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Abstract

In 1997/98 a severe smoke episode due to extensive biomass burning, especially of

peat, was observed over Indonesia. September 1997 was the month with the high-

est aerosol burden. This month was simulated using the limited area model REMOTE

driven at its lateral boundaries by ERA40 reanalysis data. REMOTE was extended5

by a new convective cloud parameterization mimicking individual clouds competing for

instability energy. This allows for the interaction of aerosols and convective clouds

and precipitation. Results show that convective precipitation is diminished at all places

with high aerosol loading, but at some areas with high background humidity precip-

itation from large-scale clouds may over-compensate the loss in convective rainfall.10

At individual time steps, very few cases were found when polluted convective clouds

produced intensified rainfall via mixed phase microphysics. However, these cases are

not unequivocal and opposite results were also simulated, indicating that other than

aerosol-microphysics effects have important impact on the results. Overall, the intro-

duction of the new cumulus parameterization and of aerosol-cloud interaction improved15

the simulation of precipitation patterns and total amount.

1 Introduction

Aerosols and clouds and their non-linear interaction are amongst the biggest chal-

lenges in current climate modeling and prediction. While there exists a number of

studies considering aerosol effects on stratiform clouds (for a review see Lohmann20

and Feichter, 2005), only few studies exist that discuss effects on convective clouds

(Rosenfeld and Woodley, 2001; Andreae et al., 2004; Graf, 2004; Langmann, 2007)

and potential effects on global circulation (Nober et al., 2003) arising from changes in

latent heat release due to diminished warm rain formation in the tropics. There aerosols

from biomass burning are abundant and deep convection is the prevalent form of pre-25

cipitation formation. No publications are known to the authors on the aerosol effects on
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warm and mixed phase convective precipitation in large-scale climate or atmospheric

models. One reason for the situation is that in current climate models convective clouds

are treated by mass flux parameterization excluding explicit cloud microphysical pro-

cesses. This deficit to a certain degree can be overcome by using cloud-resolving

models. However, such models are computationally demanding and this prevents their5

application in longer-term climate studies. Very recently Langmann (2007) presented

results of aerosol-cloud interaction during the heavy smoke episode around Indone-

sia in 1997/1998, when the seasonal peat fires run out of control due to lack of rain

during the El Nino episode. However, Langmann (2007) used the simplistic approach

of Nober et al. (2003), without explicit cloud microphysics, of aerosol effects on warm10

rain only and ignored mixed phase processes. These, however, may lead to non-linear

effects (as observed over Amazonia by Andreae et al., 2004 and discussed by Graf,

2004) resulting in a reduction of warm rain where the convective instability is moder-

ate and increased precipitation due to formation of ice where convective instability is

large. Over Indonesia, due to the small scale topography determined by a vast number15

of smaller and larger often steep volcanic islands in very warm waters, clearly high

resolution models are necessary to simulate precipitation reasonably well.

Here we will introduce an alternative approach (Nober and Graf, 2005) to convective

clouds in a limited area model. An individual cloud model including explicit cloud mi-

crophysics of the warm and of the mixed phase is run with several different initial radii20

and with internally much enhanced vertical resolution at every time step of the limited

area model. We will apply this model to the month with most severe smoke concen-

trations over Indonesia and around, September 1997. This month is characterized by

strong pollution from smoke but only weak to moderate atmospheric instability. While

September is the month with least precipitation in Indonesia, there is still enough (or-25

der of 50 mm per month) to allow for the investigation of aerosol effects on clouds and

precipitation. Results will show that, as observed in single cases over Amazonia (An-

dreae et al., 2004), the smoke aerosols lead to mostly decreased precipitation. Only

in very few cases in areas of smoke contamination and concurrent strong atmospheric
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instability convective precipitation is increased.

2 Model

A new convective cloud field model (CCFM) that is based on a concept from popula-

tion dynamics (Nober and Graf, 2005; Graf and Yang, 2007) has been coupled with

the regional atmospheric chemistry model with tracer extension REMOTE (Langmann,5

2000). Originally CCFM was modified and coupled with REMO (the meteorology alone

version of REMOTE) for a whole year test over the West Pacific warm pool area, which

showed that a simplified CCFM can successfully be used in a limited area model (Graf

and Yang, 2007). Our REMOTE-CCFM domain covers Indonesia and the northern part

of Australia with a horizontal resolution of 0.5 degrees and 101 grid points in longitude10

and 55 grid points in latitude. The model was applied with 20 vertical layers of increas-

ing thickness between the Earth’s surface and the 10 hPa pressure level. ECMWF

reanalysis data were used as lateral boundary conditions every 6 h. The constant time

step is 5 min. For our current study the model just includes one tracer, the total par-

ticulate matter (TPM), which can be transported by horizontal and vertical advection,15

convective processes and vertical diffusion as well as be affected by wet and dry depo-

sition. Due to the elevated sulfur content and hygroscopicity of Indonesian vegetation

and peat fire aerosols (Langmann and Graf, 2003), particle deposition is calculated as

for sulphate.

The emission estimate uses vegetation and peat maps, remotely sensed fire counts20

and reports on the total area burned to determine TPM emissions with 0.5 degrees

horizontal resolution (Langmann and Heil, 2004). Up to 90% of the total smoke mass

during the catastrophic 1997/1998 fires resulted from burning peat. These weekly data

were used and the smoke released into the first model layer. While Freitas et al. (2006)

emphasized the need to inject the smoke from Amazonian forest fires at higher ele-25

vation, in the case of Indonesian peat fires, dominated by smoke from relatively cool

sources, the release near the surface is the better approach.
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CCFM treats convective clouds as individuals competing for available instability en-

ergy. A simplified cloud model including explicit (yet simple) cloud microphysics is run

at every time step with a number of different initial conditions representing cloud types

of different size. The vertical resolution for the individual cloud model is increased

considerably to 70–100 m. For the limited area model REMOTE we cannot apply a5

large number of different initial cloud types as requested in Nober and Graf (2005) for

CCFM use in coarse grid models. Instead we use a simplified version of only three

cloud types that are different in their initial cloud radius similar as in Graf and Yang

(2007): small, medium and large. Thus, the initial set-up of the model is as in this

study except that the maximum cloud radius at cloud base is set to 1/3 of the height10

of the PBL and a modified cloud microphysics scheme was used in order to be able to

include effects of the aerosols on cloud microphysics. In contrast to a recent study by

Langmann (2007), who used a modified Tiedtke scheme only including smoke effects

on warm rain formation, switching from high to low autoconversion at a preset limit of

CCN concentration, our microphysics scheme includes also mixed phase processes15

following the parameterizations of Ogura and Takahashi (1971) as described in Nober

and Graf (2005). This potentially allows for an intensification of precipitation in polluted

areas where convective instability is high (Andreae et al., 2004; Graf, 2004).

For the aerosol-cloud interaction studies the autoconversion formula of Berry (1968)

was used in the convective cloud parameterization instead of the standard Kessler20

(1969) parameterization:

dqr

dt
=

ρ · 10
3
· q2

l

60
(

5 +
0.0366·Nb

ρ·103
·q·

l
Db

)
(1)

where qr and ql are precipitation water and cloud liquid water mixing ratio (kg/kg)

respectively, ρ is air density, Nb and Db are droplet number density (i.e. CDNC in

no cm
−3

) and droplet relative dispersion at the cloud base. Db is set to standard values:25

over sea it is 0.366 and over land it is 0.146.
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For stratiform clouds a parameterization of the autoconversion rate by Beheng (1994)

is used instead of the Sundquist (1978) scheme:

dqr/dt = (γ1 ∗ 6 ∗ 1028n−1.7N−3.3
l

(10−3ρql )
4.7)/ρ (2)

where Nl is the cloud droplet number concentration, as above ρ is air density and ql is

cloud water mixing ratio, γ1(=15) is a tunable constant which determines the efficiency5

of rain formation, n (=10) is the width parameter of the initial cloud droplet spectrum

described by a gamma function.

From the above parameterizations we know that the formation of precipitation highly

depends on cloud droplet concentration and liquid water content. However, the impact

of CCN on the cloud droplet number concentration is not well known. There are two10

methods that have been used to relate changes in cloud droplet number concentration

CDNC to changes in aerosol concentrations. These are basically diagnostic (empiri-

cal) (Jones et al., 1994; Boucher and Lohmann, 1995) and prognostic (mechanistic)

parameterizations (Chuang and Penner, 1995; Abdul-Razzak and Ghan, 2000). In this

paper we simply used the Boucher and Lohmann (1995) relationship, which is15

CDNC = 102.21+0.41 log(mSO4) (3)

where mSO4 is the sulphate aerosol mass concentration (µg SO4 m
−3

) and CDNC is

in cm
−3

. Distinct higher sulfur content was observed in Indonesian peat fire aerosols

compared to other vegetation fire aerosols (Gras et al., 1999) and Langmann and Graf

(2003) suggested this to be due to accumulated volcanic sulfur. Recent laboratory stud-20

ies (Dusek et al., 2005) showed that young aerosols resulting from peat fires are very

specific in that they form hollow spheres instead of conglomerates as known from other

smoke sources. These spheres have limited capacity to act as cloud condensation nu-

clei. However, it is not yet known how these particles behave when aged. Hence, we

conservatively assume that, concerning cloud microphysics, aged peat smoke aerosol25

acts like organic aerosol, i.e. comparably to sulphate particles, which are very effective

cloud condensation nuclei. Thus, we assume for simplicity that MTPM=MSO4.
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In our model region most grids are covered by sea, but the potentially large amount

of sea salt aerosol source is only included in the current model by fix concentra-

tion differences. Following Roeckner (1995) we assume different background CDNC

over land and sea: In the planetary boundary layer, up to 850 hPa, background

CDNC=200 cm
−3

over land, and CDNC=100 cm
−3

over sea, in the upper model layers5

we use CDNC=50 cm
−3

. We performed a control run with these background CDNCs

and a test run with background CDNC plus TPM emissions as simulated interactively by

REMOTE-CCFM. A more sophisticated treatment of sea salt aerosols would be bene-

ficial since sea salt may produce giant cloud droplets, thus leading to enhanced drizzle

and lower humidity remaining in the atmosphere. We are aware of the fact that our10

treatment of aerosol microphysics is rather crude compared to specialist models. How-

ever, it is much more sophisticated than in nearly all current atmosphere and climate

models and it may be seen as a compromise. A more sophisticated treatment of the

complexity of aerosols and their interaction with clouds would require a fully coupled

chemistry-aerosol-cloud approach that is beyond the scope of this study. However, this15

study is a step towards that goal showing that the aerosols exert an important effect

also on convective clouds. We concentrate here on September 1997, the month with

the strongest smoke pollution observed during the whole 1997/1998 episode.

3 Results

In Fig. 1 we show total precipitation as analyzed for September 1997 by the Global20

Precipitation Climate Center, GPCC, including surface rain gauge results only. This

data set probably has a negative bias (Langmann and Heil, 2004) and the observa-

tion density is very sparse. Even over land not in every grid box there is at least

one gauge installed. In Fig. 2 total (top), large scale (middle) and convective (bottom)

precipitation are shown for the control run (left column) and the test with added pol-25

lution (middle column) as well as the difference between the two model simulations

(right column). Note that the differences are drawn at a smaller scale of mm/month!
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The standard REMOTE model containing a mass-flux parameterization for convective

clouds from Tiedtke (1989) severely over-estimates precipitation (see Graf and Yang,

2007), mainly over sea, while the introduction of CCFM (Fig. 2a) clearly improves the

results as already discussed in Graf and Yang (2007). The main precipitation now is

simulated over land north of the Equator as observed, but the model overall remains5

to be too wet. There is the potential of having too much rainfall at places (like over the

high mountains of Irian Jaja), but these also appear in the original versions of REMO

and REMOTE and, actually, there do not exist any observations. For a discussion

of these effects see Graf and Yang (2007). The inclusion of TPM in the model sim-

ulation changes the microphysical structure of the clouds and this leads to a further10

improvement of the precipitation pattern (Fig. 2b) making it more similar to what the

observations are. The increased precipitation at the westernmost boundary is due to

boundary effects. So, overall, REMOTE with CCFM and including TPM provides a very

reasonable distribution of precipitation at the height of the dry season over Indonesia

and the West Pacific warm pool. The strongest change of precipitation (Fig. 2c) in15

the simulation including smoke is found over land (Borneo, North Sumatra, Peninsula

Malaysia and West Irian Jaja), where the pollution is strongest. There at most places

we see a reduction in total rainfall.

The mean aerosol column concentration (TPM) for September 1997 as it results from

the interaction of smoke emission, transport and wet and dry deposition is rather similar20

to the one Langmann (2007) presented (not shown here). There are clearly maxima

adjacent to the burning peat areas over South Sumatra, South Borneo and parts of

Irian Jaja. Application of Eq. (3) to the aerosol concentration at all model levels for the

control and for the test runs reveals the differences in column cloud droplet number,

Fig. 3a. These differences, as expected, are largest where the aerosol concentration25

is biggest. The pattern of the cloud droplet column concentration very well matches

the aerosol concentration. However, as seen from Fig. 3b, the strongest anomalies

in liquid water path are not matching either the aerosol concentration or cloud droplet

concentrations. Over Borneo the strongest positive anomaly in liquid water path is
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found to the North of the highly polluted area and similar it is over Sumatra. In general,

over the whole model domain we see an increase in liquid water path except at some

randomly scattered places.

Over most of the model area the particle column concentration is slightly increased

when the pollution effects are included in the convective cloud microphysics (Fig. 3c).5

Rainout is depressed due to the suppression of warm rain formation in the most pol-

luted areas. Only at some places, most prominent in the Northwest of Borneo, fewer

particles are found in the air. There, while convective precipitation is decreased, total

precipitation is increased significantly by enhanced large-scale rainfall (Fig. 2f) leading

to more effective rainout of the aerosols.10

Overall, while our model still seems to be too moist, the precipitation pattern sim-

ulated including smoke particle effects is much closer to surface observations. Total

precipitation is reduced (Fig. 2b) compared with the run where only background CDNC

were used (Fig. 2a) at most places where the aerosol load is large, but there are some

extended areas next to these areas of reduced total precipitation where rainfall is sub-15

stantially increased. These we find mainly over northwest Borneo and the Strait of

Malacca and to the west of the northern tip of Sumatra as well as near the northern

coast of Irian Jaja, always to the North of the most polluted areas, downwind from the

highest pollution. As Fig. 2f indicates, these areas of increased total precipitation are

due to heavier large-scale rainfall over-compensating for reduced convective rainfall20

(Fig. 2i). One reason for this behavior is that in the model, when convective precipi-

tation is diminished, the remaining water vapor is added to the humidity used for the

calculation of large-scale precipitation. This, in the moistest areas, may lead to exces-

sive large-scale rain. These are areas of increased aerosol load as well and so it is

of interest what kind of clouds produced these differences. Over land clearly convec-25

tive precipitation is decreased everywhere where heavy pollution occurs (Fig. 2i), while

over sea some slight increase in convective precipitation is seen also in polluted areas,

e.g. Strait of Malacca and northern Sumatra Strait. However, these clouds rarely reach

altitudes where freezing takes part in the formation of rainfall. Where rainfall is most
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depressed, on the other hand, it are the biggest clouds whose height is reduced, while

smaller ones, mainly over Sumatra are higher than in the reference experiment.

While monthly mean cloud heights generally are not impressively increased (few

100 m only), this is different when we look into more detail. A comparison of time step

data of atmospheric instability as measured by Convective Available Potential Energy5

(CAPE), cloud top temperature of the biggest cloud type, and convective precipita-

tion for the runs including TPM plus background CDNC and only background CDNC

revealed the following results at two distinct areas, one in the Sumatra Strait, where

total precipitation is slightly enhanced and another over South Kalimantan where pre-

cipitation is strongly reduced. September is at the high of the dry season in Indone-10

sia, so CAPE is generally small most of the time with just few extreme events. Even

though the limited area model is forced every six hours by lateral boundary conditions

from ECMWF reanalysis ERA40, weather as measured by CAPE may be very dif-

ferent around similar time steps in the polluted and non-polluted cases. This shows,

amongst others, the modulating effect of the additional aerosol on atmospheric stability15

and weather. Hence it is not easy to make direct comparisons. CAPE in the mean

is slightly higher and more variable over land than over sea. The cloud top tempera-

tures nearly always remain above the freezing level of cloud droplets (−15
◦

C) and as

expected are more variable and lower over land. Rainfall from convective clouds is

rare over land and even more so over sea. There is just one prominent case in the pol-20

luted atmosphere over the Sumatra Strait when CAPE leads to a much enhanced cloud

height with cloud top temperature well below freezing and heavier convective precipi-

tation than in the clean case. This is the only case over sea when CAPE is strongly

increased in the polluted case. Over land we find another case in the polluted envi-

ronment where CAPE is enhanced and convective precipitation is stronger, but here25

without reaching the freezing level. There are two cases at the beginning of the month

when the opposite happens, i.e. CAPE is enhanced in the clean simulation and so are

cloud height and precipitation. In another case, with enhanced CAPE in the polluted

simulation and cloud top temperature well below freezing, the model simulates no con-
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vective precipitation at all. These individual results indicate that there is no regular and

simple effect based on a combination of strong CAPE, low cloud top temperature and

aerosol-microphysics effects alone that might produce regularly enhanced convective

precipitation if the mixed phase state of the polluted convective cloud is reached.

If there exists a statistical effect linking CAPE or cloud top height to aerosol effects on5

precipitation, extensive analysis under different conditions would have to be performed.

This would also include a multi-dimensional statistical analysis including the probability

density functions of precipitation intensity under varying parameters such as CAPE,

TPM (including certain thresholds), cloud top temperature, cloud size etc. Such study

requires better representation of cloud microphysics. At least a two-moment scheme is10

required to simulate the aerosol effects on CDNC. Freezing temperatures would have

to depend on droplet chemistry and size, and some information would be necessary

on activation of ice nuclei. All this remains to be a future project.

The cloud radiative forcing at the top of the atmosphere (Fig. 5) is dominated by

shortwave forcing and is generally negative due to the brightening of the clouds. The15

long wave forcing is in general positive, but smaller. The total negative forcing is

damped where the clouds are significantly higher leading to less outgoing longwave

radiation. The area mean of radiative forcing is positive but small and remains in the

order of 0.7 W/m
2
. At some places, like over the seas adjacent to northern Suma-

tra, over West Borneo and just to the north of Irian Jaja positive local values of 10 to20

15 W/m
2

are reached.

4 Concluding discussion

We have applied a limited area model including internal explicit convective cloud treat-

ment to a case study of much enhanced smoke pollution from mostly peat fires in

Indonesia, September 1997. This specific episode is of interest due to the extreme25

pollution and occasional precipitation, which suggests that aerosol-microphysics ef-

fects should be relevant. Aerosols and clouds, both convective and large scale, were
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treated interactively and, for the first time, microphysical processes were included for

warm and mixed phase rainfall formation not only in large scale but also in convective

clouds. Our results show that, while the monthly mean rainfall is depressed over most

of the heavily polluted area, there are clearly coherent areas, also polluted, where the

opposite is the case. These areas basically are situated downwind of those with sup-5

pressed convective precipitation and occur, at least in the majority, over or in proximity

to the sea, where moisture supply is high. Langmann (2007) also found individual 6h

intervals in her simulation of the same case during which precipitation was enhanced

over generally polluted areas. However, only considering the warm phase rainfall, she

produced an overall reduction of rain in the monthly mean over the whole model do-10

main. While, in principle, it would be possible that the increased rainfall is produced in

our model due to moisture that is detrained from the clouds that had suppressed rain-

fall in the last time step, this process would generate a highly noisy pattern in space

and time. With the clear patterns simulated by the model, however, we may rule out

this model-internal shift of precipitation between time steps. Rather we observe a shift15

from convective to large-scale rainfall where the moisture level of the atmosphere is

already high in the background simulations. Our results show that it is feasible to in-

clude a parameterization of explicit convective clouds including aerosol-microphysics

effects in the style of CCFM (Nober and Graf, 2005) also in a limited area model.

The resulting monthly precipitation pattern is closer to the (limited) observations when20

aerosol effects on convective clouds are considered than without. So far it is clear that

warm convective rain is suppressed in polluted air masses and that part of this deficit

can be made up by large-scale precipitation, sometimes even be over-compensated.

Since mixed phase microphysics might be important for the non-linear switch from de-

pressed to increased rainfall, it is very important to also include information on ice25

nuclei in aerosol-cloud models. In addition, higher moment microphysics will be neces-

sary to better simulate aerosol effects on droplet formation and growth. Only then the

right height (initial freezing temperature) of the switch will be detectable. This poses

another big challenge to aerosol modelers that has not yet been met. Since there is
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no simple connection between aerosols and precipitation at ground, complex statisti-

cal studies are required of changes in PDF of rainfall intensity depending on pollution

level and vertical profiles of temperature, winds and moisture. More case studies of

observed precipitation and pollution will be necessary and our model still needs tuning

to avoid it being too moist. However, the results obtained so far encourage us to further5

studies including the above mentioned process parameterizations and to also include

the convective transport of chemical species (soluble and insoluble) in the near future.
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Fig. 1. Precipitation in September 1997 measured by ground-based rain gauges (GPCC: http:

//www.dwd.de).

17113

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/17099/2007/acpd-7-17099-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/17099/2007/acpd-7-17099-2007-discussion.html
http://www.egu.eu
http://www.dwd.de
http://www.dwd.de


ACPD

7, 17099–17116, 2007

Smoke aerosol,

clouds and

precipitation

H.-F. Graf et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 2. Precipitation as simulated by REMOTE-CCFM simulated by REMOTE-CCFM and back-

ground CDNC (left column, total, large scale and convective rain from top to bottom), simulated

by REMOTE- CCFM and background standard CDNC plus TPM (middle column) and pre-

cipitation anomalies between the two simulations (right column). Note that the colors for the

differences (right column) are set to mm/month, while the absolute rainfall is in cm/month.
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Fig. 3. Differences between REMOTE-CCFM simulations with additional smoke aerosols and

without. (a) cloud droplet concentration, (b) liquid water path, (c) particle column concentration.
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Fig. 4. Monthly mean top of the atmosphere total cloud radiative forcing difference between the

runs with and without inclusion of TPM.
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