast in the

vicinity of the micrometeorological towers and connected to a 5 port solenoid switching

unit. Depending on space and the setup of the micrometeorological equipment at each10

site, the sampling lines were between 7 and 15 m long (all lines at each site had equal

length). Downstream of the switch unit, the Tekran instrument and the CO2 analyser

were connected in series. Filter cartridges with 0.2µm Teflon filters were mounted to

the inlets of the sampling lines to prevent contamination of the analytical system. Tub-

ing and fittings made of Teflon were used and cleaned with HNO3 and deionised water15

according to an internal standard operating procedure (adapted from Keeler and Lan-

dis, 1994). The system was checked for contamination by measuring mercury-free air

generated by a zero air generator (Model 1100, Tekran, Toronto, Canada). Additionally,

by constricting the sampling lines temporarily it was tested if the setup had any leaks.

Air was sampled at a flow rate of 1.5 l min
−1

by the internal pump of the Tekran20

instrument. To maintain continuous flushing of all sampling tubes an auxiliary pump

with a flow rate of 6.0 l min
−1

was connected to the four lines that were currently not

sampled. The sampled air was not dried, which required correction of the calculated

fluxes for density effects (see below).

Air sampling was switched from a line at a lower height to one at an upper height25

every 10 min (i.e. the sequence with the heights mentioned above was 0.2–1.6–0.3–

1.7–1.0 m). In this way a vertical concentration profile with five measurement points

could be determined every 50 min. Higher frequencies were not feasible as the low
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ambient GEM concentrations require pre-concentration by the gold cartridges of the

Tekran intrument for accurate analysis.

2.5 Flux calculations

Upon completion of the measurement campaigns, GEM and CO2 fluxes were com-

puted with a self-programmed Matlab® algorithm. Carbon dioxide fluxes were calcu-5

lated to evaluate the quality of the GEM fluxes. By comparing the CO2 fluxes deter-

mined by the aerodynamic method with the CO2 fluxes obtained by eddy covariance

we could assess the reliability of the aerodynamic method, i.e. matching CO2 fluxes

lend credibility to the calculated GEM fluxes (assuming the CO2 fluxes determined by

EC to be accurate).10

After correction of the GEM and CO2 concentrations with respect to the measured

standards the atmospheric concentration trend was subtracted from the data by in-

terpolating the concentration measured at the top sampling line to the measurements

of the other lines. This step was considered essential as atmospheric concentrations

changed during the course of a measurement cycle of 50 min (i.e. 20 min for one height15

pair) and overlaid the measured gradients. Next, GEM and CO2 fluxes were calculated

according to Eq. 3 and 4 for four successive height pairs per measurement cycle. The

raw fluxes were then obtained by computing the median of these four values, thus

reducing uncertainty substantially.

As the sampled air was not dried the raw fluxes were corrected for density effects of20

water vapour according to Webb et al. (1980). A correction for sensible heat was not

considered necessary, because the sample air of all lines was brought to a common

temperature before reaching the analysers and because the Tekran instrument moni-

tors the GEM concentration relative to the sampled air mass with a mass flow controller.

Finally, the GEM and CO2 flux data were screened for outliers and values outside the25

range of the mean ±3 standard deviations of the whole period were rejected.
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3 Results

3.1 Data coverage

We performed our measurements at the three sites under fair weather conditions. How-

ever, due to power outages and showers during thunderstorms as well as instrument

failures, not all variables required to calculate the GEM and CO2 fluxes could be mea-5

sured continuously. As shown in Table 1 GEM fluxes could be computed for up to 85%

of the measurement periods. In Neustift and Oensingen the data coverage of the GEM

fluxes calculated by the MBR method was considerably reduced due to failure of the

eddy covariance systems.

As the resolution of gradient measurements is limited we determined the minimum10

resolvable gradient (MRG) in a similar way as described by Edwards et al. (2005). This

was done at Fruebuel by mounting all five sampling lines at 1 m above ground, measur-

ing the GEM and CO2 concentrations for three days and computing the concentration

differences between the line pairs used for the flux calculations. By defining the MRG

as the mean of the concentration differences plus one standard deviation we obtained15

MRG’s of 0.02 ng m
−3

for GEM and 2.5 ppm for CO2. This translates to minimum GEM

fluxes determinable with the aerodynamic method of −2.8 to −4.6 ng m
−2

h
−1

for typ-

ical daytime and −0.5 to −1.9 ng m
−2

h
−1

for typical night-time turbulence regimes

(for daytime u
∗
=0.17 to 0.27 m s

−1
and z/L=−0.49 to −0.16; for night-time u

∗
=0.032

to 0.11 m s
−1

and z/L=2.2 to 0.15 [data from the Fruebuel site]). Excluding outliers20

and flux values with gradients below the MRG, the overall data coverage for the GEM

fluxes at the three sites was between 27 and 58% (see Table 1 for details). However,

exchange rates calculated with smaller gradients than the MRG were included in the

results reported below, as average fluxes would otherwise be overestimated.
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3.2 Meteorological conditions

Meteorological conditions at the three sites were mainly sunny and stationary most

of the time (see Fig. 1 to 3 and Table 1). The measurement campaign in Oensingen

was scheduled for September 2006 when air temperature and irradiation were some-

what lower than at the other sites. However, conditions in Oensingen were unstable5

and very humid with evening and night-time thunderstorms. Atmospheric turbulence at

Fruebuel and Neustift was very similar with average values of 0.17 m s
−1

. The value for

Oensingen was lower with 0.12 m s
−1

. At the national air monitoring stations nearest

to Fruebuel and Oensingen average O3 concentrations of 123 and 25µg m
−3

, respec-

tively, were measured during the study periods.10

3.3 Atmospheric GEM concentrations

Average atmospheric GEM concentrations measured 1.7 m above ground were

1.2±0.2 ng m
−3

at both, the Fruebuel and Neustift sites, and 1.7±0.5 ng m
−3

at the

site in Oensingen (see Table 1). The highest concentration was measured in Oensin-

gen during daytime with 4.7 ng m
−3

, the lowest in Neustift with 0.5 ng m
−3

during the15

night (see Fig. 1 to 3). As can be seen in Fig. 4 the concentrations in Neustift and

Oensingen followed a distinct diurnal pattern with lowest GEM concentrations in the af-

ternoon between 14 and 15 h. This pattern was particularly pronounced in Neustift with

an average diurnal amplitude of 0.32 ng m
−3

. In contrast, a diurnal signal at Fruebuel

was absent and concentrations nearly constant.20

Calculation of the correlation coefficients between ambient GEM concentration and

meteorological variables revealed moderate linear relationships with relative humidity

and atmospheric O3 at Fruebuel and Oensingen (see Table 2). More pronounced cor-

relations of GEM concentration were detected in Neusitft for most variables, notably air

temperature and PAR, but no O3 record was available for this site.25
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3.4 CO2 and GEM fluxes

In Table 1 a summary of the average GEM and CO2 gradients and fluxes is given

for the investigated sites; the corresponding time series are shown in Fig. 1 to 3.

Due to large spread, fluxes and GEM gradients were smoothed with a 9-point mov-

ing average (which corresponds to an interval of ∼8 h). As expected, the verti-5

cal concentration gradients and fluxes of CO2 varied substantially between day and

night. While the highest average day-time gradient (9–15 h) was recorded at Fruebuel

with 9.3 ppm m
−1

, the highest average night-time gradient (23–5 h) was measured in

Neustift with −43 ppm m
−1

. The largest gradient of −220 ppm m
−1

was measured at

Oensingen during one night.10

As mentioned in the experimental section CO2 fluxes were determined two-fold, with

eddy covariance and the aerodynamic method. The former yielded on average a net

uptake or deposition of 6.4µmol m
−2

s
−1

and 5.3µmol m
−2

s
−1

at Fruebuel and Oensin-

gen, respectively, and a mean net CO2 emission of 3.6µmol m
−2

s
−1

in Neustift. With

the aerodynamic method average deposition of 5.4µmol m
−2

s
−1

and 1.7µmol m
−2

s
−1

15

were estimated for Fruebuel and Oensingen, and mean emissions of 17.9µmol m
−2

s
−1

for Neustift (only data overlapping with the EC data were considered). Over the two-

week period at Fruebuel CO2 fluxes showed a linear trend towards higher deposition

rates.

At all three sites GEM gradients showed a diurnal pattern, which was more pro-20

nounced at Fruebuel than at Neustift and Oensingen. Gradients were extremely small

with a maximum value of 0.40 ng m
−3

m
−1

at Oensingen. Average day-time gradi-

ents reached 20.0 ng m
−3

m
−1

at Fruebuel and were below the minimum resolvable

gradient at Neustift and Oensingen. With 0.06 ng m
−3

m
−1

the mean night-time gra-

dient was highest at Fruebuel; for Neustift and Oensingen mean values of 0.02 and25

−0.04 ng m
−3

m
−1

were calculated. At Neustift and Fruebuel night-time gradients were

highest in the early morning around 5 a.m. In contrast, night-time gradients at Oensin-

gen were negative between measurement days 6 and 10, and peaked before midnight.
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Figure 1 also shows, that the amplitude of the GEM gradient at Fruebuel increased

over time.

Computation of the fluxes yielded on average a small deposition of GEM at Fruebuel

and Neustift and slight emission in Oensingen. Both micrometeorological methods

were consistent regarding the sign of the average fluxes, but differed in their estimation5

of the exchange rates. At Fruebuel, the average GEM fluxes determined by the MBR

method and the aerodynamic method were −1.6 and −4.3 ng m
−2

h
−1

, respectively.

The corresponding exchange rates in Neustift were −0.5 and −2.1 ng m
−2

h
−1

and in

Oensingen 0.3 and 0.5 ng m
−2

h
−1

. The latter two values as well as the exchange rate

determined by MBR at Neustift were not significantly different from zero. The highest10

variability of the fluxes was recorded for Neustift with a range of −76 to 37 ng m
−2

h
−1

,

determined with the aerodynamic method. At Fruebuel fluctuations were smallest with

a range of −14 to 14 ng m
−2

h
−1

, again determined with the aerodynamic method. Aver-

age deposition velocities (vd=− FGEM/cGEM) for Fruebuel and Neustift were calculated

to be 0.04 and 0.01 cm s
−1

for the MBR method as well as 0.10 and 0.05 cm s
−1

for the15

aerodynamic method. A linear trend of the GEM flux overlaid by a diurnal pattern with

increasing amplitude was observed at Fruebuel. No such trend existed at Neustift and

Oensingen and diurnal fluctuations were only visible during some periods and were

more pronounced by the aerodynamic method.

4 Discussion20

4.1 Evaluation of micrometeorological methods

As every micrometeorological method, flux-gradient techniques have certain limita-

tions. One constraint is the footprint that depends on the prevailing atmospheric con-

ditions, site heterogeneity and measurement height. When measuring gradients, the

fetch of an upper sampling height is greater than the one at a lower sampling height25

and therefore generates some uncertainty. A further error is introduced by measuring in

1963

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/8/1951/2008/acpd-8-1951-2008-print.pdf
http://www.atmos-chem-phys-discuss.net/8/1951/2008/acpd-8-1951-2008-discussion.html
http://www.egu.eu


ACPD

8, 1951–1979, 2008

Mercury exchange of

temperate montane

grasslands

J. Fritsche et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

the so-called roughness sublayer, the region adjacent to the vegetation, that is directly

affected by the influence of the local plants. In this zone common flux-gradient relation-

ships become progressively less reliable as the gradient measurements approach the

vegetated surface (Raupach and Legg, 1984; Baldocchi, 2006). For some periods this

uncertainty had to be accepted in our study, as the measurements ran autonomously5

and the sampling lines could not be adjusted to the growing vegetation. Overall, er-

rors associated with the aerodynamic method range between 10 and 30% and are

greatest during periods with little turbulence (Baldocchi et al., 1988). Additionally, the

MBR methods assumes that the transport processes are identical for both species, i.e.

GEM and CO2 (Lenschow, 1995). In the roughness sublayer this assumption is not10

guaranteed and might be another source of uncertainty.

In general, the MBR method yielded smaller average fluxes than the aerodynamic

technique and on shorter time scales fluxes often differed considerably. The discrep-

ancies of the averaged fluxes are likely to be of methodological nature as the methods

differ in the way how they use the gradients to obtain the fluxes. While the aerodynamic15

method uses universal, empirical relationships to correct for atmospheric stability, the

MBR approach relies on the accurate flux determination of the surrogate scalar by an

independent method. The short-term fluctuations on the other hand are primarily the

result of non-synchronous concentration measurements at the various heights as well

as the rather low instrumental resolution of one flux value per 50 min and the small20

GEM gradients, which were around the minimum resolvable gradient of 0.02 ng m
−3

.

During several phases the two methods yielded different signs of the GEM flux (e.g.

day 11 in Fig. 2). Closer analysis of the data revealed that this was caused by the

smoothing process.

To evaluate the quality of the GEM fluxes, CO2 exchange rates were also estimated25

with the aerodynamic method and compared to the EC CO2 fluxes. Figures 1 and 2

illustrate that during some periods the aerodynamic technique strongly overestimated

night-time fluxes relative to the EC method. In the stable nocturnal boundary layer,

when u
∗

is small (<0.1 m s
−1

), turbulent exchange is inhibited and vertical concentration
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gradients increase. Moreover, the aerodynamic method is based on the momentum

flux equation as well as the wind speed/gradient relationship and requires some empir-

ical formulae to describe atmospheric stability (Baldocchi et al., 1988). Uncertainties

in these stability functions result in erroneous flux estimates for conditions of low tur-

bulence (this limitation also applies to the GEM fluxes).5

At Fruebuel we also obtained enhanced CO2 fluxes by the aerodynamic gradient

method during the day. This overestimation relative to the EC method might indicate

that the gradient was measured too close to the vegetation cover when the grass grew

closer to the lower sampling lines. Within and adjacent to the plant cover the universal

flux-gradient relationships are no longer valid. Two additional problems may contribute10

to the observed discrepancy of the measured fluxes: I) When measuring gradients too

close to the canopy, sources and sinks of CO2 may not be identical any more and II), the

footprints that are covered by the sampling lines at different heights are not identical.

These considerations would lend more credibility to the GEM fluxes determined by

MBR, as this method uses the ratio of the GEM and CO2 gradients and is thus more15

robust. However, more accurate results by the MBR method can only be expected if

sources and sinks of GEM and CO2 are equal and if the special variability of the GEM

and CO2 fluxes are similar. Both assumptions are generally not met.

4.2 Atmospheric GEM concentrations

The mean global GEM concentration is reported to be around 1.7 ng m
−3

(Valente20

et al., 2007). In Europe Munthe and Wängberg (2001) measured concentrations of

1.34 ng m
−3

at Pallas in Finnland and Kim et al. (2005) 1.55 ng m
−3

at Mace Head in

Ireland. The average concentrations of 1.20 to 1.66 ng m
−3

that we measured at our

sites are consistent with these observations.

Moderate correlations of GEM concentration with atmospheric O3 and relative hu-25

midity were detected. These relationships and the diurnal patterns of GEM and O3

support the notion that O3 is an effective reactant to remove Hg
0

from the atmosphere.
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Ozone has been identified to oxidise Hg
0

to Hg
2+

(Lin and Pehkonen, 1999; Lindberg

et al., 2007), and it has been shown that O3 concentrations as low as 20 ppb produce

measurable quantities of Hg
2+

in the atmosphere, which increase manifold with higher

concentrations and solar irradiation (Hall, 1995). This would also explain the good

correlation of GEM concentration with PAR at the Neustift site. In contrast, no effect5

of relative humidity on the reaction rate has been reported by Hall (1995). However,

hydroxyl radicals which are another oxidant of Hg
0

are formed by the reaction of water

vapour with photolysed ozone. This may clarify our observed correlation with relative

humidity, although there might not be a cause and effect relationship.

The plot for Oensingen in Fig. 5 illustrates the diurnal fluctuations of GEM and O310

clearly. However, deposition of GEM resulting from O3 oxidation was not visible in

the flux data as the extremely small variations in the GEM gradients caused by this

reaction could not be resolved and the oxidised mercury might not have been deposited

immediately. At Fruebuel the daily variations were less pronounced, which seems to

be the result of the exposed location of this site. Fruebuel is located on a plateau and15

is likely to receive fresh air by advection also during the night, which attenuates the

diurnal signal of GEM and O3. Oensingen and Neustift on the other hand are situated

in valleys where air exchange in the stable nocturnal boundary layer is restricted and

O3 formed during the day is decomposed at higher rates.

4.3 GEM exchange between atmosphere and grassland20

With average GEM gradients between 0.02 and 0.06 ng m
−3

m
−1

, ranging from −0.40

to 0.27 ng m
−3

m
−1

our results are comparable to gradients measured in other ecosys-

tems. For example, Lindberg and Meyers (2001) measured GEM gradients of

0.03±0.03 ng m
−3

m
−1

over wetland vegetation, Kim et al. (1995) determined values

of −0.16 to 0.32 ng m
−3

(over 1.4 m) above forest soils in eastern Tennessee and Lind-25

berg et al. (1998) measured gradients of −0.091 to 0.064 ng m
−3

m
−1

over forest soils

in Sweden.
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Although the GEM fluxes varied rather strongly, small but statistically significant net

deposition rates could be observed at Fruebuel and Neustift. Similar exchange rates

– but with inconsistent flux directions – have been estimated for various ecosystems.

For example, Obrist et al. (2006) measured a mean deposition rate of 0.2 ng m
−2

h
−1

at

another montane grassland site in Switzerland. In Canada Schroeder et al. (2005) ob-5

served fluxes between −0.4 to 2.2 ng m
−2

h
−1

over forest soils and 1.1 to 2.9 ng m
−2

h
−1

over agricultural fields. Values between −2.2 ng m
−2

h
−1

and 7.5 ng m
−2

h
−1

were also

measured for forest soils by Kim et al. (1995), and Ericksen et al. (2006) determined a

mean emission of 0.9 ±0.2 ng m
−2

h
−1

from different background soils across the USA.

Emissions of 8.3 ng m
−2

h
−1

from a grassy site were measured by Poissant and Casimir10

(1998). In contrast, relatively high exchange rates in remote ecosystems are reported

by Lindberg et al. (1992) who determined GEM emissions of 50 ng m
−2

h
−1

from forest

soils and Cobos et al. (2002) who measured fluxes of −91.7 to 9.67 ng m
−2

h
−1

over

an agricultural soil. Different methods were used in these studies and might explain

some of the divergence between the findings. However, fluxes measured by our group15

at four different sites (Obrist et al., 2006, this study) indicate net deposition of GEM

and imply that grasslands of the temperate montane climate belt are small net sinks for

atmospheric mercury.

Other than at Fruebuel and Neustift our methods yielded no net flux in Oensingen.

This discrepancy might be attributed to natural variability, as the observed background20

fluxes are already extremely low. However, during a period of four days, night-time

GEM emission was observed (see Fig. 3). Heavy showers during thunderstorms be-

tween days 4 and 6 increased the soil water content by approx. 25%, which started

to drop again during day six. It appears that the soil surface got waterlogged and as

soon as the soil started to dry up again, gaseous mercury could evade from the soil25

(this process is also reflected in the concurrent CO2 gradients and fluxes shown in

Fig. 3). During the day no GEM emission was visible, which might be explained by the

presence of O3 that readily oxidises Hg
0
.

At Fruebuel and Neustift night-time GEM gradients followed the pattern of relative
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humidity. Therefore, we suggest that during the night GEM was co-deposited with

water condensing on the vegetation surfaces. Although incorporation of mercury into

the plant material is conceivable, GEM was eventually re-emitted from the plant surface

in the morning when temperature increased and water evaporated again. This re-

emission might take place at a fast rate during a short interval that is not resolvable5

with our measurement technique.

A linear trend of the GEM flux could be observed at Fruebuel, resulting from the grow-

ing vegetation after a grass cut at the beginning of the campaign. In part this trend is

artificial as the growing grass increases the atmospheric roughness sublayer, thereby

reducing turbulence and enhancing the GEM gradients. However, with increasing plant10

surface area more GEM may be adsorbed by vegetation and adds to the positive gra-

dients. The unbiased part of the trend is reflected in the CO2 flux estimated by EC, the

method that is independent of gradients measurements. In Neustift, where the grass

was also cut at the start of the measurement campaign, no such trend was visible.

The flux signal rather seems to have a component with a periodicity of 4 to 5 days that15

conceals any long-term trend. Further investigations would be required at this site to

ascertain the processes resulting in this signal.

5 Conclusions

In order to estimate air-surface GEM fluxes of uncontaminated grasslands along the

Swiss and Austrian Alps we applied two micrometeorological methods. Both, the aero-20

dynamic and the MBR methods proved suitable to estimate net exchange rates on time

scales of a few hours and longer. Due to the required pre-concentration technique for

the detection of GEM, fluxes could not be resolved sufficiently on shorter time scales.

With respect to gaseous exchange our results suggest that grasslands of the tem-

perate montane climate are a net sink for atmospheric mercury. This sink is very small25

compared to emissions of contaminated and naturally enriched areas (these are in

the order of 100 to >1000 ng m
−2

h
−1

). Nonetheless, mercury deposition to remote
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terrestrial ecosystems could add to significant amounts if these fluxes are confirmed in

other systems. On the condition, that deposited mercury is stably bound in the pedo-

sphere, this would also entail a long-term reduction in atmospheric mercury.

At two of our sites we observed day-time depletion of GEM, which is likely to be

attributable to the oxidation of GEM by O3 and other reactive trace gases. However, a5

net increase of the GEM deposition flux caused by O3 oxidation could not be resolved

with the applied methods. On the other hand, night-time deposition of GEM was mea-

sured frequently and seems to be the result of co-precipitation with condensing water.

The effect of rain on the soil-atmosphere exchange of GEM is visible on the ecosystem

level. Initially wet, drying surface soil seems to result in enhanced GEM emission that10

lasts for several days.
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Table 1. Summary of site specifications, environmental conditions as well as atmospheric GEM

and CO2 data.

Variable  Unit  Fruebuel  Neustift  Oensingen 

Site 
Location  [‐]  47°6’47” N 

8°32’16” E 
47° 07ȇ 00Ȉ N 
11° 19ȇ 07Ȉ E 

47° 17ȇ 8.3Ȉ N 
7° 43ȇ 55.7Ȉ E 

Measurement period  [‐]  06.07.06 – 20.07.06  14.06.06 – 29.06.2006  14.09.06 – 26.09.06 
Elevation  [m]  1000  970  450 
Mean annual temperature  [°C]  7.0  6.3  9.5 
Mean annual precipitation  [mm]  1200  850  1100 

Soil specifications 
Type  [‐]  gleyic cambisol  gleyic fluvisol  stagnic cambisol 
Bulk density (A‐horizon)  [g cm−3]  1.50  1.03  1.2 
Corg (A‐horizon)  [mg g−1]  18  28  28 
pH (A‐horizon)  [‐]  4.5  6.1  5.3 
Hgtot concentration  [ng g−1]  100.8  43.9  71.2 

Micrometeorological conditions during measurements 
Air temperature, mean  [°C]  18.5  20.7  15.8 
PAR, mean  [μmol m−2s−1]  560  550  310 
Relative humidity, mean  %  75.9  69.7  95.6 

*
u , mean  [m s−1]  0.17  0.17  0.12 
Water vapour flux, mean  [mmol m−2s−1] 2.7  2.0  1.7 
Precipitation, total  [mm]  26  0  90 
Soil water content, mean  [m3 m−3]  0.32  0.22  0.44 

Data coverage of GEM fluxes determined by aerodaynmic / MBR methods 
Measurement coverage  %  84 / 84  85 / 73  68 / 40 
Flux data coveragef  %  58 / 58  44 / 44  49 / 27 

Atmospheric GEM 
GEM concentration, mean  [ng m−3]  1.20  (0.76 to 1.61)c  1.22  (0.48 to 1.70) c  1.66  (0.94 to 4.71) c 
GEM gradienta, day, mean  [ng m−4]  0.02  (−0.04 to 0.13)c <0.02  (−0.06 to 0.07)c  <0.02  (−0.32 to 0.16)c 
GEM gradienta, night, mean  [ng m−4]  0.06  (−0.03 to 0.27)c 0.02  (−0.06 to 0.17)c  −0.04  (−0.40 to 0.11)c 
GEM flux, MBR, mean  [ng m−2h−1]  −1.6  (−14 to 14)c  −0.5b  (−76 to 37) c  0.3b  (−18 to 30) c 
GEM flux, aerodynamic, mean  [ng m−2h−1]  −4.3  (−27 to 14)c  −2.1  (−41 to 26) c  0.5b  (−33 to 33) c 
Deposition velocity, mean ± std  [cm s−1]  0.10  ±0.16  0.05  ±0.16  ‐   
Number of determinations  [‐]  327    355    235   

Atmospheric CO2 
CO2 gradienta, day, mean  [ppm m−1]  9.3  (−1.4 to 19)c 3.4  (−7.6 to 9.6)c  7.8  (−6.1 to 18)c 
CO2 gradienta, night, mean  [ppm m−1]  −28  (−70 to 2.0)c −43  (−170 to 12)c  −36  (−220 to 0.1)c 
CO2 flux, ECe, mean  [μmol m−2s−1]  −6.4  (−44 to 58)c  3.6  (−40 to 33)c  −5.3  (−23 to 18) c 
CO2 flux, aerodynamic, mean  [μmol m−2s−1]  −5.4  (−64 to 61)c  17.9  (−50 to 95)c  −1.7  (−27 to 106) c 
a calculated as described in section 2.5 
b not significantly different from zero 

c range 
d standard error 

e determined by eddy covariance 
f minimum resolvable gradient as mean +1 std 
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Table 2. Correlation of GEM concentration with meteorological variables.

Variable  Fruebuelb  Neustiftc  Oensingend 
  r  p  r  p  r  p 

Air temperature  −0.39  < 0.05  −0.77  < 0.05  −0.30  < 0.05 
Soil temperature  −0.28  < 0.05  −0.64  < 0.05  −0.26  < 0.05 
PAR  −0.17  < 0.05  −0.56  < 0.05  −0.27  < 0.05 
Soil water content  0.44  < 0.05  0.31  < 0.05  −0.30  < 0.05 
Absolute  humidity  0.44  < 0.05  0.65  < 0.05  −0.08  0.14 
Relative humidity  0.66  < 0.05  0.82  < 0.05  0.47  < 0.05 
CO2 concentration (LI‐6262)  0.11  < 0.05  0.31  < 0.05  0.66  < 0.05 
CO2 flux (eddy covariance)  0.21  < 0.05  0.09  0.15  −0.03  0.81 
H2O flux (eddy covariance)  −0.16  < 0.05  −0.61  < 0.05  −0.52  < 0.05 
O3 concentrationa  −0.43  < 0.05  ‐  ‐  −0.54  < 0.05 
Wind speed  0.05  0.35  −0.52  < 0.05  −0.33  < 0.05 

adata from nearest national monitoring station; bN=255 – 390; cN=194 – 375; dN=31 – 337 
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Fig. 1. Time series of measurements at Fruebuel. From top to bottom: air temperature

(Tair), photosynthetically active radiation (PAR), atmospheric GEM concentration at 1.7 m above

ground (GEMair), friction velocity (u
∗
), GEM gradients and relative humidity, CO2 gradients, tur-

bulent fluxes of GEM (determined by the aerodynamic and MBR methods) and CO2 (deter-

mined by the aerodynamic method and the eddy covariance technique). Flux data and GEM

gradients were filtered by a 9-point moving average. Positive fluxes indicate emission, negative

deposition.
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Fig. 2. Same as Fig. 1, but for study site Neustift.
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Fig. 3. Same as Fig. 1, but study site Oensingen. Soil water content is shown instead of relative

humidity in panel four.
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Fig. 4. Diurnal trend of atmospheric GEM concentrations at the three study sites. Shown are
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Oensingen 11 days).
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