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Abstract

The NASA Global Modeling Initiative has developed a combined strato-

sphere/troposphere chemistry and transport model which fully represents the pro-

cesses governing atmospheric composition near the tropopause. We evaluate model

ozone distributions near the tropopause, using two high vertical resolution monthly5

mean ozone profile climatologies constructed with ozonesonde data, one by averaging

on pressure levels and the other relative to the thermal tropopause. Model ozone is

high-biased at the SH tropical and NH midlatitude tropopause by ∼45% in a 4
◦

lati-

tude × 5
◦

longitude model simulation. Increasing the resolution to 2
◦
×2.5◦

increases

the NH tropopause high bias to ∼60%, but decreases the tropical tropopause bias10

to ∼30%, an effect of a better-resolved residual circulation. The tropopause ozone

biases appear not to be due to an overly vigorous residual circulation or excessive

stratosphere/troposphere exchange, but are more likely due to insufficient vertical res-

olution or excessive vertical diffusion near the tropopause. In the upper troposphere

and lower stratosphere, model/measurement intercomparisons are strongly affected15

by the averaging technique. NH and tropical mean model lower stratospheric biases

are <20%. In the upper troposphere, the 2
◦
×2.5◦

simulation exhibits mean high bi-

ases of ∼20% and ∼35% during April in the tropics and NH midlatitudes, respectively,

compared to the pressure-averaged climatology. However, relative-to-tropopause aver-

aging produces upper troposphere high biases of ∼30% and 70% in the tropics and NH20

midlatitudes. This is because relative-to-tropopause averaging better preserves large

cross-tropopause O3 gradients, which are seen in the daily sonde data, but not in daily

model profiles. The relative annual cycle of ozone near the tropopause is reproduced

very well in the model Northern Hemisphere midlatitudes. In the tropics, the model

amplitude of the near-tropopause annual cycle is weak. This is likely due to the annual25

amplitude of mean vertical upwelling near the tropopause, which analysis suggests is

∼30% weaker than in the real atmosphere.
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1 Introduction

The tropopause is surrounded by a transition region that is strongly influenced by both

tropospheric and stratospheric processes (Holton et al., 1995; Wennberg, et al., 1998;

Rood et al., 2000; Gettelman et al., 2004; Pan et al., 2004). It is a challenge to repre-

sent this “near-tropopause region” (NTR) in global models of atmospheric composition.5

Many models do not consider all of the processes that influence the NTR, because

they were designed for reasons of practicality and interest to focus on either the strato-

sphere or the troposphere, but not both (e.g., Douglass and Kawa, 1999; Bey et al.,

2001; Horowitz et al., 2003; Rotman et al., 2001).

Computational advances have allowed a class of composition models to be devel-10

oped recently that include both the stratosphere and the troposphere (e.g., Rotman et

al., 2004; Chipperfield, 2006; Kinnison et al., 2007). The NASA Global Modeling Initia-

tive (GMI) has constructed such a model (the Combo model), which includes a nearly

complete treatment of both stratospheric and tropospheric photochemical and physical

processes. (Schoeberl et al., 2006; Ziemke et al., 2006; Duncan et al., 2007; Strahan15

et al., 2007). It uses the Lin and Rood (1996) transport scheme, which has been shown

recently to be superior to spectral and semi-Lagrangian transport in representing the

strong vertical tracer gradients that characterize the NTR (Rasch et al., 2006).

The Combo model has been shown to have many favorable characteristics in the

NTR, when it utilizes meteorological data from a GCM. This includes good lower strato-20

spheric transport (Douglass et al., 2003), and credible cross-tropopause mass and

ozone fluxes (Olsen et al., 2004). Schoeberl et al. (2006) demonstrated that the Combo

model reproduces the observed “tape recorder” characteristics of CO across the trop-

ical tropopause. Strahan et al. (2007) showed that the model agrees well with many

characteristics of satellite and aircraft observations of CO, O3, N2O, and CO2 in the25

lowermost stratosphere. They also found realistic correlations between O3 and CO

near the extratropical tropopause.

Ozone is an important species to represent well in the NTR, due to its central role
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in upper tropospheric chemistry (e.g., Müller and Brasseur, 1999), and its effect on

the radiative balance of the atmosphere (Lacis et al., 1990). Typically, modeled NTR

ozone mixing ratios are substantially higher than observed, particularly just below the

tropopause (Wauben et al., 1998). Here we exploit the high vertical resolution of

ozonesonde data to evaluate how well the GMI Combo model is able to reproduce5

NTR ozone distributions. We explore the mechanisms responsible for any deficiencies

that we find. We focus on a climatological evaluation due to the GCM source of the

meteorological data used to drive the GMI CTM. Following Logan (1999a), we con-

struct climatological monthly average ozone profiles from the ozonesonde data. The

23-station climatology exploits the availability of a now-substantial number of tropical10

sondes from the SHADOZ network (Thomson et al., 2003a) to more fully represent the

tropics than has been previously possible.

We also investigate the effects and importance of averaging relative to the

tropopause versus averaging at constant pressure levels to create the monthly pro-

files from daily ozonesondes. Averaging relative to the tropopause was shown by Lo-15

gan (1999a) to substantially increase cross-tropopause vertical gradients in monthly

averages. How this affects a model/measurement intercomparison has not yet been

thoroughly investigated.

In Sect. 2 we describe the ozonesonde climatologies constructed for this compari-

son. The GMI Combo model is described in Sect. 3. Section 4 presents comparisons20

between modeled distributions and the climatologies. We summarize these results and

draw conclusions in Sect. 5.

2 Ozonesonde data set description

The ozonesonde data were analyzed in a manner similar to that described in Logan

(1999a). She presented monthly averages for ozone on standard pressure levels, and25

on an altitude grid relative to the height of the thermal tropopause. At the time, data

were available for only two tropical sonde stations. Here we use data from 10 tropi-
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cal stations in the Southern Hemisphere Additional Ozonesondes (SHADOZ) network

(Thompson et al., 2003a), which started in 1998; two of these are in the northern hemi-

sphere (NH). We use data from 12 extratropical stations in the NH. Station details are

given in Table 1 and shown in Fig. 1.

The analysis was the same as that in Logan (1999a) with the following differences:5

the base period for the analysis was updated to 1985–2000 for the extratropical sta-

tions, and to all available data for the tropical stations, which have shorter records;

the pressure levels were changed from irregular intervals (1000, 900, 800 hPa etc.) to

35 levels equally spaced in pressure altitude between 1000 and 5 hPa (∼1 km apart),

and averages were formed for each pressure level, with interpolation used only if there10

were no measurements in a layer. This last change was made because the data are

now available with much higher vertical resolution than previously, when the poor res-

olution required that interpolation be used.

Exactly the same profiles were used to form the monthly means on the pressure

levels and on the altitude grid relative to the thermal tropopause. Some profiles were15

eliminated from the analysis as the tropopause levels derived from the temperature

profiles were clearly unrealistic, as discussed in Logan (1999a). The data relative to

the tropopause were interpolated to a grid with 1 km resolution in geometric altitude,

extending from 6 km below the tropopause to 12 km above it. These profiles were

averaged together to produce monthly means relative to the tropopause, the RTT cli-20

matology. There are about 150 profiles in the monthly means for the European sonde

stations, about 80 for the other extratropical stations, and about 22 for the tropical

stations.

Several factors motivated the choice to use the thermal tropopause as a refer-

ence. Temperature is simultaneously measured with ozone for each sonde, provid-25

ing a straightforward and high-resolution profile enabling accurate identification of the

thermal tropopause. Use of a dynamical tropopause definition based on potential vor-

ticity (PV) would require interpolating relatively low vertical and horizontal resolution

PV fields from one of several available analyzed data sets to the sonde profiles. Pan et
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al. (2004) found that the chemical transition layer surrounding the tropopause defined

by CO and O3 correlations centered on the thermal tropopause, also supporting the

use of the thermal tropopause.

3 Model and run description

The GMI Combo model is described in Duncan et al. (2007) and Strahan et al. (2007).5

The basic structure of the Combo model, without photochemical modules, is also given

in Considine et al. (2005). Here, we present details salient to this study. The Combo

model is an outgrowth of the original GMI model, a stratospheric CTM described in

Rotman et al. (2001). The complete Combo model also includes a full treatment of both

stratospheric and tropospheric photochemistry. In this study, we run the Combo model10

at horizontal resolutions of 4
◦

latitude by 5
◦

longitude and 2
◦

by 2.5
◦
. The model has 42

levels, extending from the surface up to 0.01 hPa. The resolution at the tropopause is

about 1 km.

For this study, the Combo model was driven by meteorological data generated from

a 50-year run of the GMAO GEOS4 AGCM (Bloom et al., 2005). This run was driven15

by observed sea surface temperatures, but was otherwise unconstrained. We use a

5-year subset corresponding to the years 1994–1998. The GEOS4 AGCM has both

deep (Zhang and McFarlane, 1995) and shallow (Hack, 1994) convective transport

parameterizations.

The Combo model uses a 114-species chemical mechanism combining the strato-20

spheric mechanism of Douglass et al. (2004) with the tropospheric chemical mecha-

nism of Bey et al. (2001). Species transport is calculated using the flux-form semi-

Lagrangian scheme of Lin and Rood (1996). The chemical mechanism describes both

stratospheric halogen chemistry and tropospheric nonmethane hydrocarbon chemistry,

including isoprene oxidation. Both stratospheric and tropospheric heterogeneous re-25

actions are included in the chemical mechanism. PSCs are parameterized using the

scheme of Considine et al. (2000). Tropospheric heterogeneous reactions occur on
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tropospheric sulfate, dust, sea-salt, and organic and black carbon aerosol distributions

generated by the Goddard Chemistry, Aerosol, Radiation and Transport model (Chin

et al., 2002).

Mixing ratio boundary conditions for stratospheric source gases, N2O, and CH4 cor-

respond to the mid-1990’s. Surface emission inventories are described in Bey et5

al. (2001) and Duncan et al. (2003), and represent rates typical of the mid-1990’s.

Lightning NOx is also included as monthly mean emissions fields. The lightning source

is 5.0 Tg N/y. The horizontal distribution of lightning emissions is based on the ISCCP

deep convective cloud climatology as described in Price et al. (1997). Lightning flash

rates are from Price and Rind (1992), and the vertical distribution of lightning NOx is10

based on the cloud resolved convection simulations of Pickering (1998).

The initial condition was taken from a 10-year spinup run of the Combo model, which

is enough time for stratospheric species to converge to an approximate annually repeat-

ing steady-state condition well above the lower stratosphere, the focus of this study.

Diurnal average 3-D gridded ozone distributions were output daily. These were inter-15

polated to the ozonesonde station locations, and used to construct the monthly average

profiles we compare to observations in the next section.

4 Results

4.1 Global comparisons

We first provide a global-scale perspective for subsequent comparisons with the20

ozonesonde climatologies. Figure 2 compares model column ozone distributions from

the 2
◦
×2.5◦

model run throughout the year with 1994–1998 average column ozone from

the merged Total Ozone Mapping Spectrometer (TOMS)/Solar Backscatter Ultraviolet

(SBUV) measurement data set (Stolarski and Frith, 2006). The model reproduces well

the observed average global total ozone distribution during this time period. The an-25

nual cycle of tropical total ozone is represented well, though model values are about
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20 DU low compared to the TOMS observations. The model NH springtime peak of

∼400 DU is a few DU low, occurs ∼2 weeks early, and is not distinctly off the pole as is

the case with the observations. The NH high latitude summertime ozone decrease is

reproduced well. In the SH, the model area over 340 DU is smaller than observed, but

is otherwise in good agreement. The model produces a convincing ozone hole. Low5

model values at high latitudes during the SH summer suggest a somewhat too-isolated

SH polar region during the spring and summer. Since total ozone is very sensitive

to the stratospheric residual circulation, the good agreement between observed and

modeled total ozone suggests that the stratospheric residual circulation of the GEOS-4

AGCM is fairly realistic.10

Figure 3 compares the model zonal mean distribution of stratospheric ozone in April

from the 2
◦
×2.5◦

model run with observations made during April by the Halogen Oc-

cultation Experiment (HALOE) on board the Upper Atmosphere Research Satellite

(UARS) between 1994 and 1998 (Russell et al., 1993). The figure shows excellent cor-

respondence between the observations and the model throughout most of the strato-15

sphere. The model is generally within 10% of observations. There is a high-bias of up

to 30% in the tropical lower stratosphere compared to HALOE observations, which will

be discussed further below. Overall, the comparison reveals no serious deficiencies in

the model representation of stratospheric ozone distributions.

The 4
◦
×5

◦
model run also compares very well with the merged total ozone and20

HALOE data (not shown). The differences that exist, such as a shallower ozone hole

and somewhat larger model high-biases in the tropical lower stratosphere, are gener-

ally minor in this global perspective.

4.2 Tropopause heights

As a test of model meteorological characteristics in the NTR, we first compare modeled25

and observed tropopause heights at selected stations in Fig. 4. Solid lines show mean

values, dashed lines show medians. The stations were chosen to span the latitude

range of the observations and show typical results. The differences between monthly
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mean and median tropopause heights are small at all stations in both the observations

and the model. There is good agreement between modeled and observed tropopause

pressures, including the annual cycle. Differences are largest at Resolute (75
◦
N) and

at Wallops Island (38
◦
N).

Table 2 provides a summary of the comparisons for all stations. The model5

tropopause is typically at slightly lower pressures than observed, except for Uccle,

Paramaribo, Java, and Reunion Island. There is anomalously poor agreement at

Tateno (36
◦
N), with model pressures ∼21% lower than observations. This is primar-

ily a consequence of temperature profiles with double tropopauses, which sometimes

occur near the subtropical jet. Due to this poor agreement, we exclude Tateno from10

further analysis.

4.3 Tropopause ozone

Figure 5 compares for the 4
◦
×5

◦
model run the annual cycle of observed monthly mean

tropopause ozone (black line) with model monthly mean tropopause ozone (red line)

and model ozone values sampled at observed tropopause altitudes (blue line). Ozone15

at the model tropopause is higher than observed values, both in the tropics and NH

extratropics and throughout the year. Figure 5 shows that the model high bias is oc-

casionally due simply to a higher tropopause in the model than observations – for

instance, at Resolute after March. However, at most other locations model ozone is

high-biased even at the observed tropopause. Figure 5 also shows that the annual cy-20

cle of model tropopause ozone is generally similar in phasing to the observations. The

absolute magnitude of the annual cycle in the model at these locations is also similar to

the observations, though in percentage terms the annual cycles are somewhat weaker

than is observed.

Figure 6 shows results for the 2
◦
×2.5◦

run. The tropopause ozone bias in the extrat-25

ropics is largest during the spring and summer. At Resolute, Goose Bay, and Edmon-

ton, peak ozone values are about 75 ppbv higher than the 4
◦
×5

◦
run. At Payerne and

Sapporo, there are smaller increases of ∼30 ppbv. The tropical stations show a smaller
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ozone high bias compared to the 4
◦
×5

◦
run.

Figure 7 shows the percent difference between modeled and observed annually av-

eraged tropopause ozone for all stations, as a function of station latitude. Results for

both the 4
◦
×5

◦
and 2

◦
×2.5◦

model runs are shown. In the extratropics (38
◦
–75

◦
N),

where annual mean tropopause ozone is 116–149 ppbv, the model has a high bias of5

36–72% in the 4
◦
×5

◦
run (mean 45%). The extratropical high bias in the 2

◦
×2.5◦

model

run is significantly larger, with the mean bias increasing to ∼61%. However, there are

reductions for Boulder and Wallops Island, the two lowest-latitude midlatitude stations

considered. In the tropics, observed annual mean tropopause ozone is 58–130 ppbv.

The 4
◦
×5

◦
run shows a high bias of 17–63% (mean 43%) in the tropics. This drops to10

∼31% in the 2
◦
×2.5◦

model run.

The fact that model tropopause high biases are larger in the 2
◦
×2.5◦

run at midlati-

tude stations, and smaller in the tropics, may be explained by lower effective horizontal

diffusion in the higher resolution run. Strahan and Polansky (2006) showed that simula-

tions at 2
◦
×2.5◦

better resolved the stratospheric subtropical and polar mixing barriers,15

leading to larger horizontal gradients and improving the simulation of stratospheric dy-

namical features. Reduced horizontal mixing between the tropics and the midlatitudes

would tend to decrease tropical mixing ratios and increase those at mid and higher

latitudes.

A possible explanation for the ozone high bias at the tropopause seen in both sim-20

ulations is an overly vigorous residual circulation in the GEOS 4 AGCM. Strahan et

al. (2007) found overly strong ascent and mixing in the GEOS 4 AGCM tropical lower

stratosphere, particularly during the fall, suggesting that the residual circulation may

be too strong. Since according to Olsen et al. (2007) the residual circulation is strongly

correlated with stratosphere-troposphere exchange, we performed linear regressions25

of the 60 (5 years at 12 months/year) zonal mean, monthly mean O3 values at each

NH latitude and pressure level in the 4
◦
×5

◦
run of the Combo model with the 60 values

of monthly mean NH extratropical cross-tropopause O3 flux, calculated as described

in Olsen et al. (2004). From these regressions we calculated at each latitude and
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pressure level the linear correlation and fractional sensitivity (percent change in O3 per

percent change in flux) of zonal mean, monthly mean O3 with the monthly mean NH

cross-tropopause flux of O3. This is shown in Fig. 8. The top panel of Fig. 8 shows that

O3 near the tropopause is strongly positively correlated with STE poleward of ∼30
◦
.

The correlation remains high throughout most of the extratropical stratosphere. The5

bottom panel suggests that a 1% increase in STE results in an ∼0.5–0.6% increase in

tropopause O3. Given the NH mean high bias of ∼45%, Fig. 8 suggests that a reduction

in STE of ∼90% would be required to eliminate the model high bias at the tropopause

in the NH.

Model STE of NH extratropical O3in the 4
◦
×5

◦
run is −266±9 Tg yr

−1
, which agrees10

well with several other estimates (Olsen et al., 2004). A 90% reduction is therefore un-

reasonable. Changes to the residual circulation of the magnitude necessary to reduce

STE by 90% would also adversely affect the good agreement of stratospheric O3 with

observations shown in Figs. 2 and 3, in addition to increasing the tropical tropopause

ozone high bias. Thus Fig. 8 does not support the idea that the ozone high biases at the15

model tropopause can be explained simply by an overly vigorous residual circulation

and consequently too much STE. Additional evidence for the soundness of the GEOS4

AGCM meteorological data is provided in Strahan et al. (2007), which demonstrates

that transport processes connecting the tropical lower and upper troposphere, and be-

tween the tropical UT and the extratropical lowermost stratosphere are represented20

correctly.

Other possible contributors to the model high bias include insufficient vertical reso-

lution at the tropopause and an overly vertically diffusive transport scheme. Rasch et

al. (2006) demonstrated that the Lin and Rood transport scheme used in the Combo

model is substantially less vertically diffusive than other popular schemes for simulat-25

ing tracer transport in the NTR. Thus it is most likely that higher vertical resolution in

the NTR is necessary to eliminate the high bias of tropopause ozone.
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4.4 Effects of averaging method on ozone gradients

In making comparisons of the observed and modeled vertical distribution of ozone,

we consider two approaches: a pressure coordinate and a vertical coordinate defined

relative to the tropopause. We illustrate the differences between the two averaging

methods in Fig. 9. Figure 9a shows as a function of pressure the 49 sonde profiles5

in the climatologies sampled at Edmonton for Januarys between 1985 and 2000 (red

lines), the monthly average vertical profile averaged at constant pressure levels, and

one standard deviation error profiles (black lines). The figure shows that tropopause

pressures (black crosses) are spread over the region within about one half of an e-fold

of the monthly median tropopause pressure. Figure 9b shows the same profiles in a10

RTT coordinate system, as well as the monthly mean profile averaged in RTT coordi-

nates along with the plus and minus standard deviations. It is obvious that the profiles

are more organized in Fig. 9b compared to Fig. 9a, especially near the tropopause, be-

cause a substantial fraction of the variability is related to daily changes in tropopause

height. Fig. 9c compares the monthly average profiles and the standard deviations15

shown in Fig. 9a and b. It is important to note that to plot the RTT-average profile as a

function of pressure in Fig. 9c, we have normalized the RTT-average profile relative to

the monthly median tropopause pressure. Figure 9c illustrates that pressure-averaging

results in weaker cross-tropopause gradients and larger UT ozone mixing ratios than

the RTT-averaged values near the tropopause. RTT-averaging also reduces the vari-20

ability near the tropopause. Figure 9d shows the percent deviation of the pressure-

averaged profile from the RTT-averaged profile. Differences peak in the UT, with pres-

sure averaged values up to 40% higher than RTT-averaged results.

Figure 10 shows model ozone profiles at Edmonton. (Results from the 2
◦
×2.5◦

run

are shown, but there is little difference between the two resolutions.) Figure 10a shows25

that model tropopause pressure variablity is similar to observations (the standard devi-

ation of the model tropopause pressure at Edmonton during January is ∼20% smaller

than observations). As is observed, the RTT-averaged profiles shown in Fig. 10b are
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more organized than in Fig. 10a. Unlike the observations, Fig. 10c shows similar

but smaller differences between pressure averaging and RTT-averaging, both in the

change in upper tropospheric ozone values and profile variability. Figure 10d shows

that the percent deviation of the pressure-averaged profile from the RTT-averaged pro-

file is ∼8%, smaller than the observed ∼40% difference shown in Fig. 9d.5

The results shown in Figs. 9d and 10d are typical at other locations and times of

year. Model discrepancies between the two averaging techniques are generally small,

while the differences between observed profiles averaged using these two techniques

are much larger. Logan (1999a) showed that the vertical gradient in monthly averaged

ozone profiles constructed from sondes is on the order of a factor of 2 steeper when10

averaged relative to the tropopause. Here, we see that the model does not correctly

reproduce the atmosphere in this regard. As a result, good agreement between mod-

eled and observed pressure-averaged results does not imply good correspondence

between modeled and observed cross-tropopause O3 profiles. Comparing RTT aver-

ages should provide a more accurate picture of the discrepancies between the model15

and observations.

We suggest an explanation of the model insensitivity to averaging technique, with

the following heuristic example: Presume that the ozone change in the model between

its characteristic stratospheric and tropospheric values is given by ∆O3, and the char-

acteristic vertical depth of the region over which the transition occurs is given by the20

distance ∆zNTR. Then the ozone gradient across this region in a daily ozone profile is

just S=∆O3/∆zNTR. Over the course of a month, the transition region will move up and

down in altitude as the tropopause height varies by some amount ∆zTROP. The RTT

average will be insensitive to this movement, so we will just have: <S>RTT∼S. How-

ever, the tropopause variability will smear the gradient in a pressure average, giving a25

slope of: <S>PRESS∼∆O3/(∆zNTR+∆zTROP)=<S>RTT×∆zNTR/(∆zNTR+∆zTROP). This

equation suggests that the larger the size of the transition region between the tropo-

sphere and stratosphere (∆zNTR) relative to the monthly variability of the tropopause

height (∆zTROP), the smaller the difference between RTT and pressure averaging. Thus
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the weakness of the daily profile vertical gradients shown in Fig. 10b can produce a

smaller than observed sensitivity to the averaging technique. The equation also sug-

gests that overly weak tropopause pressure variability can result in low sensitivity to

averaging technique. However, the ∼20% weaker tropopause height variability seen

in the model is not large enough to account for the much weaker model sensitivity to5

averaging technique compared to observations.

4.5 Profile ozone comparisons

Figure 11 shows 2
◦
×2.5◦

run profile comparisons with observations of ozone mix-

ing ratios from a pressure of half an efold below the observed monthly median

tropopause pressure to half an efold above at Resolute, Hohenpeissenberg, and As-10

cension. Shown are model RTT-averaged monthly mean profiles, plotted relative to

the model monthly median tropopause (red), and relative to the observed monthly me-

dian tropopause (green). Plotting relative to the observed monthly median tropopause

allows comparison of modeled and measured RTT-averaged profiles at the same frac-

tion of the tropopause pressure. (For instance, when y=.25, the observed profiles and15

the model profile represented by the green line are a factor of e0.25
higher than their

respective tropopause pressures.)

The RTT-averaged model profiles shown in Fig. 11 reproduce the characteristic

shapes seen in the observations, but typically with weaker cross-tropopause gradi-

ents resulting in model high biases in the UT and sometimes low biases above the20

tropopause. Model profiles can reproduce the observations quite well, such as at Ho-

henpeissenberg in July, but often the upper tropopause high bias is substantial. It is

interesting to note that normalizing the model profiles to the observed rather than mod-

eled monthly median tropopause tends to increase the upper-tropopause high bias

when the model tropopause lies above (at a lower pressure, which is typical) the ob-25

served monthly median tropopause, and decrease it when the model tropopause is

found below the observed tropopause. This effect is distinct from RTT-averaging pro-

cess itself. While it is obvious that RTT averaging produces comparisons that better
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characterize model/measurement disfferences across the tropopause than pressure

averaging, it is not clear if it is better to compare model and observed profiles at the

same pressure or at the same fraction of their respective tropopause pressures.

Figure 12 shows percent differences between the model and observed monthly mean

profiles for the three stations shown in Fig. 11. (Note the larger vertical range in5

Fig. 12.) Here we show percent differences between model and observed pressure-

averaged profiles (red), RTT-averaged profiles (blue), and RTT-averaged profiles nor-

malized relative to the observed tropopause (green). Figure 12 shows better agree-

ment between the modeled and observed pressure-averaged monthly mean ozone

profiles than the RTT-averaged profiles, as expected. The pressure-averaged profiles10

show moderate model high-biases in the UT by ∼20–50%. The bias in the lower strato-

sphere is smaller in magnitude and more variable between a high or low bias than in the

UT. When RTT-averaging is used, biases between the model and the observations are

larger; differences are typically about ∼50%, but can exceed 100% (blue lines). When

RTT-averaged profiles are compared at the same fractional value of the tropopause15

pressure (green lines), the model upper tropospheric high bias tends to be increased

when the model tropopause pressure is lower than the observed tropopause pressure,

as was also shown in Fig. 11.

Figure 13 is a bar chart summarizing April percent differences between the 2
◦
×2.5◦

model run and observed ozone in the UT, at a pressure one quarter of an e-fold higher20

than the tropopause pressure. April is shown because the largest UT model discrep-

ancies from observations occur in the March/April time period, while the smallest occur

in June and July. Figure 13 illustrates that RTT-averaged (blue bars) and RTT-averaged

profiles normalized to the observed tropopause (green bars) typically show substan-

tially larger biases than the pressure-averaged profiles (red bars) at both the tropical25

and NH stations. The tropical stations of Paramaribo, Kuala Lumpur, San Cristobal,

Nairobi, and Malindi exhibit particularly small biases. The mean NH pressure-averaged

bias is ∼35%, which approximately doubles with RTT-averaging. In the tropical mean,

there are ∼20% high biases in the pressure-averaged case vs. a ∼30% difference for
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RTT-averaged profiles, resulting in a ∼50% difference between the averaging tech-

niques.

Figure 14 shows the biases at all stations in the lower stratosphere, at a pressure

one quarter of an e-fold below the observed monthly median tropopause pressure.

Agreement in the lower stratosphere is generally substantially better than in the up-5

per troposphere, with mean biases in the NH and the tropics <20%. Here, the RTT-

averaged and normalized RTT-averaged biases are typically more negative than the

biases between pressure-averaged profiles. This is the expected behavior of a pro-

file with a weak cross-tropopause gradient – high biases in the UT, and low biases in

the lower stratosphere. The five tropical stations with small UT high biases are shown10

here to have more substantial low biases in the lower stratosphere, indicating that the

agreement of model cross-tropopause gradients with observations at these stations is

similar to other stations.

Compared to the 4
◦
×5

◦
run, the 2

◦
×2.5◦

run shows poorer agreement with observa-

tions at higher midlatitudes than the 4
◦
×5

◦
run, and similar agreement in the lower mid-15

latitudes and tropics. Thus, increasing horizontal model resolution does not generally

improve agreement between the ozonesonde observations and the model simulations

in the NTR. The 2
◦
×2.5◦

run high-bias increases at high-latitude stations suggests that

the better-defined stratospheric subtropical and polar mixing barriers in the 2
◦
×2.5◦

run

may have increased STE at higher latitudes, resulting in larger ozone concentrations20

at higher midlatitudes in the NTR.

4.6 Ozone annual cycle

We now evaluate the model’s ability to reproduce observed variations in phasing and

amplitude of the annual cycle of O3 as a function of pressure. As noted by Logan

(1999a, b) and references therein, the peak in the observed midlatitude ozone an-25

nual cycle occurs in the late winter/early spring in the lower stratosophere and is the

result of stratospheric dynamical processes. In the midlatitude mid-troposphere, the

peak occurs in the late spring/early summer and is influenced by tropospheric chemi-
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cal processes as well as stratospheric input. Vertical changes in phasing and amplitude

therefore test the model coupling between the stratosphere and troposphere.

Figure 15 compares the percent deviation from the annual mean of the modeled

and observed annual cycle of tropical ozone as a function of pressure. The figure

shows the average over deep tropical stations within 10
◦

of the equator. While there5

is some variability amongst the tropical stations (Thompson et al., 2003b), an average

over these stations is reasonably representative. The top left and right panels of Fig. 15

show pressure-averaged and RTT-averaged results, respectively. To construct the RTT-

averaged annual cycles, the monthly RTT-averaged profiles were first interpolated to

pressure coordinates using monthly median tropopause pressures. The bottom left10

and right panels show model pressure- and RTT- averaged results for the 2
◦
×2.5◦

run,

respectively. Figure 15 shows that the strongest annual cycle is observed at or just

above the tropopause. In the observed RTT-averaged case (top right), the extrema

have a greater magnitude, are temporally broader and vertically narrower compared to

the pressure-averaged case.15

The vertical variation of the amplitude and phasing of the model tropical annual cycle

shown in Fig. 15 is qualitatively quite similar to the observations. However, the largest

peak-to-peak amplitudes of the model annual cycles (∼43% and ∼51% for the pres-

sure and RTT-averaged runs, respectively) just above the tropopause are weaker than

the observed ∼70% and ∼88% variation in the pressure-averaged and RTT-averaged20

climatology, respectively.

Randel et al. (2007) present an analysis of the annual cycle in the vertical profile

of tropical ozone, which argues that the fractional amplitude (i.e., amplitude divided

by annual average) of the annual cycle in O3 mixing ratio is the product of the annual

cycle amplitude in residual mean upwelling in the lower stratosphere and the fractional25

vertical gradient of annually averaged O3 in the tropics; the largest amplitude occurs

where the O3 fractional vertical gradient is the largest. If this also holds for the model, its

agreement with observations will depend on how well the model reproduces observed

annual cycles in upwelling and annually averaged O3 fractional vertical gradients.
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Figure 16 compares the observed and modeled fractional vertical gradients in trop-

ical, annually averaged O3 mixing ratio. The figure shows that the fractional verti-

cal gradients are largest just above the tropopause for both the observations and the

model runs. The observed fractional vertical gradients in the RTT-averaged case are

substantially larger than the pressure-averaged case, with peak vertical gradients of5

∼97%/km and ∼67%/km, respectively. Neither the 4
◦
×5

◦
or the 2

◦
×2.5◦

model runs

show much difference between pressure – and RTT-averages. The model fractional

vertical gradients peak at ∼58–59% km in both runs, ∼11% less than the observed

pressure-averaged case. According to the Randel et al. (2007) analysis, this should

result in an annual amplitude ∼11% lower than observed provided the modeled and10

observed vertical upwelling is equivalent. As shown in Fig. 15, the model pressure-

averaged amplitude of 43% is ∼39% lower than observations. According to the Randel

et al. (2007) analysis, this low bias indicates that in the model, the amplitude of the

annual cycle in vertical upwelling at the tropopause level is ∼30% weaker than in the

real atmosphere.15

It is worth pointing out that the amplitude of the O3 annual cycle in the 4
◦
×5

◦
model

run is larger than in the 2
◦
×2.5◦

run, with largest peak-to-peak amplitudes of 49%

and 59%, in the pressure-averaged and RTT-averaged cases, respectively. The 49%

amplitude is ∼30% lower than observations and suggests an upwelling ∼20% weaker

than observations. However, resolution changes should not affect vertical upwelling,20

and Figure 16 shows that the vertical O3 gradients are not resolution-dependent. The

differences between the two resolutions may thus be due to some influence in the

model of horizontal transport on the tropical seasonal cycle of O3.

Figure 15 shows that the annual maximum at pressures about half an e-fold below

the tropopause occurs in October/November. The peak here is unlikely to be related to25

the annual cycle near the tropopause, because vertical ozone gradients are relatively

low at these pressures, as indicated by Fig. 16. The signal is observable at most of the

tropical sites, but is particularly strong at Fiji, Natal, and Reunion Island. The amplitude

in the model is about half of the observed peak values. The model/measurement
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discrepancy is particularly large at Natal. It is well-known that biomass burning plays a

strong role in tropical ozone during September–October (Thompson, 1996; Galanter et

al., 2000), with lightning providing an important source of NOx at the beginning of the

wet season (Martin et al., 2000). Although biomass burning emissions are included in

the model, it may be that the Combo model underestimates its impact on tropical O35

concentrations in the mid-troposphere.

Figure 17 compares modeled and observed annual cycles at midlatitudes, following

Fig. 15. (Resolute was excluded due to its high latitude.) The observed pressure-

averaged and RTT-averaged plots are very similar. Both show the maximum in the

annual cycle occurring in March or April, one to two months after the annual tropopause10

pressure minimum. The minimum of the annual cycle occurs in both cases one month

after the occurrence of the annual tropopause maximum. Peak to peak amplitude of the

annual cycle is ∼90%. The RTT-average plot shows a closer association of the ozone

annual cycle at the tropopause level with the annual cycle in tropopause height, as

the peak occurs above the tropopause and the minimum occurs below the tropopause.15

Both panels show a phase shift in the timing of the peak above the tropopause to earlier

in the year at higher altitudes. Below the tropopause the two panels both display the

well-known shift in the phase of the peak from March/April to June/July in the mid-

troposphere. However, in the RTT-average climatology shown in the middle panel, this

shift is clearer.20

The bottom panel of Fig. 17 shows the midlatitude annual cycle from the 2
◦
×2.5◦

run. The 4
◦
×5

◦
run annual cycle is very similar. The model reproduces the observed

changes in phase and amplitude of the annual cycle in ozone very well, with a peak-

to-peak amplitude of ∼90% at the pressure level of the tropopause that is only slightly

weaker than observations. There is less of a phase shift at higher pressures in the25

stratosphere, and the March/April peak amplitude shift to later in the year below the

tropopause is less pronounced. Overall, however, the midlatitude agreement of the

model with the observations is better than at tropical stations.
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5 Summary and conclusion

The GMI Combo model fully resolves the important processes in the troposphere and

stratosphere, uses a transport scheme shown to represent well vertical gradients in the

NTR, and has been integrated using a modern GCM-based meteorological data set to

minimize the possible effects of anomalous vertical diffusion that affects analyzed me-5

teorological data. We have examined the ability of the Combo model to represent O3

distributions in the NTR by comparing it to two climatological O3 data sets constructed

from ozonesondes. The ozonesonde observations have the high vertical resolution

necessary for tropopause-level evaluations. They have been averaged both on pres-

sure surfaces and relative to the tropopause, and include a relatively large amount of10

tropical data. We have tested the sensitivity of the results to horizontal resolution by

considering both 4
◦
×5

◦
and 2

◦
×2.5◦

versions of the model.

The overall stratospheric distribution of ozone produced by the GMI Combo model

is in good agreement with satellite observations, suggesting the meteorological data

represents the stratospheric residual circulation well. Despite this good agreement,15

Combo model annual mean ozone distributions are biased high at the 4
◦
×5

◦
model

thermal tropopause, by ∼45% in both the SH tropics and NH midlatitudes. When model

resolution is increased, the high bias increases to ∼61% in the NH midlatitudes and

decreases to ∼31% in the tropics. Such an effect is expected due to a decrease in

effective horizontal diffusivity in the higher resolution runs. We argue that problems20

with the GEOS-4 AGCM meteorology cannot explain the high biases because of the

good agreement of our global ozone comparisons with observations, the unrealistically

large changes in residual circulation we estimate are necessary to remove the bias, and

the results of the Strahan et al. (2007) tests of the transport processes in the GEOS

4 AGCM. We then infer that insufficient vertical resolution near the tropopause and/or25

too high vertical diffusivity are the likely causes. In a similar study, Pan et al. (2007)

also find vertical resolution and diffusivity important to simulations of near-tropopause

ozone distributions.
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The tropopause O3 high biases in the Combo model would produce erroneous esti-

mates of extratropical ozone STE if the method of calculation used tropopause ozone

mixing ratios to calculate STE. The differential method for inferring STE presented in

Olsen et al. (2004) is insensitive to tropopause ozone values, because it uses the

balance between the changing amount of ozone in the lowermost stratosphere and5

ozone flux into the lowermost stratosphere to calcuate ozone crossing the tropopause.

However, Olsen et al. (2004) do use tropopause ozone mixing ratios to calculate the

relative amounts of diabatic and adiabatic STE. The use of the GMI Combo model in

such a calculation would result in an overestimate of diabatic and an underestimate of

adiabatic ozone STE.10

The method of averaging observations and data to produce monthly mean profiles for

comparison is an important consideration for UT comparisons. RTT-averaging reveals

more significant model/measurement discrepancies in the UT than does pressure-

averaging in both the SH tropics and NH midlatitudes. NH mean UT high O3 high

biases during April in the model increase from ∼35%±20% to ∼70%±10% when pro-15

files are RTT-averaged. The effect in the tropics is smaller, with ∼20%±25% biases

increasing to ∼30%±28% with RTT averaging. This occurs because RTT-averaging

of the ozonesondes better preserves the strong vertical gradients characterizing daily

ozonesonde profiles than does pressure averaging. The RTT-comparisons show that

the model tends to underestimate the sometimes abrupt transition between the tropo-20

sphere and the stratosphere seen in individual ozonesondes. Increasing the horizontal

resolution of the model does not change this result much. Increasing the vertical reso-

lution of the model (including the resolution of the meteorology) may produce stronger

vertical ozone gradients in individual profiles and consequently better agreement with

observations.25

In the lower stratosphere, modeled and observed O3 concentrations agree very

well regardless of averaging technique. NH mean lower stratospheric biases are

∼10%±10%, for both pressure and RTT-averaged cases. In the tropics, the mean

biases are ∼10%±10% for pressure averaging, or ∼−20%±10% for RTT-averaged re-
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sults. Strahan et al. (2007) compared Combo model ozone distributions to Aura MLS

observations in the tropics and extratropics at potential temperatures between 350–

400 K, which are generally above the tropopause level. They also found very good

agreement with MLS ozone during all seasons in the extratropics. This is consistent

with our results that the model high bias tends to occur at and below the tropopause5

level. Strahan et al. (2007) also found the model to be low-biased relative to version

1.5 Aura MLS observations in the tropics at 350 K, but found that may be due to MLS

high-biases in the tropics at 215 hPa. Since we find mean model 20–30% high biases

in the tropical UT compared to sonde observations, with the bias at some tropical sta-

tions reaching ∼70%, it appears that Aura MLS version 1.5 ozone in the tropical UT is10

high-biased with respect to the sonde observations.

Observed and modeled RTT-averaged profiles can be compared either in a pressure

coordinate system by normalizing to observed and model median tropopause pres-

sures, or in a tropopause-relative coordinate system. When modeled and observed

tropopause heights differ substantially, the two methods can produce quite different re-15

sults that are unrelated to the averaging process itself. It is important to be aware of

these differences in order to fully understand what the model/measurement compar-

isons reveal.

The GMI Combo model captures the phasing but underestimates the amplitude of

the observed relative annual cycle of ozone and its variation with altitude in the SH20

tropical NTR. Following the methodology of Randel et al. (2007), the underestimate of

the amplitude appears to be too large to be explained by slightly weaker than observed

vertical gradients in annually averaged O3, and suggests that the annual amplitude

of mean residual upwelling at the tropopause level in the model is ∼30% less than in

the real atmosphere. The model reproduces well the observed relative annual cycle25

of ozone and its variation with altitude at the NH midlatitude stations. However, the

model does not have as rapid a shift from a springtime peak at the tropopause level to

a summer peak in the mid-troposphere. Increases in horizontal resolution from 4
◦
×5

◦

to 2
◦
×2.5◦

do not change this result, suggesting increases in vertical resolution may be
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necessary to resolve this problem.
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Table 1. Ozonesonde stations, locations, and data span. The table gives the names of the

stations providing data used in this paper, the geographic location of the station, and the span

of time of observations used in this paper.

Station Name Latitude Longitude Data Record

Resolute 75 −95 01/85–12/00

Churchill 59 −147 01/85–12/00

Goose Bay 53 −60 01/85–12/00

Edmonton 53 −114 01/85–12/00

Uccle 51 4 01/85–12/00

Hohenpeissenberg 48 11 01/85–12/00

Payerne 47 7 01/85–12/00

Sapporo 43 141 01/85–12/00

Boulder 40 −105 01/85–12/00

Wallops Island 38 −76 01/85–12/00

Tateno 36 140 01/85–12/00

Paramaribo 6 −55 09/99–12/04

Kuala Lumpur 3 102 01/98–12/04

San Cristobal −1 −90 03/98–12/04

Nairobi −1 37 09/97–12/04

Malindi −3 40 03/99–12/04

Natal −6 −35 01/98–12/04

Java −8 113 01/98–12/04

Ascension −8 −15 07/90–12/04

Samoa −14 −170 08/95–12/04

Fiji −18 178 02/97–12/04

Reunion Island −21 55 01/98–12/04

Pretoria −26 28 07/90–12/04
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Table 2. Characteristics of observed and modeled thermal tropopause heights at observa-

tion locations. Column 1: Observed annual mean tropopause pressure, in hPa. Column 2:

Model annual mean tropopause pressure, in hPa. Column 3: percent difference of model from

observed annual mean tropopause pressure. Columns 4 and 5: Amplitude of observed and

modeled annual cycles, respectively, as percent of annual mean value. Columns 6 and 7: Ob-

served and modeled month of minimum tropopause pressure (maximum tropopause altitude).

Station Name Observed Model Difference Observed Model Obs. Model

Annual Mean Annual Mean (%) Annual Annual Max Max

Tropopause Tropopause Amplitude Amplitude Month Month

Pressure Pressure

Resolute 300.09 273.53 −8.85 20.47 19.04 7 7

Churchill 273.52 258.92 −5.34 25.74 23.10 7 7

Goose Bay 263.33 253.84 −3.60 30.59 28.99 8 8

Edmonton 243.42 238.11 −2.18 22.50 31.56 9 8

Uccle 229.96 230.95 0.43 17.66 26.70 8 8

Hohenpeissenberg 227.97 222.77 −2.28 18.30 28.83 9 8

Payerne 223.24 218.01 −2.34 21.68 28.47 8 8

Sapporo 234.45 227.48 −2.97 73.47 78.33 8 8

Boulder 196.53 182.18 −7.30 57.06 54.00 8 8

Wallops Island 194.53 176.14 −9.46 49.80 49.96 8 7

Tateno 194.19 154.34 −20.53 90.83 69.85 8 8

Paramaribo 99.18 99.99 0.82 19.67 14.76 2 12

Kuala Lumpur 103.24 102.99 −0.24 18.91 15.66 5 5

San Cristobal 96.85 95.29 −1.62 22.03 16.35 12 12

Nairobi 98.31 95.75 −2.61 23.55 10.55 2 12

Malindi 99.21 96.50 −2.74 26.80 11.98 3 1

Natal 99.32 97.05 −2.28 15.19 15.55 2 5

Java 100.20 100.96 0.77 16.86 10.00 12 5

Ascension 99.62 93.51 −6.13 18.03 10.62 1 2

Samoa 101.34 100.66 −0.67 11.97 11.17 1 1

Fiji 103.38 102.82 −0.54 11.99 10.96 2 1

Reunion Island 102.25 104.61 2.31 16.81 7.91 2 5

Pretoria 119.24 111.28 −6.68 48.25 13.55 1 3
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Fig. 1. Geographic locations of the 23 ozonesonde stations used in this study. Station names,

latitudes and longitudes, and record length are given in Table 1.
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Fig. 2. Top panel: 1994–1998 average zonal mean total ozone from the Total Ozone Mapping

Spectrometer merged ozone dataset, as function of time of year and latitude. Bottom panel:

1994–1998 average zonal mean total ozone from the GMI combined model, as function of time

of year and latitude.
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Fig. 3. Top panel: Zonal mean ozone distribution from version 19 Halogen Occultation Experi-

ment (HALOE) data gathered during April for the years 1994–1998, as function of latitude and

pressure in hPa. Middle panel: GMI combined model zonal mean ozone, averaged for Aprils

from 1994–1998 as function of latitude and pressure. Bottom panel: Percent difference of April

zonal mean modeled ozone distribution from observed ozone distribution, in percent.
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Fig. 4. Comparison of GMI combined model (red lines) and observed (black lines) monthly

mean (solid lines) and median (dashed lines) tropopause pressures as function of time of year

at six Northern Hemisphere stations and three stations in the Southern Hemisphere tropics.

Vertical bars on model mean indicate ± two times standard error of the monthly mean values.

Note inverted pressure axis. The station name and location is given in title of each panel of the

figure.
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Fig. 5. Comparison of annual cycle of GMI Combo model monthly mean tropopause ozone (red

lines), Combo model ozone at the observed tropopause (blue lines), and observed tropopause

ozone (black lines) at six Northern Hemisphere stations and three stations in the Southern

Hemisphere tropics. Ozone units are parts per billion by volume. The vertical bars on the lines

indicate ±2 times the standard error. Model resolution is 4
◦

×5
◦

.
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Fig. 6. Same as Fig. 5, except for 2
◦

×2.5◦

run.
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Figure 7
Fig. 7. Percent difference between modeled and observed annually averaged tropopause

ozone for all stations, as a function of station latitude. Red asterisks show results from 4
◦

×5
◦

run, blue diamonds show results from 2
◦

×2.5◦

run.
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Fig. 8. Top panel: Distribution of linear correlation coefficients produced by regressing the

monthly mean, zonal mean O3 at each latitude and pressure level in the 4
◦

×5
◦

run of the Combo

model with the monthly mean cross-tropopause flux of O3 in the NH extratropics. Bottom panel:

Fractional sensitivity of monthly mean, zonal mean O3 in the 4
◦

×5
◦

run to changes in the cross-

tropopause flux of O3 in the NH extratropics. Fractional sensitivity is defined as the fractional

change in O3 mixing ratio per fractional change in the monthly mean cross-tropopause flux of

O3, or S=m x<FNH>/<O3>, where m is the slope of the linear regression, <O3> is the mean

monthly mean, zonal mean O3 over the 5-year model integration at some latitude and pressure,

and <FNH> is the 5-year mean NH O3 flux.
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Fig. 9. (a) Daily ozonesonde profiles at Edmonton (red lines), plotted as function of pressure,

for Januarys between 1985 and 2000. Left axis shows fraction of pressure efold from monthly

median tropopause pressure. (The vertical axis is marked by the exponent y, where y varies

over the range (−1,1), and the pressure is given by Ptrope
y
). Right axis indicates pressure in

hPa. Black crosses indicate thermal tropopause pressures for each profile. Black solid line

is monthly mean ozone profile averaged as function of pressure. Black dashed lines indicate

± one standard deviation. (b) Red lines show ozonesonde profiles at Edmonton in January,

plotted as fraction of efold of each profile’s tropopause pressure. (The vertical axis is marked by

the exponent y , which varies over the range e1
to e−1

.) Black crosses indicating the tropopause

now all lie at y=0. Black solid profile shows monthly average at constant fraction of tropopause

pressure. Black dashed lines indicate ± one standard deviation. (c) Comparison of monthly

averaged profiles using pressure averaging (red lines) and relative-to-tropopause averaging

(blue lines). Vertical axis is pressure. The relative-to-tropopause profile is plotted relative to

the monthly median tropopause height. (d) Percent difference of pressure-averaged from RTT-

averaged profiles.
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Fig. 10. Same as Fig. 9, except for the 155 daily GMI Combo model January profiles produced

during the 1994–1998 model run.
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Fig. 11. Modeled and observed monthly average ozone profiles from the 2
◦

×2.5◦

run at the

stations of Resolute, Hohenpeissenberg, and Ascension for the months of January, April, July,

and October. Blue line: observed RTT-averaged profile. Red line: Modeled RTT-averaged pro-

file. Green line: Modeled RTT-averaged profile, plotted relative to the observed monthly median

tropopause pressure, rather than relative to the model monthly median tropopause pressure.

Black and red horizontal lines indicate observed and model monthly median tropopause pres-

sures, respectively.
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Figure 12 

Fig. 12. Percent difference of modeled from observed monthly mean ozone profiles at Resolute,

Edmonton, and Ascension for the months of January, April, July, and October. Red lines:

percent difference between pressure-averaged profiles. Blue lines: percent difference between

RTT-averaged profiles. Green lines: percent difference between model and observed RTT

profiles, with the model profile normalized to the observed tropopause pressure so that the

difference is taken at the same relative fraction of the tropopause pressure.
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Fig. 13. Percent differences between modeled and observed ozone in the upper troposphere

at observation locations, for the 2
◦

×2.5◦

run. Red bar: Percent difference between observed

and modeled pressure-averaged monthly mean ozone at a pressure that is one quarter of an

efold higher than the observed monthly median tropoause pressure.
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Fig. 14. Same as Fig. 13, except in the lower stratosphere at a pressure one quarter of an

e-fold lower than the observed monthly median tropopause pressure.
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9

Fig. 15. Observed and modeled annual cycle of tropical ozone, expressed as percent deviation

from annual mean ozone as function of pressure and time of year. Top left panel: Annual cycle

for observed pressure-averaged ozone profiles. Top right panel: annual cycle for observed

RTT-averaged ozone profiles. Bottom left panel: annual cycle for model pressure-averaged

ozone profiles from the 2
◦

×2.5◦

run. Bottom right panel: annual cycle for model RTT-averaged

ozone profiles from the 2
◦

×2.5◦

run. White solid line in each panel indicates thermal tropopause

pressure. Vertical dashed lines mark position of minimum and maximum tropopause pressure.

Asterisks mark location of maximum and minimum values of annual cycle in ozone.
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Fig. 16. Fractional vertical gradients of tropical, annually averaged O3 mixing ratio. Stations

within 10
◦

of equator are included in averages. The fractional vertical gradient is defined as:

d/dz (ln<O3>), where the brackets <> denote an annual average, expressed in %/km.
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Fig. 17. Same as Fig. 15, except for midlatitude ozone stations.
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