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Abstract

A case study of convective outflow from the United States (U.S.) was examined using

airborne measurements from NASA DC-8 flight 13 during the Intercontinental Chemi-

cal Transport Experiment – North America (INTEX-NA). Mixing ratios of methane (CH4)

and carbon monoxide (CO) at 8–11 km altitude over the North Atlantic were elevated to5

1843 ppbv and 134 ppbv respectively, while those of carbon dioxide (CO2) and carbonyl

sulfide (COS) were reduced to 372.4 ppmv and 411 pptv respectively. In this region, ur-

ban and industrial influence was evidenced by elevated mixing ratios and good linear

relationships between urban and industrial tracers compared to North Atlantic back-

ground air. Moreover, low mixing ratios and a good correlation between COS and CO210

showed a fingerprint of terrestrial uptake and minimal dilution during rapid transport

over a 1–2 day time period. Analysis of synoptic conditions, backward trajectories, and

photochemical aging estimates based on C3H8/C2H6 strongly suggested that elevated

anthropogenic tracers in the upper troposphere of the flight region were the result of fast

transport via convective uplifting of boundary layer air over the southeastern U.S. This15

mechanism is supported by the similar slopes values of linear correlations between

long-lived (months) anthropogenic tracers (e.g., C2Cl4 and CHCl3) from the flight re-

gion and the planetary boundary layer in the southeastern U.S. In addition, the aircraft

measurements suggest that outflow from the U.S. augmented the entire tropospheric

column at mid-latitudes over the North Atlantic. Overall, the flight 13 data demonstrate20

a pervasive impact of U.S. anthropogenic emissions on the troposphere over the North

Atlantic.

1 Introduction

Continental outflow plays an important role in influencing the chemical environment

of the remote troposphere through long-range transport of natural and anthropogenic25

trace gases and aerosols. Extensive airborne measurements over the Pacific during
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NASA field campaigns such as PEM-WEST B and TRACE-P have characterized the

chemical composition of Asian outflow (Talbot et al.; 1997; Blake et al., 2003; Bartlett et

al., 2003). Moreover, Asian dust and anthropogenic pollutants via trans-Pacific trans-

port can impact air quality in the U.S. (DeBell et al., 2004; Jaffe et al., 1999, 2003).

Recently, long-range transport of Saharan dust over the Pacific route to western North5

America has been documented in the middle troposphere (McKendry et al., 2007).

One important component of the continental outflow over the north Pacific (Talbot

et al., 1996a, 1997) and south Atlantic (Talbot et al., 1996b) basins is wet convective

lifting of air masses over the continent with subsequent enhancement in mixing ratios

of insoluble trace gases in downwind areas over the ocean at altitudes above 8 km. For10

example, over the north Pacific Crawford et al. (2003) reported enhanced mixing ratios

of CO in the entire 1–11 km vertical column of a cloud impacted area during TRACE-P.

A case of deep convective lofting was also obtained during TRACE-A, where a NASA

DC-8 flight in the vicinity of a meso-scale complex moving across burning Brazilian

savannah measured high levels of biomass combustion products in the middle-to-upper15

troposphere (Bartlett et al., 1996; Pickering et al., 1996). These scenarios are highly

conducive to long-range transport of pollutants due to faster zonal winds aloft and

reduced photochemical reactivity.

Unlike Asian outflow which has been characterized extensively by combustion trac-

ers, a large suite of nonmethane hydrocarbons (NMHCs), and aerosol composition,20

North America pollutant outflow over the Atlantic has focused largely on ozone (O3)

and CO (Dickerson et al., 1995; Mao et al., 2006; Millet et al., 2006; Parrish et al.,

1993). In the Northeastern U.S. a primary mechanism for continental outflow is a

warm conveyor belt (WCB) transport where a mature cyclone lifts air masses from the

boundary layer up into the westerly flow in the upper troposphere (Cooper et al., 2001).25

The U.S. plumes lofted to the free troposphere by the WCB can affect air quality in Eu-

rope within a few days (Stohl et al., 2003). An extensive field campaign linked elevated

trace gases mixing ratios in the lower troposphere over Scandinavia including Alpine

areas, to polluted air that was lifted into the free troposphere by the WCB over the east-
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ern U.S. (Huntrieser et al., 2005). A recent modeling study suggested that in summer

air masses in the central and southeastern U.S. may be lofted to the free troposphere

by convection followed by export to the North Atlantic by the semi-permanent anticy-

clone (Li et al., 2005). They also pointed out that U.S. regions with the most frequent

occurrence of deep convection were the Midwest, the Gulf Coast, and the East Coast.5

The International Consortium for Atmospheric Research on Transport and Transfor-

mation (ICARTT) field campaign was designed and conducted to gain a better under-

standing of factors influencing large-scale air quality over North America, the North At-

lantic, and western Europe (Fehsenfeld et al., 2006). ICARTT measurement platforms

used for studying intercontinental transport included aircraft, ship, satellites, sondes,10

autonomous balloons, and ground sites that were all operational during July-August

2004. Here we present a case study of convective uplifting of polluted air to the free

troposphere over the southeastern U.S. coupled with rapid transport to the North At-

lantic. We utilized data obtained primarily on flight 13 of the NASA DC-8 during the

Intercontinental Chemical Transport Experiment – North America (INTEX-NA) compo-15

nent of ICARTT (Singh et al., 2006).

2 Methods

2.1 Measurement data

INTEX-NA was performed over North America and the adjacent North Atlantic Ocean

using the NASA DC-8 aircraft to examine the large-scale distribution of trace gases20

and aerosols associated with the North America continent (Singh et al., 2006). This

study focused on flight 13 which was conducted on 28 July 2004 with one of the main

objectives being sampling of U.S. continental outflow. The DC-8 took off at about

12:00 UTC from the Pease International Airport in New Hampshire and landed at

around 22:00 UTC, yielding a flight duration of about 10 h. The flight route, shown25

in Fig. 1, was located over the North Atlantic near the most northerly position of a
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stationary front and near the southern end of a cold front (Figs. 1 and 2).

A brief description of the overall measurement package on the DC-8 was provided

previously in Singh et al. (2006). The principle trace gases of interest here were CO,

CH4, CO2, COS, and a suite of NMHCs and halocarbons which are archived and avail-

able at http://www-air.larc.nasa.gov/cgi-bin/arcstat. The majority of the data, including5

CO and CH4, were obtained by the University of California – Irvine (UC-Irvine) (Blake et

al., 2003; Colman et al., 2001). Carbon dioxide was measured as described by Vay et

al. (1999). Only flight 13 data collected over the Atlantic east of 70
◦
W was used in our

analysis. We used relationships between CH4, CO, CO2, and COS in boundary layer

air (<2 km) over the southeastern U.S., determined using all the INTEX-NA DC-8 flight10

data (flights 6, 7, 10, 12, 16, and 19) obtained over the continent at latitudes <35
◦
N, to

understand the vertical distribution of trace gases along the flight 13 track. These are

all long-lived trace gases, with CO having the shortest lifetime of about two months in

summer due to reaction with hydroxyl radical (OH). Thus, these trace gases are photo-

chemically stable so that dynamical process are the most important factors determining15

their distribution downwind from North America on the transport time scales important

to this analysis. NMHCs and halocarbons used in this study were mainly the urban

and industrial tracers, C2Cl4, i-C5H12, CHCl3, and C6H6 (Wang et al., 1995; Chan et

al., 2006; Aucott et al., 1999; Na et al., 2001), and a combustion tracer, C2H2.

We also utilized “Measurement of OZone, water vapor, carbon monoxide and nitro-20

gen oxides by AIrbus in-service airCraft (MOZAIC)” to examine the vertical distribution

of key trace gases over the east coast during the time period of flight 13. MOZAIC

uses autonomous instruments loaded into five long-range passenger airliners, namely

AIRBUS 340–300 aircraft. Of particular interest here was the four second data ob-

tained on a flight from Vienna, Austria to Washington, D.C. (USA) on 28 July 2004.25

This dataset provided additional information on the vertical profiles of O3 and CO over

the eastern U.S. between 60
◦
W–78

◦
W and 38

◦
N–48

◦
N obtained during descent into

the Washington area.

Ground-level data from the AIRMAP measurement network (http://airmap.unh.edu)
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in the northeastern U.S. for two days in July (27 and 28) 2004 were also utilized in this

study. The NMHCs and CO data from Thompson Farm (TF) in Durham, New Hamp-

shire (23 m elevation, 43.11
◦
N and 70.95

◦
W) were 40 minute averages and those from

the second location on Appledore Island (AI), ME (sea level, 42.97
◦
N and 70.62

◦
W)

were 1 h averages (Sive et al., 2005; Zhou et al., 2005). Methane and CO in ambient5

air were surveyed for selected U.S. cities by the UC-Irvine group using canisters (Baker

et al., 2007). Specifically, we used monthly average values for August collected in the

southeastern U.S. cities of Birmingham, Alabama and Barton Rouge, Louisiana during

2001, and Charlotte, North Carolina and Knoxville, Tennessee in 2002, and El Paso,

Texas in 2003.10

2.2 Backward trajectories and photochemical ages

Backward trajectories in combination with an analysis of synoptic conditions and photo-

chemical ages can be an effective method to understand air mass transport. Kinematic

backward trajectories were calculated at one minute time steps throughout the INTEX-

NA flight series by Florida State University (http://fuelberg.met.fsu.edu/research/intexa/15

realtime/). The ratio of C3H8/C2H6 was used for comparing the relative photochemical

age of air masses (McKeen and Liu, 1993; Parrish et al., 2004). To assess the relative

transport time from the boundary layer in the southeastern U.S. to the flight legs over

the North Atlantic, we utilized the chemical clock provided by the reactivity of C3H8 and

C2H6 with OH. Equation (1) was used to estimate the transport time:20

∆t =
ln

(r(C3H8)/r(C2H6))0

(r(C3H8)/r(C2H6))t

(kC3H8
− kC2H6

)[OH]
(1)

Here, (r(C3H8)/r(C2H6])0 is the ratio of the mixing ratios of the two compounds in the

boundary layer, (r(C3H8)/r(C2H6))t is the same ratio at a later time t for each of the

flight leg regions of interest, k is the OH reaction rate constant, and [OH] is OH con-

centration. The DC-8 flight data showed that (r(C3H8)/r(C2H6))0 had a mean value of25
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0.36±0.15 (n=66) for the boundary layer over the southeastern U.S. (hereinafter SBL).

As input for the estimates we used the measured OH mixing ratios, ambient pres-

sures, and air temperatures measured on the DC-8 flights in the SBL. Mean values

were 0.18 pptv for OH, 0.92 atm for pressure, and 294 K for temperature, which resulted

in a concentration of 4.1×10
6

OH molecules cm
−3

in the SBL. We used rate constants5

for C3H8 and C2H6 of 1.1×10
−12

cm
3

molecule
−1

s
−1

and 2.3×10
−13

cm
3

molecule
−1

s
−1

respectively at 294 K (Sander et al., 2003).

3 Synoptic meteorology

Shown in Fig. 2a–f are maps of sea level pressure (SLP), 500 and 300 hPa geopotential

heights for 00:00 UTC on 26 July and 12:00 UTC on 28 July. Together these define10

the surface, middle and upper tropospheric circulation patterns across the U.S. on the

flight day and 60 h prior to it. According to the 6 hourly analyzed SLP, a Canadian Low

with cold and warm fronts was situated north of Quebec, Canada at 12:00 UTC on 21

July. This low pressure system was moving eastward with the warm front evolving into

an occluded front over the North Atlantic at 12:00 UTC on 23 July, and the cold front15

remaining largely over the eastern U.S. through 00:00 UTC on 24 July.

A stationary front was located over the eastern U.S. and the western Atlantic starting

at 12:00 UTC on 24 July (Fig. 2a and b) and it persisted throughout the duration of

flight 13. It should be noted that several small short-lived cyclones were generated

in association with the stationary front. In particular, one of these small disturbances20

was generated over the southeastern U.S. at 06:00 UTC on 26 July and matured into a

cyclone which propagated to the Virginia area over the following 24 h. Accompanying

the cold front associated with this small cyclone was a weak WCB over the Southeast.

These disturbances and associated WCB are conducive to lifting of boundary layer air

masses to the free troposphere.25

The 500 hPa geopotential heights at 12:00 UTC on 23 July showed that a trough

associated with the Canadian Low was situated over the northern Great Plains. This
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trough traveled across the Midwest (Fig. 2c) and reached southern Canada in the vicin-

ity of the Great Lakes at 12:00 UTC on 28 July (Fig. 2d). It subsequently moved

northeastward relatively fast and weakened over the North Atlantic Ocean. While the

influence of this trough existed over the U.S. until 00:00 UTC on 30 July, another trough

formed over southern Canada at 12:00 UTC on 28 July (Fig. 2d).5

The flow patterns at the 300 hPa geopotential height and isotachs resembled those

at the 500 hPa level (Fig. 2e and f). Zonal wind speeds on the 300 hPa level were

generally 5–25 m/s over the U.S., and increased to >35 m/s in the jet stream over the

northeastern U.S. In general, the jet stream is associated with upward motion (Holton,

1995), which facilitates air mass movement from lower altitudes to the upper tropo-10

sphere with subsequent transport over long distances. Overall, the maps of geopoten-

tial height at 500 hPa and 300 hPa together suggested a dynamic westerly flow regime

in the mid-to-upper troposphere.

Manually digitized radar (MDR), GOES infrared imagery, and skew T and log P dia-

grams at 00:00 UTC on 26 July and 27 suggested a strong possibility of upward trans-15

port of air masses from the surface during that time period (Fig. 3a–f). GOES infrared

imagery (Fig. 3a and b) revealed the presence of high clouds over the eastern U.S. ex-

cept in coastal regions, extending from Texas eastward to western South Carolina and

northeastward to New England. The area of high clouds coincided with heavy precipi-

tation indicated by the MDR (Fig. 3c and d). Images of other times through 00:00 UTC20

on 28 July were also examined, and they uniformly suggested similar conditions con-

ducive to convection in this same region.

Furthermore, Skew T diagrams at individual locations from the eastern U.S. verified

the occurrence of convection. The convective available potential energy (CAPE) and

Lifted Index (LI) on the Skew T diagrams (Fig. 3e and f) from the Slidell, Louisiana25

(30.33
◦
N and 89.82

◦
W), during July 25 to 27 were used to diagnose the presence of

local convection. The CAPE values within the range of 1000–2500 J/kg and LI less

than −4, all falling into the criteria for instable and convective atmospheric conditions

(http://www.theweatherprediction.com/severe/indices/).
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In summary, our synoptic analysis suggested that a stationary front associated with a

Canadian cyclone over the eastern U.S. continuously induced convection several days

before 28 July, which facilitated fast transport of air masses from the boundary layer

to the free troposphere. The WCB over the southeastern U.S. also contributed to the

vertical transport as indicated by the spawning of small cyclones in association with5

the stationary front. All meteorological evidence consistently pointed to the occurrence

of convection combined with fast eastward transport in the free troposphere over the

eastern U.S. during the two days prior to flight 13. In the following sections of this paper

we examined the chemical signatures measured at high altitude over the Atlantic to

provide support for the meteorological analysis conducted for flight 13.10

4 Notable chemical characteristics of flight 13

The vertical distribution of mixing ratios of CO, CH4, CO2, and COS is displayed for the

entire flight in Fig. 4. Mixing ratios of CO near the surface were 70 to 80 ppbv followed

by a decrease to the lowest values of ∼60 ppbv at 2 km. At altitudes between 2 and

5 km, CO increased to 80 ppbv, and then continued to rise quickly above 5 km varying15

over a range of 78–134 ppbv at altitudes >8 km. The vertical profile of CH4 tracked

CO closely, which exhibited levels of 1760 to 1770 ppbv near the surface followed by a

slight decrease at 2 km. Between 2 and 5 km CH4 again hovered around 1770 ppbv. An

increasing trend with altitude was accelerated above 5 km, where CH4 was enhanced

up to 1843 ppbv at 8–11 km.20

The vertical profiles of CO2 and COS showed trends opposite those of CO and

CH4. Mixing ratios of CO2 were ∼376 ppmv near the surface, and then increased to

377 ppmv at 2 km followed by a decrease to ∼375.5 ppmv between 2 and 5 km and

further decrease above 5 km. The minimum value of 372.4 ppmv was observed in the

8–11 km region. COS tracked CO2 closely with mixing ratios varying over 455–475 pptv25

near the surface, increasing to 480 pptv at 2 km, and then decreasing gradually to

455 pptv between 2 and 5 km. The lowest COS mixing ratios near 410 pptv were found
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at 8–11 km.

To understand the causes for the high mixing ratios of CO and CH4 that occurred in

the 8–11 km altitude region, we identified three time periods with the most enhanced

levels (Fig. 1). These occurred on constant altitude flight legs, with the first region at

10.4 km over the time period of 19:00–20:00 UTC, the second at 8.9 km during 12:20–5

14:40 UTC, and the third at 8.5 km over 17:30–19:00 UTC. All other segments of the

flight are referred to as “Outside” (i.e., outside of the three regions), and they are dis-

cussed in Sect. 5.

First, we used trace gas data from the NOAA Global Monitoring Division (GMD) mon-

itoring site on Bermuda (http://www.esrl.noaa.gov/gmd/dv/ftpdata.html) and from Mace10

Head, Ireland (Simmonds et al., 2006) to determine representative background mixing

ratios over the North Atlantic. The monthly average surface mixing ratio at Bermuda in

July 2004 was 1800 ppbv for CH4, 86 ppbv for CO, and 377 ppmv for CO2. The mean

mixing ratio of C2Cl4 at Mace Head, Ireland was 4.94±0.06 pptv from measurements

over the period of 2000 to 2004 (Simmonds et al., 2006). In two rural areas of the U.S.,15

annual mean surface mixing ratios of COS from February 2002 to February 2005 were

444±8 pptv in Wisconsin and 441±8 pptv at Harvard Forest, Massachusetts (Montzka

et al., 2007).

Statistics are provided in Table 1 to describe the chemical environment of the three

regions of enhanced mixing ratios. CO, C2H2 and C2Cl4 exhibited mean mixing ratios20

of 127 ppbv, 117 pptv and 10.2 pptv, respectively, in region 1, 106 ppbv, 93 pptv and

5.1 pptv in region 2, and 109 ppbv, 94 pptv and 5.5 pptv in region 3. Correspondingly, in

regions 1, 2, and 3 the mean value of CH4 was 1831 ppbv, 1805 ppbv, and 1808 ppbv

respectively. Compared to the background levels over the North Atlantic, the mean

levels of CH4, CO, and C2Cl4 in regions 1, 2, and 3 were higher by 0–1.7%, 23–48%,25

and 3.3–106% respectively. Mixing ratios of CS2, whose primary source is chemical

industrial processing (Chin and Davis, 1993), were mainly less than 4 pptv in each

region with occasional levels up to 14 pptv. Overall, the three regions showed a clear

influence of urban combustion emissions.
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Air mass transport was investigated using backward trajectories combined with pho-

tochemical age estimates of air masses in regions 1–3. Kinematic 5-day backward

trajectories arriving in each of the three regions are presented in Fig. 5. Since many

of the air masses appeared to meander over the southeastern U.S. for several days,

10-day backward trajectories (not shown) were used to examine the long-range trans-5

port of these air masses to the U.S. In the case of region 1, these trajectories showed

mainly two origins, with one from over the eastern Pacific/U.S. west coast and the other

from the Gulf of the Mexico. These air masses arrived over the southeastern U.S. in

the mid-to-upper troposphere, and then spent ∼4 days over the southeastern U.S. in

the altitude region of 550 to 300 hPa. Eventually they were transported in <20 h from10

over the Virginia area at 00:00 UTC on 28 July to region 1 in the upper troposphere

(>350 hPa). The mean value of C3H8/C2H6 was 0.23±0.02 in region 1, and photo-

chemical aging of an SBL air mass arriving in region 1 was 1.5 days based on Eq. (1).

The backward trajectories for region 2 illustrated a complex dynamical situation. In

this case there were a large number of trajectories indicating that the air spent 3–415

days over the southeast U.S. at altitudes ranging from near the surface to 500 hPa. In

addition, approximately 13% of the trajectories followed zonal westerly flow at 300 hPa

which intercepted the air masses residing over the southeast U.S. for several days.

Ten-day backward trajectories indicated that the inflowing air had arrived from over

the northwestern U.S., the North Pacific, and the Gulf of the Mexico. On 27 July this20

mixture of air masses was quickly advected over the Northeast, and arrived at the flight

altitude on 28 July. The value of C3H8/C2H6 was 0.20±0.04 in this region, and the

photochemical aging of an SBL air mass arriving in region 2 was 2 days.

Air masses transported to region 3 had their origin over mainly the south central and

southeastern U.S. It appears that boundary layer air over eastern Texas was advected25

at low level to the southeastern states and mixed with SBL air during vertical lifting on

July 27 and mid-tropospheric air masses that originated over the Oklahoma/Colorado

area. On the 28th the air passed over the Northeast in the mid-troposphere and arrived

at the flight altitude of 8.5 km nearly coincident in time with the region 1 air masses.
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The value of C3H8/C2H6 was 0.22±0.03 in region 3, and photochemical aging of an

SBL air mass arriving in this region was 1.7 days.

Backward trajectories and the synoptic weather patterns indicated that air masses

sampled in regions 1–3 were influenced by SBL air transported vertically through con-

vection and the WCB that developed in association with the stationary front. Ultrafine5

aerosol showed distinct mean differences of 10 172 particles/cm
3

in region 1, 1482

particles/cm
3

in region 2, and 1998 particles/cm
3

in region 3. A high degree of correla-

tion between enhanced condensation nuclei number densities and mixing ratios of CO,

CH4, NO, and OH has been observed in air masses influenced by deep convection

over the central U.S. (Twohy et al., 2002). However, we did not find such correlation10

in the three regions in spite of the very high concentrations of ultrafine aerosols and

increased mixing ratios of CO. Although our results do not parallel those of Twohy et

al. (2002), our analysis implies an impact of convective outflow in regions 1–3. In addi-

tion, a diagnostic indicator of wet convection is the ratio of CH3OOH/H2O2, since H2O2

is removed preferentially by wet scavenging compared to CH3OOH resulting in ratio15

values >1 (Talbot et al., 1996b). The flight 13 measurements showed higher mean

values of CH3OOH/H2O2 which were 0.85, 0.80, and 0.50 in regions 1–3, respectively,

than a value of 0.38 from the SBL. This strongly suggests the likelihood of convection

as a primary mechanism for the re-distribution of trace gases as documented by the

flight 13 data.20

The photochemical ages in regions 1, 2, and 3 are reasonably similar to the trans-

port times deduced from the backward trajectories which corroborates fast transport

with minimal apparent dilution of SBL air by aged background air. Evidence for min-

imal mixing is provided by similar mixing ratios of CHCl3 between regions 1–3 (9.4–

10.5 pptv) and SBL (10.6 pptv). Additional evidence is the preserved low mixing ratios25

of CO2 and COS, which are typical of boundary layer air influenced by biospheric ac-

tivity during the growing season. The mean mixing ratios of CO2 in regions 1–3 were

between 373.5 and 375 ppmv, and these were lower by 0.6–1% than the background

mixing ratio from surface measurements at Bermuda. In comparison, mean mixing
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ratios of COS in regions 1, 2, and 3 (426–440 pptv) were closer to values found in the

SBL over the U.S. The low mixing ratios of COS found in the upper troposphere during

flight 13 is indicative of efficient terrestrial COS uptake in the SBL (Sandoval-Soto et

al., 2005).

The backward trajectories suggested that the air masses arriving in the three study5

regions spent 1–4 days over the southeastern U.S. and were then transported to the

Northeast and upward by fast zonal flow in the middle and upper troposphere on 27–28

July. If the transport from the SBL to the flight regions was indeed rapid, then the effect

of dilution and in situ chemical processing can be small, and subsequently the mixing

ratios of trace gases in the source and flight regions should be similar. Mixing ratios10

of tracers in the SBL were thus compared with upper tropospheric values (Table 1).

In general, industrial or urban tracers in the SBL exhibited higher levels than those

in each flight region except for C2Cl4. This result is reasonable since some dilution

would be expected during transport of SBL air to the upper troposphere. Enhanced

mixing ratios of other urban tracers (e.g., C2Cl4 and CHCl3) and high concentrations15

of ultrafine aerosol were also observed as evidence of urban impacted air masses

in the upper troposphere. In the apparent SBL source region there are significant

urban and industrial sources based on the emissions map of CHCl3 (Aucott et al.,

1999). The region is also widely covered with abundant vegetation as evidenced by

isoprene emissions (Fiore et al., 2005), which accounts for uptake of COS and CO220

and consequently their reduced mixing ratios.

MOZAIC measurements were used as an independent source of data on air mass

composition over the Atlantic and eastern U.S. One of the instrumented flights into

Washington, D.C. from Europe on July 28 was essentially routed through the region of

interest here. MOZAIC data collected at 16:20–19:00 UTC on July 28 sampled the up-25

per troposphere where the rapid transport of SBL air masses seemingly occurred from

00:00 UTC on 27 July to 16:00 UTC on 28 July. The MOZAIC CO and O3 spatial dis-

tributions are shown in Fig. 6. According to the backward trajectories, region 1 of flight

13 and the MOZAIC sampling route overlapped geographically over New Brunswick,
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Nova Scotia, and the adjacent Oceanic area. The MOZAIC data showed mixing ratios

of CO as large as 140 ppbv in the upper troposphere (∼12 km). Ozone was between

74 and 110 ppbv for the data points with CO>100 ppbv, and a negative slope of −0.6

was identified for the O3-CO correlation. Coincident high levels of CO and O3 gener-

ally indicate polluted air masses, while high O3 (O3 >100 ppbv) alone suggests a weak5

stratospheric influence. These data together with the flight 13 measurements support

a broad influence of U.S. outflow to the upper troposphere over the Atlantic Ocean by

the deep trough system. Upon descent into a polluted layer over Washington D.C.,

CO mixing ratios up to 175 ppbv of were identified between 5 and 7 km (39.9–40.5
◦
N,

and 75.6–76.6
◦
W). This polluted layer likely originated in the boundary layer over the10

U.S. but did not get entrained in the flow pathway of the flight 13 upper tropospheric

air masses. However, the HYSPLIT backward trajectories were not able to resolve this

because of the inadequate vertical resolution.

We explored the possibility of an Asian impact on the flight 13 upper tropospheric

study area as found on flights 3, 8, 10, 15 and 20 by Liang et al. (2007). Halon-15

1211 (CBrClF2), an important tracer of Asian polluted outflow (Blake et al., 2003),

averaged 4.3 pptv over the flight 13 route, similar to background levels in boundary

layer over the Asia from TRACE-P, 4.3±0.04 pptv for CBrClF2 (Barletta et al., 2006).

Our backward trajectories analysis presented earlier and the key tracers indicated that

Asian emissions did not affect directly the flight 13 region, and suggests that the outflow20

from the U.S. dominated the pollution in the study area.

5 Outside air mass chemical composition

The average chemical composition of the Outside air, excluding regions 1–3, can

be summarized to have an average composition of 84 ppbv CO, 375.4 ppmv CO2,

1781 ppbv CH4, 453 pptv COS, 45 pptv C2H2, 3.4 pptv C2Cl4, and 53 ppbv O3. To25

find out whether the Outside chemical composition was similar to the North Atlantic

background air, we again compared the airborne measurements with those from the
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NOAA GMD monitoring site on Bermuda and Mace Head (Simmonds et al., 2006). The

results of this comparison showed that CH4, CO, C2Cl4 and CO2 were lower than at

Bermuda and Mace Head by 1.1%, 2.4%, 30.6%, and 0.4% respectively. Comparison

of the mean values indicated that the Outside air was not affected by fresh urban and

industrial source emissions. However, the mixing ratios of trace gases in the Outside5

air varied over wider ranges than those in regions 1, 2, and 3. In fact, maximum mixing

ratios of CS2, C6H6, and C2H2 were even larger than those in the three regions.

Backward trajectories for the Outside region indicated the possibility of air masses

with diverse origins (Fig. 5), which were categorized qualitatively into four source re-

gions. The fractional contribution for each source region was estimated by comparison10

of the number of trajectories from each area to the total for the Outside. It was found

that ∼44% of air masses in the Outside area were from U.S. outflow, ∼28% originated

from the western Atlantic, ∼20% from the remote Central Atlantic, and ∼8% from over

the North Pacific.

Chemical environments corresponding to the four source regions were summarized15

in Table 2. The average mixing ratio of CO, C2H2 and C2Cl4 were highest at 98 ppbv,

68 pptv and 5.4 pptv respectively in U.S. outflow, and lowest at 69 ppbv, 18 pptv and

1.8 pptv in air from the remote Central Atlantic. The average levels of O3, CH4, selected

anthropogenic NMHCs, and ultrafine aerosol followed the same source distribution.

For example, the average mixing ratio of O3 showed the highest level of 70 ppbv in20

the U.S. outflow, and the lowest of 28 ppbv in air masses from the remote Central

Atlantic. However, CO2 and COS exhibited opposite variation, with higher mixing ratios

from source regions far away from the North American continent. Specifically, the

average mixing ratios of CO2 and COS were 374.2 ppmv and 442 pptv respectively in

the U.S. outflow, 376.0 ppmv and 457 pptv in air from the western Atlantic, 376.4 ppmv25

and 463 pptv from over the remote Central Atlantic, and 374.9 ppmv and 459 pptv from

the Pacific. These results clearly show the role of the terrestrial biosphere in modulating

CO2 and COS in the troposphere downwind of a continental area.
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6 Chemical characterization using correlation analysis

The slope of the linear regression between correlated chemical compounds can be a

useful source identifier (Xiao et al., 2004). Based on the similar vertical distributions

recognizable from Fig. 4, correlation of the pairs CH4-CO and COS-CO2 was examined

using all data from flight 13 (Fig. 7). Carbon monoxide and CH4 were correlated re-5

markably well at r2
=0.92. This implies that anthropogenic sources had a major impact

on CH4 mixing ratios at all altitudes sampled on flight 13 over the North Atlantic. The

correlation between COS and CO2 exhibited an r2
=0.61, likely driven to a large extent

by their close association with vegetative uptake.

Correlations between source indicators and CO/CO2 were examined further for each10

region and the results are presented in Table 3. The slope of CH4-CO had a value of

0.94 in region 1 (r2
=0.84), 0.97 in region 2 (r2

=0.80), and 0.67 in region 3 (r2
=0.45).

These values are reasonably close to the slope of 0.84 that was obtained for urban and

industrial emissions by Harriss et al. (1994). To corroborate the urban and industrial

influence, relationships between CO and a number of anthropogenic tracers were also15

examined. Compounds that correlated with CO at r2>0.5, are CHCl3 and C2H2 in

region 1, CHCl3, C2Cl4, i-C5H12, and C2H2 in region 2, and CHCl3, C2Cl4, i-C5H12,

C6H6 and C2H2 in region 3. This evidence clearly points to a significant influence of

urban, industrial, and combustion sources in all three regions.

To verify the SBL origin of the polluted air on flight 13, relationships between source20

indicators and CO in the SBL were calculated and the values of r2
and correlation

slopes are shown in Table 3. The slopes of CHCl3-CO and C2Cl4-CO in the SBL were

similar to those in the three flight regions, providing support for the SBL as the source

region of the air masses encountered on the flight route. Note that slopes of i-C5H10-

CO, C6H6-CO and C2H2-CO in the SBL were much higher than those observed on25

flight 13. For example, the slope of i-C5H10-CO in each region of flight 13 was between

0.19 and 0.33 compared to 0.82 in the SBL. The lifetimes of C2H2, C6H6, i-C5H12,

C2Cl4, and CHCl3 in the SBL were estimated to be 3.5, 2.4, 0.72, 17, and 29 days
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respectively. Therefore, maximum mixing ratios of short-lived i-C5H10, C6H6, and C2H2

in the SBL were much higher than on flight 13 (Table 1), which resulted in higher slope

values in the SBL.

It is curious that, contrary to the tight CH4-CO correlation observed on flight 13, CH4

and CO data from city surveys in the Southeast exhibited a poor correlation (r2
=0.16),5

although the slope of CH4-CO was 0.94, nearly identical to values observed in regions

1 and 2. The slope of CH4-CO in the SBL sampled by the DC-8 was 0.70, similar

to region 3, but with much better correlation (r2
=0.73) than the city surveys. The

difference may be related to the multi-years of data collection for the city survey versus

the flight 13 data record snapshot.10

The slope of COS-CO2 was compared between the SBL and over the North Atlantic.

In the SBL CO2 was correlated with COS at r2
=0.83, compared to r2

=0.61 in the

flight region. This difference is attributed to mixing of SBL air with ambient air while

it meandered over the Southeast for several days and then during transit to the upper

troposphere. The COS-CO2 slope value was 5.3 pptv/ppmv in the SBL, which was15

almost a factor of two lower than the 9.9 pptv/ppmv value obtained from the flight 13

regions. Mixing ratios of CO2 in the SBL varied over the range 356 ppmv–380 ppmv,

which was a factor of 5 wider than the range in the flight 13 region of 372 ppmv–

377 ppmv. Similarly, the COS data showed the SBL had a factor of 2 greater variation

in mixing ratios than the flight 13 data; 344 pptv–485 pptv in SBL and 411 pptv–479 pptv20

for the flight regions. Wider ranges of CO2 and COS in the SBL are due to much lower

minimum values of two compounds compared to the flight route. The higher minimum

values along the flight path is indicative of mixing process with the air mass types

identified by our trajectory analysis. However, COS and CO2 were not well correlated

in regions 1 and 3, compared to region 2 and all the flight 13 data together.25

A contribution of emissions from the Northeast to the flight regions was checked by

utilizing UNH AIRMAP network data in New England. The r2
values and slopes of the

correlations between selected trace gases and CO from ground-based measurements

on 27–28 July (UTC) at TF and AI were very different than those shown here for flight
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13 (e.g., the slope of CH4-CO=0.28 (r2
=0.06) at AI). Therefore, we concluded that

emissions from the Northeast were not an important contributor to the elevated trace

gas mixing ratios in the upper troposphere over the North Atlantic. This is consistent

with our meteorological analysis which showed that the SBL was the likely primary

source of pollutants in the upper troposphere5

An important feature of the flight 13 dataset was the high degree of correlation be-

tween trace gases in the Outside region. In fact, the correlations were close to, or

better than, those in regions 1, 2, and 3 (e.g., r2
=0.89 for CH4-CO). This is a surpris-

ing result considering the diverse source regions indicated by our trajectory analysis.

Typically, there is little or no correlation between most trace gases in air masses not10

directly impacted by relatively fresh continental emissions. In this case, it appears that

the entire tropospheric column over the North Atlantic during the time period surround-

ing flight 13 was impacted by North American anthropogenic emissions. This region

is in the direct outflow from the eastern U.S. (Parrish et al., 1993), but our analysis

seems to suggest that the troposphere over the mid-latitude North Atlantic basin was15

fumigated with U.S. pollutants in various stages of aging. This is supported by the

trajectory-based partitioning of the Outside air source regions, where 44% pointed to

an influence of U.S. continental outflow. Apparently, to retain their source relationships,

these air masses were not mixed effectively with background marine air. The flight data

demonstrate a pervasive impact of U.S. anthropogenic emissions on the mid-latitude20

troposphere over the North Atlantic.

7 Summary

INTEX-NA, one of the components of ICARTT, was conducted over North America and

the adjacent North Atlantic to investigate the distribution of trace gases and aerosols

associated with emission sources in North America. The vertical distribution of trace25

gases from DC-8 flight 13 during the campaign had mixing ratios of CH4 and CO of

up to 1843 ppbv and 134 ppbv respectively, and low mixing ratios of CO2 and COS,
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reduced to 372.4 ppmv and 411 pptv respectively, in upper troposphere at 8–11 km

altitude over the North Atlantic.

The meteorology over the U.S. was identified as an ideal situation for strong convec-

tive outflow for several days prior to flight 13. A stationary front, which evolved from

a cold front associated with a Canadian low, existed in the eastern U.S. over the sev-5

eral days before the airborne measurements were conducted. As a result, it induced

continuous convective activities and a weak WCB. In addition, a deep trough over the

Midwest facilitated fast northwesterly transport that was sustained for several days prior

to flight 13.

The chemical features in the upper troposphere over the North Atlantic were as10

follows. Urban and industrial tracers such as CH4 and CO were elevated in the

upper troposphere (e.g. 78 ppbv <CO<135 ppbv) and good linear relationships be-

tween the tracers (e.g. r2
for CH4–CO at region 1=0.84) showed the impact of ur-

ban/industrial emissions to the flight regions. Low mixing ratios of COS and CO2

(e.g. 372.4 ppmv<CO2<376.6 ppmv) indicated biogenic uptake at the surface in the15

SBL with subsequent minimal dilution during the transport to the upper troposphere.

Backward trajectories and photochemical aging indicated that the SBL was a potential

source region for the chemical features. Agreement of the slopes for linear correlations

of selected trace gases with a long atmospheric lifetime compared to the transport be-

tween SBL and flight regions support the SBL as the primary source region. Overall,20

meteorological and chemical analyses suggest rapid convective outflow from the SBL

to the upper troposphere over the North Atlantic. In addition, the good linear correla-

tion between urban and industrial tracers in whole flight regions (r2
for CH4–CO=0.92)

and Outside (r2
for CH4–CO=0.89) suggest that the troposphere over the mid-latitude

North Atlantic was influenced significantly with U.S. pollutants in various stages of air25

mass processing.
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Table 1. Chemical characteristics of flight regions and boundary layer in southeastern U.S. x̄(σ)

is mean(standard deviation) and q0.5 means median. The units of the compounds are as

follows; ppmv for CO2, ppbv for CH4, CO and O3, particles/cm
3

for UCN, and pptv for the other

compounds

Region 1 (n=12) Region 2 (n=28) Region 3 (n=24) Outside (n=94) Southeastern Boundary (n=66)

x̄(σ) q0.5 range x̄(σ) q0.5 range x̄(σ) q0.5 range x̄(σ) q0.5 range x̄(σ) q0.5 range

CH4 1831

(10)

1833 1804–1843 1805

(17)

1812 1771–1833 1808

(8)

1810 1782–1822 1781

(18)

1778 1757–1822 1823

(35)

1820 1764–1890

CO 127

(9)

130 100–134 106

(16)

113 78–126 109

(8)

110 86–119 84

(16)

80 60–120 122

(35)

117 76-212

CO2 373.6

(0.3)

373.6 372.8–374.2 374.5

(1.2)

374.4 372.4–376.6 374.8

(0.8)

374.6 373.7–

376.4

375.4

(1.2)

375.9 372.6–377.3 370.2

(6.8)

373.0 356.4-379.1

COS 426

(7)

425 415–440 437

(18)

433 411–473 440

(11)

438 422–473 453

(13)

456 421–479 420

(40)

429 344–485

O3 85

(6)

86 71–92 75

(16)

73 48–103 64

(7)

63 50–76 53

(21)

55 14–101 48

(11)

48 27–79

C2H2 117

(16)

122 79–130 93

(28)

101 38–136 94

(14)

97 55–118 45

(29)

41 11–178 140

(96)

120 32–428

C2Cl4 10.2

(2.0)

10.4 5.3–12.4 5.1

(1.6)

5.5 2.6–7.6 5.5

(1.1)

5.5 3.4–6.9 3.4

(1.9)

2.6 1.5–9.3 5.8

(4.2)

4.2 1.7–19.6

C2H6 928

(96)

937 659–1089 875

(143)

892 529–1036 974

(161)

918 727–1311 571

(228)

614 258–1031 1172

(597)

1013 370–3458

i-C5H12 9

(3)

9 3–13 12

(5)

14 4–19 12

(4)

13 3–17 7

(3)

7 3–16 109

(84)

93 15–506

C6H6 10

(3)

11 5–13 16

(6)

18 5–24 17

(3)

17 10–22 10

(6)

9 3–43 45

(30)

38 6–160

CHCl3 10.5

(0.8)

10.7 8.9–11.2 9.4

(1.0)

9.7 7.9–10.8 9.6

(0.8)

9.5 8.3–11.4 7.8

(1.0)

7.5 6.2–9.6 10.6

(2.9)

10.2 6.5–16.8

CF2ClBr 4.67

(0.12)

4.66 4.47–4.84 4.29

(0.05)

4.30 4.19–4.36 4.32

(0.09)

4.32 4.18–4.61 4.23

(0.11)

4.19 4.09–4.59 4.33

(0.08)

4.33 4.13–4.49

UCN 10 172

(2436)

10 833 2476–11 340 1482

(975)

1400 146–3574 1998

(1168)

1548 720–5517 1542

(2348)

694 129–10 427 3988

(3852)

2611 334–15 327

CS2 3.2

(3.6)

1.5 1.1–14.0 4.0

(2.5)

3.2 1.2–11.2 2.7

(1.8)

2.1 1.2–9.3 3.2

(2.9)

2.4 1.1–21.0 9.3

(7.9)

6.8 1.7–39.2
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Table 2. Chemical Characteristics of “Outside” Air. Denotations and units are same as Table 1.

The outside
U.S. outflow (n=34) The western Atlantic (n=29) The remote Central Atlantic (n=26) Pacific (n=5)

x̄(σ) q0.5 range x̄(σ) q0.5 range x̄(σ) q0.5 range x̄(σ) q0.5 range

CH4 1798

(14)

1799 1771–1822 1775 (11) 1775 1757–1805 1764 (3) 1763 1759–1772 1789 (12) 1792 1775–1805

CO 98 (13) 100 77–120 77 (10) 78 61–106 69 (5) 68 60–80 98 (15) 100 84-120

CO2 374.2

(1.1)

374.3 372.6–376.5 376.0

(0.6)

375.9 373.7–377.3 376.4

(0.3)

376.5 375.9–377.2 374.9

(0.4)

374.9 374.2–375.4

COS 442 (10) 442 421–464 457 (9) 457 430–475 463 (6) 461 455–479 459 (12) 457 445–476

O3 70 (10) 71 44–92 54 (15) 55 23–83 28 (12) 25 14–47 63 (23) 57 43-101

C2H2 68 (18) 70 40–102 37 (15) 35 14–84 18 (3) 17 11–26 87 (55) 79 41–178

C2Cl4 5.4 (1.7) 5.2 2.6–9.3 2.4 (0.5) 2.4 1.6–4.3 1.8 (0.1) 1.7 1.5–2.2 3.9 (0.7) 4.1 2.9–4.5

C2H6 757

(112)

758 606–1002 561 (205) 577 258–1031 306 (24) 303 260–343 739 (142) 769 596–934

i-C5H12 8 (4) 8 3–16 6 (4) 6 3-8 NA NA NA 7 (2) 6 5-9

C6H6 12 (5) 11 3-23 7 (3) 6 3–12 NA NA NA 18 (15) 16 6-43

CHCl3 8.7 (0.7) 8.9 7.3–9.6 7.3 (0.6) 7.3 6.3–9.3 7.0 (0.4) 7.1 6.2–7.6 8.8 (0.8) 9.1 7.7–9.6

CF2ClBr 4.37

(0.1)

4.36 4.18–4.59 4.19

(0.06)

4.19 4.11–4.31 4.15

(0.03)

4.15 4.09–4.23 4.24

(0.05)

4.24 4.20–4.29

UCN 3390

(3387)

1840 355–10 427 885 (557) 766 357–2666 328 (78) 340 180–447 343 (317) 218 129-809
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Table 3. Correlation coefficients and slopes for each compound at each region. Regions

denoted as reg1, reg2, and reg3 are shown in Fig. 1, and outside is the segment of the flight

route outside the three regions. SBL stands for the boundary layer over the southeastern U.S.

Ratios of O3-CO and CH4-CO are in unit of ppbv/ppbv, CO-CO2 in ppbv/ppmv, CH4-CO2 in

ppmv/ppmv, COS-CO2 in pptv/ppmv, and all others in pptv/ppbv.

r2
Slope

reg 1 reg 2 reg 3 outside SBL reg 1 reg 2 reg 3 outside SBL

O3-CO 0.27 0.01 0.13 0.57 0.60 0.31 0.09 −0.3 0.98 0.25

CH4-CO 0.84 0.80 0.45 0.89 0.65 0.94 0.97 0.67 1.04 0.70

COS-CO 0.43 0.44 0.43 0.57 0.44 −0.45 −0.77 −0.84 −0.58 −0.76

CHCl3-CO 0.81 0.84 0.59 0.91 0.74 0.07 0.06 0.07 0.06 0.07

C2Cl4-CO 0.36 0.85 0.63 0.75 0.73 0.12 0.09 0.11 0.10 0.10

i-C5H12-CO 0.46 0.55 0.55 0.36 0.11 0.21 0.28 0.33 0.19 0.82

C6H6-CO 0.33 0.43 0.62 0.52 0.43 0.16 0.25 0.27 0.31 0.58

C2H2-CO 0.84 0.63 0.59 0.85 0.93 1.51 1.40 1.27 1.63 2.72

CH4-CO2 0.07 0.71 0.002 0.86 0.46 −0.01 −0.01 −0.0004 −0.01 −0.005

COS-CO2 0.1 0.64 0.009 0.63 0.83 6.7 11.9 1.31 8.11 5.26

CO-CO2 0.04 0.67 0.02 0.84 0.34 −5.95 −10.5 −1.41 −12.19 −2.93
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Fig. 1. Flight 13 route and the three regions in upper troposphere. 

 
Fig. 1. Flight 13 route and the three regions in upper troposphere.
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                             00 UTC on July 26                                   12 UTC on July 28 

 (a)                                                                        (b) 

  
 (c)                                                                        (d) 

  
 (e)                                                                        (f) 

  
Fig. 2. Analyzed sea level pressure (a and b), 500hPa geopotential height (c and d), 300hPa 

geopotential height (e and f) for 00UTC July 26, 2004 and 12UTC July 28, 2004. 

Fig. 2. Analyzed sea level pressure (a and b), 500 hPa geopotential height (c and d), 300 hPa

geopotential height (e and f) for 00:00 UTC 26 July 2004 and 12:00 UTC 28 July 2004.
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                              00 UTC on July 26                                      00 UTC on July 27 

        (a)                                                                  (b) 

          
       (c)                                                                  (d) 

 
          (e)                                                                  (f) 

 
Fig. 3. GOES infrared images (a and b), Manually digitized radars (c and d), and skew T and log 

P diagram (e and f) for 00 UTC July 26, 2004 and 00 UTC July 27, 2004. 
Fig. 3. GOES infrared images (a and b), Manually digitized radars (c and d), and skew T and

log P diagram (e and f) for 00:00 UTC 26 July, 2004 and 00:00 UTC 27 July, 2004.
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              (a)                                                                (b) 

 
              (c)                                                                (d) 

 
Fig. 4. Vertical distribution of (a) CO, (b) CH4, (c) CO2, and (d) COS. Lines in the graphs are for 

Fig. 4. Vertical distribution of (a) CO, (b) CH4, (c) CO2, and (d) COS. Lines in the graphs are

for average mixing ratios on July, 2004 in Bermuda.
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    (a) region 1                                                       (b) region 2 

   
    (c) region 3                                                       (d) Outside 

 

 
Fig. 5. Kinematic 5-day backward trajectories for each region. Big dots are at 00 UTC on each 

day and the small ones are other hours. Fig. 5. Kinematic 5-day backward trajectories for each region. Big dots are at 00:00 UTC on

each day and the small ones are other hours.
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                                       (a) 

 
                                      (b) O3 

 
                                      (c) CO 

 

 
  The vertical profiles of temperature, O3, and CO (a) obtained from the MO

landing in Washington, D.C. on July 28, 2004, and the horizontal distributions of O
Fig. 6. The vertical profiles of temperature, O3, and CO (a) obtained from the MOZAIC flights

landing in Washington, D.C. on 28 July 2004, and the horizontal distributions of O3 (b) and CO

(c) during the flights
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        (a)                                                                  (b) 

 
Fig. 7. Correlations (a) between CO and CH4, and (b) between CO2 and COS on flight 13.  

Fig. 7. Correlations (a) between CO and CH4, and (b) between CO2 and COS on flight 13.
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