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Abstract

Occurrence of ozone (O3)-enhanced layers in the troposphere over the equatorial Pa-

cific Ocean and their seasonal variation were investigated based on ozonesonde data

obtained at three Southern Hemisphere ADditional OZonesondes (SHADOZ) sites,

Watukosek, American Samoa and San Cristobal, for 6 years between 1998 and 2003.5

O3-enhanced layers were found in about 50% of observed O3 profiles at the three

sites on yearly average. The formation processes of O3-enhanced layers were in-

vestigated by meteorological analyses including backward trajectories. On numerous

occasions, O3-enhanced layers resulted from the transport of air masses affected by

biomass burning. The contribution of this process was about 30% at San Cristobal10

during the periods from February to March and from August to September, while it

was relatively low, about 10%, at Watukosek and Samoa. A significant number of the

O3-enhanced layers were attributed to the transport of midlatitude upper-troposphere

and lower-stratosphere (UT/LS) air. Meteorological analyses indicated that these lay-

ers originated from equatorward and downward transport of the midlatitude UT/LS air15

masses through a narrow region between high- and low-pressure systems around the

subtropical jet stream. This process accounted for more than 40% at Watukosek be-

tween May and December, about 60% or more at Samoa all year around, and about

40% at San Cristobal between November and March, indicating that it was important

for O3 budget over the equatorial Pacific Ocean.20

1 Introduction

The tropospheric ozone (O3) concentration in the tropics is generally low. However, O3-

enhanced layers are often observed there (e.g., Newell et al., 1996; Stoller et al., 1999;

Thouret et al., 2001). Photochemical production from the O3 precursor gases emit-

ted from biomass burning is considered to be a significant cause of relatively high O325

concentrations in the tropical troposphere. Increases in O3 associated with biomass
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burning over the tropical Pacific Ocean have been repeatedly reported. Oltmans et

al. (2001) suggested that the O3-enhanced layers observed at Fiji (18.1
◦
S, 178.2

◦
E),

Samoa (14.3
◦
S, 189.4

◦
E), Tahiti (18.0

◦
S, 211.0

◦
E), and Galapagos (0.9

◦
S, 270.4

◦
E)

with ozonesondes were attributable to the transport of air masses affected by biomass

burning in Australia and South America. In Indonesia, during the local late dry season5

between September and November, enhancements of tropospheric O3 concentrations

are often observed (Komala et al., 1996; Fujiwara et al., 2000), and similar O3 en-

hancements have also been observed in Malaysia between March and May (Yonemura

et al., 2002a). Especially during El Niño periods, when severe droughts and extensive

biomass burning occurred in Indonesia, remarkably large O3 increases have persisted10

(Fujiwara et al., 1999; Yonemura et al., 2002b). Satellite total O3 data also showed

O3 increases over the Indonesian region and the Indian Ocean during these periods

(Chandra et al., 1998; Kita et al., 2000).

Transport of O3-abundant air masses is another cause of tropospheric O3 increases

in the tropics. Active convection over Indonesia has been shown to carry O3 precur-15

sors to the upper troposphere, increasing the O3 concentration over Indonesia, the

Indian Ocean and northern Australia (Kita et al., 2002). The downward transport of air

masses from the upper troposphere and lower stratosphere (UT/LS) is also suggested

to increase the O3 concentration in the tropics. Fujiwara et al. (1998) observed O3 en-

hancement in the upper troposphere at Watukosek (7.57
◦
S, 112.65

◦
E), Indonesia and20

indicated that the breaking of equatorial Kelvin waves around the tropopause caused

O3 transport from the stratosphere into the troposphere. The intrusions of the midlati-

tude UT/LS air in association with the breaking of Rossby waves around the subtropical

jet stream have been suggested to cause the O3 increase as well as decrease of hu-

midity in the tropics (e.g., Baray et al., 2000; Scott et al., 2001; Waugh and Funatsu,25

2003; Waugh, 2005). Yoneyama and Parsons (1999) found extremely dry layers in the

lower and middle troposphere over the tropical western Pacific Ocean, and suggested

that they originated from Rossby wave breaking. Zachariasse et al. (2001) found O3

enhancement with low relative humidity (RH) in the middle troposphere over the Indian

17181
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Ocean, and suggested that it was attributed to a pair of anticyclones located along the

subtropical jet stream over the western Pacific and Australia. Baray et al. (1998) dis-

cussed the possible influences of tropopause foldings near the subtropical jet stream

on the tropical tropospheric O3 concentrations. They showed that tongues of air mass

near the subtropical jet stream with high potential vorticity (PV) values extended to the5

subtropical latitudes in the middle troposphere. Occurrence of intrusions of high-PV

air masses, induced by wave-breaking events, were relatively high over the Pacific and

Atlantic Oceans during northern winter, when westerly ducts are strongest (e.g., Postel

and Hitchman, 1999; Waugh and Polvani, 2000). These studies showed that the high-

PV air masses could directly intrude into latitudes of about 20
◦
. However, it is not clear10

whether the transportation of these air masses to the equatorial region from midlatitude

UT/LS directly contributes to O3 enhancement in this region. Systematic studies on the

contribution of the midlatitude UT/LS air intrusions to tropospheric O3 enhancement in

the tropics using long-term observational data have also been quite limited.

In this work, 6-year ozonesonde data at three equatorial sites in the western, central15

and eastern Pacific Ocean were used to examine the occurrence of O3-enhanced lay-

ers in the free troposphere over this region and its seasonal variations. Contributions

of biomass burning and the intrusion of midlatitude UT/LS air masses, as well as their

seasonal variations, were examined. The transport process of midlatitude UT/LS air

masses into the equatorial region and its importance are also discussed.20

2 Ozone and meteorological data

In order to investigate O3-enhanced layers in the troposphere over the western, central,

and eastern Pacific Ocean, we analyzed ozonesonde data obtained at three equato-

rial stations, Watukosek (7.57
◦
S, 112.65

◦
E), Indonesia, American Samoa (14.23

◦
S,

189.44
◦
E), and San Cristobal (0.92

◦
S, 270.40

◦
E), Galapagos. Figure 1 shows the25

location of these three sites. In general, ozonesonde observations have been reg-

ularly carried out once per week as a part of the Southern Hemisphere ADditional
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OZonesondes (SHADOZ) experiment (Thompson et al., 2003a and 2003b), and the

data are available at the SHADOZ website (http://croc.gsfc.nasa.gov/shadoz/). The

data analyzed in this work were obtained between August 1999 and April 2002 at

Watukosek, between January 1998 and March 2003 at Samoa, and between March

1998 and August 2002 at San Cristobal.5

In the observation, O3 concentration and RH were measured with balloon-borne

electrochemical concentration cell (ECC) ozonesondes (Science Pump type 6A at

Samoa and San Cristobal, and ENSCI type 2Z at Watukosek) with Vaisala RS-80 ra-

diosondes (Oltmans et al., 2001; Fujiwara et al., 2003). Although O3 data were derived

using MEISEI RSII-KC79D ozonesondes between May 1993 and July 1999 (Komala10

et al., 1996; Fujiwara et al., 2000), these data were not included in this study because

RH was not measured during this period. The precision of the O3 measurements is

5–10% in the troposphere. The measured RH is valid without any corrections down to

about −30
◦
C air temperature (e.g., Miloshevich et al., 2001). The vertical resolution of

O3 concentration and RH is less than about 100 m.15

In order to investigate the origins and transport routes of the O3-enhanced air

masses, kinematic backward/forward trajectories were calculated. In the calculation,

the European Centre for Medium-Range Weather Forecast (ECMWF) gridded data

and a computing program developed by Tomikawa and Sato (2005) were used. The

spatial and temporal resolution of ECMWF data was 2.5
◦×2.5

◦
and 12 h, respectively.20

The time step for calculation was 1 h, and the vertical displacement of air masses was

calculated using the vertical wind component of the ECMWF data.

PV was used to indicate the transport of the midlatitude UT/LS air to the equatorial

region. PV values were calculated from the ECMWF gridded data using a computing

program developed by National Institute of Advanced Industrial Science and Technol-25

ogy (AIST). In this program, isentropic surface levels were evaluated from vertical tem-

perature profiles at each grid. The horizontal wind vectors were linearly interpolated to

the isentropic surfaces in the vertical direction to calculate PV values from them.

The location of convection, which can upwardly transport air in the planetary bound-
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ary layer (PBL), was inferred using outgoing longwave radiation (OLR) data. National

Centers for Environmental Prediction (NCEP) operational OLR data (http://www.cdc.

noaa.gov/Composites/Day/) were used in the analysis. The locations of biomass burn-

ing, which can emit O3 precursors, were shown using satellite hot-spot data (spots indi-

cating high temperature) obtained from the World Fire Atlas provided by the European5

Space Agency (http://dup.esrin.esa.it/ionia/wfa/index.asp) using Along Track Scanning

Radiometer (ATSR)-2 data.

3 Results

The tropospheric O3 concentrations measured at the three sites showed a seasonal

variation: at Watukosek, Samoa and San Cristobal, respectively, it was higher in the10

periods from August to November, June to December and July to November than the

periods from December to July, January to May and December to June. Median values

and central 66.6% ranges of the observed mixing ratios were separately calculated in

each 1-km altitude range between 0 and 12 km during these periods at each station,

and are shown in Fig. 2. The median values of O3 mixing ratios over the equatorial15

Pacific Ocean were between 20 and 40 ppbv.

When the measured O3 mixing ratio exceeded its lower 83.3 percentile range in the

free troposphere at altitudes below 12 km, we regarded it as an O3-enhanced layer. If

the O3 enhancement reached altitudes above 12 km, we excluded it from this analysis

because of the possibility of its being a direct influence of the tropospheric tropopause20

layer (TTL), which is connected to the stratosphere. O3 enhancement near the surface,

probably in the PBL, was also excluded because it was considered to be a result of

O3 production in the surface-polluted air. Figure 3a and b show vertical profiles of

O3 mixing ratios and RH at Watukosek on 3 December 2000 and on 7 June 2000,

respectively. O3 mixing ratios obviously exceeded their lower 83.3 percentile range25

at altitudes between 2 and 6 km in Fig. 3a, and at altitudes between 2.5 and 4 km,

between 4.5 and 5.5 km and between 6.5 and 8 km in Fig. 3b, and these altitude ranges

17184
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are considered to be O3-enhanced layers. We excluded the cases in which the vertical

thickness of the layer was less than about 1 km, such as the layer at about 10.5 km

in Fig. 3a, because it is difficult to investigate these small-scale events by trajectory

analyses. The increase of O3 up to about 50 ppbv below 1.5 km in Fig. 3b was also

excluded, because it occurred in the PBL.5

Figure 4 shows the occurrence of O3-enhanced layers at the three sites by month.

The number of occurrence were calculated by dividing the number of profiles where

one or more O3-enhanced layers appeared by that of the total observed profiles in

each month. At these sites, the yearly average of the occurrence was about 50%,

indicating that O3-enhanced layers occurred frequently. The occurrence shows a sea-10

sonal variation. At Watukosek, it was about 40% in the periods from January to April

and from August to November, while it exceeded about 70% in the other months. At

Samoa, it was less than 40% between February and April, while it was about 50% or

more from May to January except for August. At San Cristobal, it was less than 30% in

April, May and July, while it generally exceeded 50% in other months. These seasonal15

variations are connected to the processes by which O3-enhanced layers are formed,

as discussed in the next section.

RH in the O3-enhanced layer is considered an indicator of the vertical displacement

of O3-enhanced air masses. If an O3-enhanced air mass were raised by convection

just before it was observed, its RH would increase and be higher than those at the20

altitudes above and below the layer. On the contrary, if an O3-enhanced air mass

was transported downward, RH would decrease. Especially, if the O3-enhanced air

mass was transported from the UT/LS region, the RH should be very low. We found

that the RH in more than 90% of the O3-enhanced layers was lower than those in the

altitude above and below the layer, as in the three layers shown in Fig. 3b, at all three25

sites. This result suggests that downward transport of air masses, such as downward

transport of the UT/LS air mass, is very important for the formation of O3-enhanced

layers. On the contrary, the RH in the O3-enhanced layer was higher than those above

and below the layer in about 40% of cases in December and January at Watukosek,

17185
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and in about 20% of cases in March and October at San Cristobal. This result suggests

that upward transport probably due to active convection may produce an O3-enhanced

layer in some cases.

4 Discussion

4.1 Influence of biomass burning5

Transport of plumes from biomass burning and the O3 photochemical production in

them is one way the O3-enhanced layers were assumed to form. If an air mass in an

O3-enhanced layer was transported over a region where active biomass burning oc-

curred, and if convection concurrently occurred near this region to enable the upward

transport of the plume from the biomass burning, we inferred that the O3-enhanced10

layer resulted from the biomass burning. As shown in the vertical profiles of O3 mixing

ratio and RH in Fig. 3a, an O3-enhanced layer was observed at altitudes between 3.5

and 6 km at Watukosek on 3 December 2000. The RH also increased in this layer.

Figure 5 shows 10-day backward trajectories calculated from nine grid points around

Watukosek at 550 hPa (about 5 km) from the measurement time. A major part of the15

trajectories show that the air mass was transported from the boundary layer over north-

ern Australia as shown by red curves. Higher RH in this layer is consistent with this

result. Figure 6 shows that there were many hot spots in northern and eastern Aus-

tralia during the period when the trajectories passed over this region, indicating that

biomass burning was active there. Figure 7 is a contour map of the daily average OLR20

value on 30 November, when the trajectories suggested a rapid upward transport in the

northern Australia, and the OLR values were significantly low over this region, implying

that active convection occurred there. These results strongly suggest that O3 precur-

sors emitted from biomass burning over northern Australia were upwardly transported

by convection over the northwest of this region, and that O3 photochemical production25

during the transport formed the O3-enhanced layer found over Watukosek.

17186

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/17179/2007/acpd-7-17179-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/17179/2007/acpd-7-17179-2007-discussion.html
http://www.egu.eu


ACPD

7, 17179–17211, 2007

Ozone-enhanced

layers in the

equatorial

troposphere

H. Hayashi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

In this way we categorized O3-enhanced layers resulting from biomass burning from

the evidence of backward trajectories, hot spot maps, and OLR values. Figure 8a,

b and c shows the number of O3-enhanced layers observed at Watukosek, Samoa,

and San Cristobal, respectively, in each month. The number of layers resulting from

biomass burning is shown by black bars. The contribution of biomass burning was5

relatively large (about 30%) at San Cristobal during the periods from February to April

and from August to September, probably due to the influence of biomass burning in

South America. At Watukosek and Samoa, it was relatively small (less than 10%). The

small contribution of biomass burning in the western Pacific region was partly because

biomass burning was inactive over this region including Indonesia between 1998 and10

2002, when the La Niña tendency dominated. Significant O3 increases in this region

were reported in the El Niño periods.

4.2 Influence of the transport of midlatitude UT/LS air

Because of the frequent stratosphere-troposphere exchange, active O3 photochemical

production in the urban polluted air, and less O3 destruction due to lower water vapor15

concentration, the O3 concentration in the midlatitude is generally higher than that in

the tropics. The transport of midlatitude UT/LS air can form O3-enhanced layers with

significantly low RH in the tropical middle troposphere.

As shown in the vertical profiles of the O3 mixing ratio and RH in Fig. 3b, O3-

enhanced layers at altitudes between 2.5 and 4 km, between 4.5 and 5.5 km and be-20

tween 6.5 and 8 km, were observed at Watukosek on 7 June 2000. The RH negatively

correlated with O3 in these layers. Figure 9a shows nine 10-day backward trajectories

calculated from the center layer at 550 hPa (about 5 km) from the measurement time.

Backward trajectories calculated from upper (about 7 km) and lower (about 3.5 km)

layers were similar to those in Fig. 9a. The trajectories can be categorized into two25

groups: trajectories coming from a region along the subtropical jet stream at about

25
◦
S over the Indian Ocean (shown by red curves) and those coming from eastern

Indonesia/north of Australia (shown by blue curves). The former trajectories show a
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downward motion from about the 300 hPa level, and the latter trajectories show an up-

ward motion from the PBL (not shown). Low-RH values in this layer are consistent

with the former trajectories, indicating that the air masses in these layers were trans-

ported eastward along the subtropical jet stream at about 25
◦
S several days and were

transported equatorward and downward after that.5

As shown in Sect. 3, O3-enhanced layers with low RH, similar to those in Fig. 3b,

accounted for about 90% of all O3-enhanced layers observed at the three sites. Back-

ward trajectory analysis indicates that a significant part of these O3-enhanced layers

with low RH were attributed to the transport of midlatitude UT/LS air. Figure 9b–d

shows representative examples of 10-day backward trajectories calculated from these10

layers, showing that the high-O3, low-RH air masses observed in these layers were

transported from latitudes higher than 20
◦

near the subtropical jet stream and from alti-

tudes higher than the 300 hPa level to the equatorial middle troposphere. No low-OLR

region was found along the trajectories (not shown), implying that convection did not

affect these air masses. We considered the O3-enhanced layers with similar trajecto-15

ries and without a low-OLR region along them to result from the transport of midlatitude

UT/LS air.

Red bars in Fig. 8a–c show the number of layers resulting from the transport of mid-

latitude UT/LS air, indicating that this process significantly contributed to the formation

of O3-enhanced layers in the equatorial Pacific region. At Watukosek, about 40% or20

more of the O3-enhanced layers were attributed to this process in the periods from June

to September and from November to December. At Samoa, this process accounted for

a major part of the O3-enhanced layers throughout the year, and the contribution of this

process was about 75% on yearly average. At San Cristobal, the O3-enhanced layers

resulting from this process contributed about 40% or more in the period from November25

to March, and their contribution was significant in the period from August to Septem-

ber. Seasonal variation in the contribution of this process would be connected with the

transport process (or transport route) of the midlatitude UT/LS air, as discussed in the

next subsection.
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The formation process of the other O3-enhanced layers, which did not result from

biomass burning or transport of midlatitude UT/LS air, remains uncertain. Trajectories

calculated from these layers show that the high-O3, low-RH air masses in these layers

were transported from the upper troposphere in the tropics. These air masses might

have resulted from subsidence of TTL air or mixing of TTL air. Otherwise, they might5

have been affected by the upward transport of plume from biomass burning or by the

abundant nitric oxide (NO) produced by lightning discharge.

4.3 The transport process of the midlatitude UT/LS air to the equatorial region

In order to understand the transport process of the midlatitude UT/LS air masses to

the equatorial Pacific region, we investigated the transport route of the air masses10

and connections with the meteorological condition by using the data derived in

2000. We have adopted absolute PV (|PV|) values larger than 1 PV unit (PVU:

1 PVU=10
−6

m
2

s
−1

K kg
−1

) to indicate the midlatitude UT/LS air. Figure 10 is a contour

map of PV on the 327 K isentropic surface on 5 June 2000, 2 days before the layer was

observed at Watukosek. The trajectory shown in Fig. 9a show that the air mass in the15

O3-enhanced layer in Fig. 3b at 5 km was located at about 20
◦
S near the subtropical jet

stream at 327 K. Although high |PV| air masses projected into the tropics about 17
◦
S

latitude and 120
◦
E longitude, no high |PV| values calculated from the ECMWF data

were found near the equator even when the O3-enhanced layer was observed over

Watukosek.20

Figure 11 shows the 3-day forward trajectories indicating the transport of |PV|=1 PVU

air masses. Black dots indicate the position of the air masses at longitudinal intervals

of 1.125
◦

between 75
◦
E and 130

◦
E on 5 June. The trajectories calculated from these

positions suggest that the transport of the midlatitude UT/LS air masses could be cat-

egorized into two groups: air masses west of 92
◦
E and north of 21

◦
S are transported25

equatorward and downward to Indonesia including Watukosek by a counterclockwise

flow as shown by red curves, and the other air masses are transported eastward along

the winding subtropical jet stream. The former result is consistent with the backward
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trajectories in Fig. 9a.

Figures 12 and 13 are wind fields and contour maps of the geopotential height at

400 hPa on 5 June around Indonesia, respectively. They suggest that the counter-

clockwise flow was due to the circulation around a high-pressure system in the west

of northern Australia, roughly at (15
◦
S, 95

◦
E), and that the winding of the subtropical5

jet stream was due to a low-pressure system over central Australia. The equatorward

trajectories show that the midlatitude UT/LS air was transported into the equatorial

region by way of a narrow region between high- and low-pressure systems. The air

temperature, RH and vertical pressure velocity over the same region at the same pres-

sure level (not shown) indicated the downward transport of dry and cold air through10

this region, being consistent with the downward transport of the midlatitude UT/LS air

toward the equator. These meteorological characteristics in association with the trans-

portation of midlatitude UT/LS air into the equatorial middle troposphere, a dry, cold air

mass with high |PV|, and high O3 subsided and intruded through the region between

the high- and low-pressure systems in UT near the subtropical jet stream, are analo-15

gous to those connected with the intrusion of stratospheric air in the midlatitude (e.g.,

Palmen and Newton, 1969) by Rossby wave breaking around the jet stream.

Figure 14a schematically illustrates the transportation process of the midlatitude

UT/LS air near Watukosek during the dry season between May and October. The solid

curves with arrows are forward trajectories calculated from 13 June 2000, 1 day before20

an O3-enhanced layer was observed at Watukosek. During the dry season, a steady

high-pressure system exists over western Australia in association with the subsidence

phase of the Hadley cell. When a low-pressure system develops east of this high-

pressure system in the middle and upper troposphere, the subtropical jet stream winds

north and south as shown by the dotted curve, and the midlatitude UT/LS air mass is in-25

truded equatorward and downward toward Watukosek through the region between the

high- and low-pressure systems. Figure 14b similarly illustrates the transportation pro-

cess near Watukosek in the wet season, between November and December. The solid

curves with arrows are forward trajectories calculated from 3 December 2000, 6 days
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before an O3-enhanced layer was observed at Watukosek. In the wet season, a steady

low-pressure system exists over northern Australia. When a high-pressure system de-

veloping over the Indian Ocean at about 17
◦
S extends eastward and a low-pressure

system develops south-east of this high-pressure system at about 28
◦
S, the midlati-

tude UT/LS air mass was intruded equatorward and downward over the Indian Ocean5

at about 100
◦
E through the region between these high- and low-pressure systems.

After that, the midlatitude UT/LS air mass was transported eastward to Watukosek

by cyclonic circulation around the low-pressure system over northern Australia. From

January to April, transport of the midlatitude UT/LS air seldom occurred at Watukosek.

Transport of the midlatitude UT/LS air occurs more frequently at Samoa than that at10

the other sites, probably because it is located near the subtropical jet steam. As shown

in Fig. 14c, a high-pressure system exists over the south-west of Samoa, roughly at

175
◦
E, all the year around. The solid curves with arrows are forward trajectories calcu-

lated from 15 May 2000, 4 days before an O3-enhanced layer was observed at Samoa.

As with Watukosek, the midlatitude UT/LS air mass was transported to Samoa when a15

low-pressure system occurred in the east of the high-pressure system.

At San Cristobal, the midlatitude UT/LS air is transported from the northern or south-

ern hemisphere, depending on the positions of the intertropical convergence zone

(ITCZ) and the subtropical jet stream. Figures 14d and e are schematic illustrations

of the transportation process of the midlatitude UT/LS air near San Cristobal in the pe-20

riods from August to September, and from February to March, respectively. The solid

curves in these figures are forward trajectories calculated from 18 February and 15

August, respectively, 2000, 6 days and 9 days before an O3-enhanced layer was ob-

served at San Cristobal. From February to March, the northern subtropical jet stream

runs close to San Cristobal. When a high-pressure system exists over Central America25

at about 15
◦
N and a low-pressure system exists north-east of the high-pressure sys-

tem, the midlatitude UT/LS air is intruded equatorward and downward at around 280
◦
E

and is transported westward toward San Cristobal by anticyclonic circulation. Between

August and September, the austral subtropical jet stream runs close to San Cristo-
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bal. When the high-pressure system exists over South America at about 15
◦
S, 300

◦
E

and the low-pressure system exists in the south-east of the high-pressure system, the

midlatitude UT/LS air is intruded equatorward and downward through the region be-

tween the high- and low-pressure systems around 315
◦
E and is transported toward

San Cristobal. Figure 14f similarly illustrates the transportation process of the midlati-5

tude UT/LS air in the period from November to January. The solid curves in figure are

forward trajectories calculated from 5 December 2000, 9 days before an O3-enhanced

layer was observed at San Cristobal. In this period, the midlatitude UT/LS air is often

intruded equatorward and downward into the middle and upper troposphere through

the region between high- and low-pressure systems over the northern central Pacific10

Ocean roughly at 20
◦
N and 180

◦
E. The intrusion of the midlatitude UT/LS air often oc-

curs between high- and low-pressure systems over the southern central Pacific Ocean

roughly at 20
◦
S and 180

◦
E. After the intrusion, the midlatitude UT/LS air is transported

eastward to San Cristobal. In May, June, July, and October, the transport of midlatitude

UT/LS air seldom occurred at San Cristobal.15

5 Summary

Ozonesonde data obtained in the western (Watukosek), central (Samoa) and east-

ern (San Cristobal) Pacific Ocean were analyzed to discuss the occurrence of O3-

enhanced layers in the troposphere over the equatorial Pacific Ocean and their for-

mation processes. The median and lower 83.3% percentile values of O3 mixing ratio20

between the surface and 12 km at three sites were between 20 and 40 ppbv and be-

tween 30 and 55 ppbv, respectively. An O3-enhanced layer was defined by O3 mixing

ratios in excess of the lower 83.3% percentile range at each altitude. At the three sites,

the occurrence of O3-enhanced layers was about 50% on yearly average, indicating

that O3-enhanced layers occur frequently over the equatorial region. The occurrence25

shows a seasonal variation. At Watukosek, it was about 40% in the period from Jan-

uary to April and August to November, while it exceeded 70% in the other months. At
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Samoa, it was less than 40% between February and April, while it was generally 50%

or more from May to January except for in August. At San Cristobal, it was less than

30% in April, May and July, while it generally exceeded 50% in other months.

O3 photochemical production following biomass burning is one of the processes by

which O3-enhanced layers are formed. Based on satellite hot-spot data, the OLR data5

and backward trajectory analyses, the contribution of biomass burning was estimated

to be relatively high (about 30%) at San Cristobal during the periods from February

to April and August to September, probably due to the influence of biomass burning in

South America. In contrast, it was relatively low (about 10%) at Watukosek and Samoa.

The latter result is at least partly because La Niña or La Niña-like conditions prevailed10

in the data period (between 1998 and 2002). During La Niña periods, biomass burning

was inactive over the western Pacific region including Indonesia. Another significant

process for the formation of O3-enhanced layers is the transport of midlatitude UT/LS

air. A major part of O3-enhanced layers occurred with very low-RH, indicating down-

ward displacement of the air masses and/or transport of dry air masses. Backward15

trajectory analyses showed that numerous dry, O3-enhanced air masses were trans-

ported from latitudes higher than 25
◦

around the subtropical jet stream region and from

altitudes higher than the 300 hPa level. This process significantly contributed to the

formation of O3-enhanced layers in the equatorial Pacific region. The contribution of

this process was relatively high, more than about 40% at Watukosek between May and20

December and about 60% or more at Samoa all year around, and about 40% or more

between November and March and significant between August and September at San

Cristobal. This process was important for the O3 budget over the equatorial Pacific

Ocean.

The transport process of the midlatitude UT/LS air toward the equatorial region has25

been revealed by meteorological analyses including PV and trajectories. Forward tra-

jectories calculated from the region of |PV|=1 PVU show that the midlatitude UT/LS air

masses were drawn out from relatively narrow region between high- and low-pressure

systems in the upper troposphere near the subtropical jet stream and transported to the
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equatorial region. These meteorological characteristics and the transportation process

were analogous to those of the intrusion of stratospheric air in the midlatitude (Pal-

men and Newman, 1969) in association with Rossby wave breaking. Previous studies

showed that the midlatitude UT/LS air masses with high |PV| values are often trans-

ported to the subtropical and tropical latitudes around 20
◦

(e.g., Baray et al., 1998),5

whereas they do not reach equatorial region directly. This study shows that the mid-

latitude UT/LS air is often transported to equatorial region to form dry, O3-enhanced

layers. The meteorological conditions causing the transport of midlatitude UT/LS air

masses toward Watukosek and San Cristbal differed by season, and this difference

was connected to the seasonal variation of the occurrence of O3-enhanced layers.10

To evaluate the contribution of the transport of midlaitude UT/LS air to the tropi-

cal tropospheric O3 budget, additional analyses similar to this study using long-term

observational data over other equatorial regions such as the tropical Indian Ocean

and Atlantic Ocean are necessary. In addition, a comparison with results of chemical

transport models would be significant to examine whether this process has been fully15

incorporated into the model calculations.
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are indicated by stars.
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Fig. 2. Vertical profiles of median ozone mixing ratios at (a) Watukosek, (b) Samoa and (c)

San Cristobal. Black and white squares indicate median values in two different periods of the

year. The horizontal bars indicate the central 66.6% range for each 1-km altitude range. The

numbers in parentheses are the numbers of observational data used for calculating median

values in each period.
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Fig. 3. Vertical profiles of O3 mixing ratio (solid line) and relative humidity (dashed line) at

Watukosek (a) on 3 December 2000, and (b) on 7 June 2000. The median values of the O3

mixing ratios in the period from December to July are shown by gray squares, and their central

66.6% ranges are shown by horizontal bars.

17200

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/17179/2007/acpd-7-17179-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/17179/2007/acpd-7-17179-2007-discussion.html
http://www.egu.eu


ACPD

7, 17179–17211, 2007

Ozone-enhanced

layers in the

equatorial

troposphere

H. Hayashi et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

 

0

10

20

30

40

50

60

70

80

90

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

O
c
c
u
r
r
e
n
c
e
 
(
%
)

52 (110)

(a)

0

10

20

30

40

50

60

70

80

90

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

94 (206)

(b)

0

10

20

30

40

50

60

70

80

90

100

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

115 (204)

(c)

Fig. 4. Occurrence of tropospheric O3-enhanced layers at (a) Watukosek, (b) Samoa and (c)

San Cristobal by month. The number shown in the upper right of each panel is the number of

O3 profiles with O3-enhanced layers in the whole data period, and the number in parenthesis

is the total number of observed O3 profiles.
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Fig. 5. Ten-day backward trajectories from Watukosek at 550 hPa on 3 December 2000. The

trajectories were calculated from 9 grid points, and the center of the grid points was over

Watukosek. The spatial interval of the grid points was 2.5
◦

in latitude by 2.5
◦

in longitude.

Upper and lower panels show the horizontal and vertical motion of air masses, respectively.

Dots show the air mass position on a representative trajectory in each 24-h interval.
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Fig. 6. The hot-spot distribution derived from the European Space Agency World Fire Atlas for

the period from 24 November to 30 November 2000.
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Fig. 7. A contour map of the daily average OLR value on 30 November 2000. The color bar

refers to the OLR values in W m
−2

.
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Fig. 8. Number of O3-enhanced layers by month at (a) Watukosek, (b) Samoa and (c) San

Cristobal. Black bars and red bars indicate the number of layers resulting from biomass burning

and the transport of midlatitude UT/LS air, respectively. Yellow bars show the number of layers

whose formation process was not identified. The number shown in each panel is the total

number of O3-enhanced layers.
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Fig. 9. Ten-day backward trajectories from the altitude of O3-enhanced layers with low relative

humidity. (a) Trajectory from Watukosek on 7 June. Dots show the air mass position on a rep-

resentative trajectory in each 24-h interval. (b), (c) and (d) Twenty representative trajectories

tracing back to the subtropical jet stream region from Watukosek, Samoa, and San Cristobal,

respectively.
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Fig. 10. A contour map of PV on the 327 K isentropic surface on 5 June 2000. Location of

Watukosek is indicated by a star. The color bar indicates the PV values in PVU.
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Fig. 11. Three-day forward trajectories calculated from the region of PV=−1 PVU shown in

Fig. 10 on the 327 K isentropic surface on 5 June 2000. White dots indicate the air mass

position on representative trajectories in each 24-h interval.
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Fig. 12. A map indicating the daily average values of horizontal wind vectors at 400 hPa on

5 June 2000. The wind data were obtained from the NOAA-CIRES Climate Diagnostics Cen-

ter (http://www.cdc.noaa.gov/Composites/Day/). The color bar indicates the horizontal wind

velocity in m s
−1

.
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Fig. 13. A contour map indicating the daily average value of the geopotential height at 400 hPa

on 5 June 2000. The data were obtained from the NOAA-CIRES Climate Diagnostics Center

(http://www.cdc.noaa.gov/Composites/Day/). The color bar indicates the geopotential height

value in m.
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 Fig. 14. Schematic illustrations of the transport processes of midlatitude UT/LS air masses to

the equatorial Pacific region: (a) for Watukosek in the dry season, between May and October;

(b) for Watukosek in the wet season, between November and December; (c) for Samoa all year

around; (d) for San Cristobal in the period from August to September; (e) for San Cristobal in

the period from February to March; and (f) for San Cristobal in the period from November

to January. Solid curves with arrows are representative examples of the forward trajectories

indicating motions of |PV|=1 PVU air masses. Red dots and dotted curves with arrows indicate

the position of observational sites and the schematic path of the jet stream, respectively. The

signs “H” and “L” indicate the rough positions of the high- and low-pressure systems affected

the transport of midlatitude UT/LS air masses to the observational sites.
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