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Abstract

Several short-lived pollutants known to impact Arctic climate may be contributing to

the accelerated rates of warming observed in this region relative to the global annu-

ally averaged temperature increase. Here, we present a summary of the short-lived

pollutants that impact Arctic climate including methane, tropospheric ozone, and tro-5

pospheric aerosols. For each pollutant, we provide a description of the major sources,

the mechanism of forcing, seasonally averaged forcing values for the Arctic, and the

corresponding surface temperature response. We suggest strategies for reducing the

warming based on current knowledge and discuss directions for future research to

address remaining uncertainties.10

1 Introduction

Arctic temperatures have increased at almost twice the global average rate over the

past 100 years (IPCC, 2007). Warming in the Arctic has been accompanied by an ear-

lier onset of spring melt, a lengthening of the melt season, and changes in the mass

balance of the Greenland ice sheet (Stroeve et al., 2006; Zwally et al., 2002). In addi-15

tion, Arctic sea ice extent has decreased from 1979 to 2006 in every month (Serreze et

al., 2007). During the 2007 melt season, Arctic sea ice dropped to the lowest levels ob-

served since satellite measurements began in 1979 resulting in the first recorded com-

plete opening of the Northwest Passage (NSIDC, 2007). Impacts of ice loss include

reduction of the Earth’s albedo, a positive feedback which leads to further warming.20

The earlier onset of spring melt is of particular concern as this is the season of maxi-

mum snow-albedo feedback (e.g., Hall and Qu, 2006). Timescales for a collapse of the

Greenland ice sheet and a transition to a seasonally ice-free Arctic are highly uncertain

as are the regional and global impacts. However, clear ecological signals of significant

and rapid response to these changes within the Arctic are already present. For ex-25

ample, paleolimnological data from across the Arctic have recorded striking changes
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in diatoms and other bioindicators corresponding to conditions of decreased ice cover

and warming (Smol et al. 2005). Circumpolar vegetation also is showing signs of rapid

change including an expansion of shrub and tree coverage (Chapin et al., 2005).

Arctic warming is primarily a manifestation of global warming such that reducing

global-average warming will reduce Arctic warming and the rate of melting. Reduc-5

tions in the atmospheric burden of CO2 are the backbone of any meaningful effort to

mitigate climate forcing. But, even if swift and deep reductions were made, given the

long lifetime of CO2 in the atmosphere, the reductions may not be achieved in time to

delay a rapid melting of the Arctic. Hence, the goal of constraining the length of the

melt season and, in particular, delaying the onset of spring melt, may best be achieved10

by targeting shorter-lived climate forcing agents, especially those that impose a surface

forcing that may trigger regional scale climate feedbacks pertaining to sea ice melting.

Addressing these species has the advantage that emission reductions will be felt im-

mediately. The forcing agents included in this discussion are methane, tropospheric

ozone, and tropospheric aerosols. The goals of this article are to describe the mech-15

anisms by which these short-lived pollutants impact Arctic climate (Fig. 1), summarize

the seasonally averaged forcing and surface temperature response due to each pol-

lutant (Table 1 and Fig. 2), outline near-term climate mitigation opportunities for the

Arctic, and suggest areas of future research.

2 Short-lived pollutants that impact Arctic climate20

2.1 Methane

Since the industrial revolution, rapid increases in human activity have led to more than

a doubling of atmospheric methane concentrations (Wuebbles and Hayhoe, 2002). A

combination of ice core records and atmospheric measurements has revealed that

methane levels, at ∼1770 ppbv, are higher now than at any time in the past 650 kyr25

(Petit et al., 1999; Spahni et al., 2005). Growth rates have slowed over the last few

15671

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/15669/2007/acpd-7-15669-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/15669/2007/acpd-7-15669-2007-discussion.html
http://www.egu.eu


ACPD

7, 15669–15692, 2007

The climate impact of

short-lived pollutants

in the Arctic

P. K. Quinn et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

decades with current observations indicating that methane levels are either leveling off

or starting to increase after a brief decline in the early 1990s (Dlugokencky et al., 2003).

At the same time, growth rates are becoming more variable. Reasons for the change

in growth rates are not well understood beyond the acknowledgement of a change in

the balance between sources and sinks (IPCC, 2001).5

Anthropogenic sources, which account for about two thirds of emitted methane, in-

clude coal and gas production and use, rice cultivation, agriculture and waste disposal,

biomass burning, landfills, and animals in the form of solid waste and enteric fermen-

tation. The largest single source of methane is natural wetlands (IPCC, 2001) with

those north of 60
◦

N responsible for about 13% of the global natural methane flux (Cao10

et al., 1998). Measurements in the sub-Arctic and Arctic over the past decade have

indicated that methane emissions from these regions are increasing due to increasing

temperatures and the resulting disappearance of permafrost and wetter soil conditions.

For example, permafrost and vegetation changes in one region in sub-Arctic Sweden

have led to 20 to 70% increases in local methane emissions between 1970 and 200015

(Christensen et al., 2004). In Arctic regions of continuous permafrost, warming has

resulted in a degradation of permafrost and an increase in the size and number of thaw

lakes. It has been estimated that this increase in lake area has led to a 58% increase

in methane emissions (Walter et al., 2006). Further warming in Siberia could result

in thousands of teragrams of methane being emitted from the 500 gigatons of labile20

C that is currently stored in regional permafrost (By comparison, the atmosphere now

contains 9000 teragrams of methane.).

With a lifetime of about 10 years, methane is much shorter lived than CO2 but still is

globally well-mixed. Methane has contributed the second largest anthropogenic radia-

tive forcing since the pre-industrial after CO2 and, on a per molecule basis, is a more25

effective Greenhouse Gas (GHG) (IPCC, 2001). Radiative forcing by methane results

directly from the absorption of longwave radiation and indirectly through chemical re-

actions that lead to the formation of other radiatively important gases. The latter is

dominated by the formation of tropospheric ozone, also a short-lived GHG, through the
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oxidation of methane by the hydroxyl radical (OH) in the presence of nitrogen oxides

(NOx).

2.2 Tropospheric ozone

Both observations and modeling studies provide evidence that tropospheric ozone

concentrations, which are controlled primarily by photochemical production and loss5

processes within the troposphere, have increased since pre-industrial times due to in-

creases in emissions of anthropogenic ozone precursors (Oltmans et al., 1998). The

rapid increase in ozone concentrations during the latter half of the 20th century has

been attributed to increases in economic development at middle and low latitudes

(Shindell et al., 2006). Ozone precursors include NOx, carbon monoxide, methane,10

and non-methane volatile organic compounds (NMVOC). Anthropogenic sources of

these precursor gases include fossil fuel combustion and production, biofuel combus-

tion, industrial processes, and anthropogenic biomass burning. Natural sources in-

clude wildfires, biogenic emissions from soils and vegetation, and lightning. In polluted

air masses, ozone is formed primarily from rapid photochemical oxidation of NMVOCs15

in the presence of NOx. In contrast, methane, being globally well-mixed, contributes to

increases in background tropospheric ozone levels (Crutzen, 1973; Fiore et al., 2002;

Dentener et al., 2005).

Changes in local tropospheric ozone affect Arctic climate by altering local radiation

fluxes, while changes in both local and distant ozone amounts can modulate the trans-20

port of heat to the polar region. The lifetime of ozone decreases during the summer in

the extratropics since photochemical destruction rates increase with increasing insola-

tion. Hence, ozone that is produced in the northern hemisphere mid-latitudes is most

efficiently transported to the Arctic in the non-summer months. Little is known about

the contribution of local production of ozone and its precursors within the Arctic rela-25

tive to extrapolar sources. Local sources include marine vessel emissions. Shipping

emissions in the Arctic have the potential to increase Arctic ozone levels by a factor of

2 to 3 relative to present day, bringing them to the same level as in the middle latitudes
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(Granier et al., 2006).

Sub-Arctic and Arctic ozone precursor emissions may be increasing as boreal re-

gions warm and forest fire frequency increases (Kasischke et al., 2005). Record high

concentrations of ozone were measured at the Zeppelin research station in Spitsber-

gen (79
◦

N) in April and May of 2006 (Stohl et al., 2007). This severe air pollution5

episode was a result of the combination of unusually high temperatures in the Euro-

pean Arctic and large emissions from agricultural fires in Belarus, Ukraine, and Russia.

The high temperatures in the Arctic reduced the temperature gradient between the

source and receptor regions, making low-level transport of pollution into the Arctic pos-

sible. Should the warming of the Arctic continue to proceed more quickly than that of10

the middle latitudes, transport from highly polluted source regions may become more

frequent in the future, resulting in increased tropospheric ozone concentrations and a

further increase in surface temperatures.

2.3 Tropospheric aerosols

Tropospheric aerosol concentrations in the Arctic are marked by a large increase each15

year in late winter and early spring (e.g., Shaw, 1995; Sirois and Barrie, 1999). The

combination of intense isentropic transport from the mid-latitudes to the Arctic and

strong surface-based temperature inversions that inhibit turbulent transfer (and, there-

fore, aerosol removal via deposition) results in this recurring phenomenon known as

Arctic Haze. In addition, the dryness of the Arctic troposphere results in very little20

wet deposition during this time of year. The dominant source regions for the haze in-

clude northern Europe and Asia with emissions of sulfate aerosol from fossil fuel com-

bustion, nitrate from combustion of diesel and gasoline, and organic carbon and soot

(black carbon) from fossil fuel, bio-fuel, and biomass combustion. Long-term, ground-

based measurements of sulfate and light scattering by aerosols show that, since the25

late 1970s, the highest recorded levels of Arctic Haze occurred in the 1980s and early

1990s. Levels then decreased through the end of the 1990s primarily due to reductions

in industrial emissions in the early years of the new Eurasian republics and, to a lesser

15674

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/15669/2007/acpd-7-15669-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/15669/2007/acpd-7-15669-2007-discussion.html
http://www.egu.eu


ACPD

7, 15669–15692, 2007

The climate impact of

short-lived pollutants

in the Arctic

P. K. Quinn et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

extent, to more stringent power plant emission laws in the United States and Europe.

More recent measurements indicate that levels of light scattering and black carbon

may be increasing once again (e.g., Quinn et al., 2007). From 1980 to the present,

nitrate concentrations have increased, suggesting that while power-plant sulfur emis-

sions have decreased in the source regions to the Arctic, emissions from diesel and5

gasoline engines have increased. The same agricultural fire event reported by Stohl

et al. (2007) that resulted in anomalously high ozone also led to record high levels of

aerosol optical depth and black carbon, indicating the potential impact of natural and

prescribed episodic fires.

Tropospheric aerosols in the Arctic can perturb the radiation balance of the earth-10

atmosphere system in a number of ways. Direct aerosol forcing occurs through absorp-

tion or scattering of solar (shortwave) radiation by aerosols. For example, a scattering

aerosol over a low albedo surface will reflect incoming solar radiation, resulting in a

cooling of the surface as well as the surface-atmosphere-aerosol column. An absorb-

ing aerosol, such as one containing soot, over a highly reflective surface will result in a15

warming at altitudes above and within the haze layer and, instantaneously, a reduction

of solar energy at the surface. The added atmospheric heating will subsequently in-

crease the downward longwave radiation to the surface, warming the surface. With the

highly reflective surfaces typical of the Arctic springtime, even a moderately absorbing

aerosol can lead to a heating of the surface-atmosphere-aerosol column. The Airborne20

Arctic Stratospheric Expedition (AASE) II flights in the winter of 1992 observed soot-

containing aerosols at an altitude of 1.5 km. Pueschel and Kinne (1995) calculated that

this layer of aerosols could heat the earth-atmosphere system above a surface of high

solar albedo (ice/snow) even for single-scattering albedos as high as 0.98.

If hygroscopic pollution particles deliquesce and grow sufficiently large they may also25

impact the radiation balance in the Arctic by interacting with terrestrial (longwave) ra-

diation. This forcing may be significant during the polar night when longwave radiation

dominates the energy budget. Measurements made in the Arctic when the sun was be-

low the horizon suggest that Arctic haze can have a detectable direct thermal radiative
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forcing by altering the flux of both downward and outgoing longwave radiation (Ritter et

al., 2005).

Soot has an additional forcing mechanism when it is deposited to snow and ice sur-

faces. Such deposition enhances absorption of solar radiation at the surface which

can warm the lower atmosphere and induce snow and ice melting. Surface tempera-5

ture responses are strongly linked to surface radiative forcings in the Arctic because

the stable atmosphere of the region prevents rapid heat exchange with the upper tropo-

sphere (Hansen and Nazarenko, 2004). Measurements of BC and other tracer species

in central Greenland ice cores have been used to determine the source of BC in snow

over the past 215 years (McConnell et al., 2007). Chemical analyses combined with10

air mass back-trajectory modeling indicate that eastern North American boreal forest

fires were the major source of BC in Greenland precipitation prior to industrialization

(∼1850). Since 1850, the BC deposited to Greenland snow appears to have originated

primarily from industrial activities in North American (1850–1950) and Asia (1950–

present). It is not known how representative these results are for other regions of the15

Arctic. In addition, boreal forest fires can be an important source of BC throughout the

Arctic in years of frequent and intense burning (Stohl et al., 2006).

Climate forcings also result from aerosol-cloud interactions. The aerosol first indi-

rect effect in the shortwave occurs when pollution particles lead to an increase in cloud

droplet number concentration, a decrease in the size of the droplets, and a correspond-20

ing increase in shortwave cloud albedo (Twomey, 1977). Measurements made at Bar-

row, Alaska, over a four year period indicate that episodic Arctic Haze events produce

high cloud drop number concentrations and small cloud drop effective radii in low-level

cloud microstructures (Garrett et al., 2004). Similar aerosol-cloud interactions can also

lead to a significant longwave forcing. When the cloud drop number concentration25

of thin Arctic liquid-phase clouds is increased through interaction with anthropogenic

aerosols, the clouds become more efficient at trapping and re-emitting longwave radi-

ation (Garrett and Zhao, 2006; Lubin and Vogelmann, 2006). Over dark oceans when

the sun is high, the shortwave indirect effect is expected to cool the surface but for a low
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sun over bright Arctic surfaces, the longwave effect is expected to dominate. Lubin and

Vogelmann (2007) performed radiative transfer simulations to assess the relative mag-

nitudes of shortwave and longwave downwelling fluxes due to Arctic haze aerosols.

During March and April, shortwave downwelling fluxes were found to be comparable in

magnitude to longwave fluxes. During May and June, however, the shortwave fluxes5

exceeded those in the longwave.

Aerosol-cloud interactions may also increase cloud cover by increasing cloud droplet

number concentrations. The result is a decrease in cloud drop size, a decrease in pre-

cipitation, and an increase in cloud lifetime (Albrecht, 1989). Finally, increasing cloud

drop number concentrations may be associated with a reduced rate of ice formation10

in mixed-phase Arctic clouds which reduces cloud desiccation by ice and increases

cloud longwave emissivity (Girard et al., 2005). However, ice formation mechanisms in

common mixed-phase clouds remain very poorly understood (Fridlind et al., 2007).

2.4 Summary

The magnitude of the forcing by each short-lived pollutant depends on the seasonality15

of a number of inter-related factors including radiation, precipitation, surface albedo,

snow and ice coverage, and pollutant transport. In Table 1 estimates are presented of

seasonally averaged forcing and the surface temperature response for the short-lived

pollutants. Details of the calculations are given in Sect. 3. Although average estimates

of temperature response may not be the most informative measure of the impact of20

short-lived pollutants, they serve as a starting point and can indicate directions for

future research and mitigation strategies.

3 Methods

Radiative forcings and temperature response values for methane, tropospheric ozone,

and tropospheric aerosols are combined and presented here so that the impact of25
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these individual forcing agents can be compared in terms of seasonality, forcing at the

surface (FS ), forcing at the top of atmosphere (FTOA), and surface temperature response

(∆TS ).

3.1 Surface and top of atmosphere forcing

Seasonally averaged values of FS , FTOA, and FTOA–FS are shown in Table 1 for the5

short-lived forcing agents discussed in Sect. 2. In addition, seasonally averaged val-

ues of FS and ∆TS are shown in Fig. 2 for each of the forcing mechanisms included

in the table. Values of FS and FTOA due to direct radiative forcing by tropospheric

aerosols are based on GISS ModelE GCM calculations (Koch and Hansen, 2005).

They are reported as the change in instantaneous forcing due to adding present-day10

fossil fuel plus biofuel emissions to the baseline simulation where the baseline simu-

lation used present-day biomass burning emissions. For comparison, values also are

shown for the forcing contributed by present-day biomass burning emissions based on

GISS ModelE GCM calculations. FS and FTOA were calculated for the “total” aerosol

which includes sulfate, organic carbon (OC), and black carbon (BC) and for the indi-15

vidual aerosol species (sulfate, OC, and BC). Forcings derived from these global-scale

calculations were averaged over 60
◦

to 90
◦

N.

Values of FS and FTOA due to indirect radiative forcing by tropospheric aerosols are

based on GISS ModelE GCM calculations for direct plus indirect effects where the indi-

rect effects include those of cloud albedo and cloud cover (e.g., Menon and Rotstayn,20

2006). Shortwave, longwave, and shortwave plus longwave values of FS and FTOA

are given for the “total” aerosol (sulfate, OC, and BC). As for the direct radiative forc-

ing calculations, forcings are reported as the change in instantaneous forcing due to

adding fossil fuel plus biofuel emissions to the baseline simulation where the baseline

simulation used present-day biomass burning emissions.25

Increased cloud longwave emissivity due to pollution haze is assigned a wintertime

range of values of FS based on the analysis of Garrett and Zhao (2006). Using four

years of ground-based aerosol and radiation measurements, Garrett and Zhao (2006)

15678

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/15669/2007/acpd-7-15669-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/15669/2007/acpd-7-15669-2007-discussion.html
http://www.egu.eu


ACPD

7, 15669–15692, 2007

The climate impact of

short-lived pollutants

in the Arctic

P. K. Quinn et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

found that where thin water clouds and pollution are coincident, there is an increase

in cloud longwave emissivity resulting from haze layers at altitudes above the surface.

Rather than seasonal averages, the range of observed sensitivity and corresponding

surface temperature response are reported here.

Forcing by BC in snow due to present-day fossil, bio-fuel, and biomass burning emis-5

sions for the Arctic (60
◦

to 90
◦

N) was calculated relative to present-day biomass burn-

ing emissions using SNICAR (Snow, Ice, and Aerosol Radiative model) coupled to the

NCAR CAM3 general circulation model (Flanner et al., 2007).

FTOA for tropospheric ozone as reported in Table 1 is the instantaneous forcing at the

tropopause based on GISS model II
′

chemistry calculations for the 1880 to 2003 time10

period (Shindell et al., 2006). FTOA for methane is calculated at the tropopause from

simulations for 1900 to 2001 driven by changes in all well-mixed greenhouse gases

(WMGHGs) accounting for the fractional contribution of methane to the total forcing

(0.20) and its efficacy relative to the total WMGHG efficacy (1.05/1.02). The role of

methane in ozone production is included in the tropospheric ozone calculation.15

3.2 Surface temperature response

Seasonally averaged values of the surface temperature response due to forcing by the

short-lived pollutants are shown in Table 1. The climate models used to calculate the

Arctic response were forced globally with changing atmospheric composition. Values

for tropospheric aerosol direct and indirect effects are based on GISS Model E climate20

simulations (Hansen et al., 2007, Fig. 11). Indirect effects only include the temperature

response due to changes in cloud cover. Values are reported as the zonal mean tem-

perature change for 1880 to 2003 at the surface relative to half present-day biomass

burning emissions. Biofuel emissions are not included in these calculations. A small

fossil fuel source was included for the late 1880s. The temperature response due to25

deposition of BC on snow and ice surfaces was calculated with the SNICAR (Snow, Ice,

and Aerosol Radiative model) coupled to the NCAR CAM3 general circulation model

using the same emissions scenario as described in the previous section (Flanner et
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al., 2007).

The temperature response due to forcing by tropospheric ozone and methane are

based on GISS Model E calculations detailed in Shindell et al. (2006) and Hansen et

al. (2007) using the regional averages and time periods described above. The surface

temperature response resulting from increased cloud longwave emissivity is based5

directly on values of Fs reported in Table 1 (Garrett and Zhao, 2006).

4 Seasonality and magnitude of forcing due to short-lived pollutants and sur-

face temperature response

Forcing due to tropospheric ozone is at a maximum during spring (Table 1) when trans-

port of ozone is efficient, radiation is abundant, and substantial ozone precursors per-10

sist from the winter buildup that occurs under conditions of low photochemical loss.

Summertime forcing could also be significant, particularly when agricultural or boreal

forest fire emissions increase ozone levels in the Arctic. The values shown in Table 1

for summertime are based on a standard climatology for present day biomass burning

emissions (including forest fires) (Shindell et al., 2006). As such, they do not capture15

years with exceptionally large boreal fires. Methane forcing, which is not limited by the

seasonality of pollutant transport, is at a maximum during spring and summer due to

warmer surface temperatures and, hence, a more powerful greenhouse effect. The

surface response for both ozone and methane, indicated here as an increase in sur-

face temperature of 0.43
◦

and 0.34
◦

C, respectively (Table 1), is high in winter when the20

forcing is at a minimum. This offset implies that the Arctic surface temperature exhibits

a delayed response to forcing (either local or extrapolar), is dynamically driven by forc-

ings in other regions of the globe during this season, or is enhanced by erosion of the

surface-based temperature inversion which is most prominent in winter.

In the Arctic, the magnitude and mechanism of climate forcing due to aerosols is25

controlled by an interplay among the seasonal timing of transport, available radiation,

snow/ice melt, and deposition. In winter and early spring, when transport of pollutants
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from the mid-latitudes is most efficient, solar radiation is limited so that the radiation

balance is driven primarily by thermal fluxes. Interactions between the pollutant aerosol

haze and the thin water clouds present at that time of year lead to an increase in

longwave emissivity of thin clouds. Long-term ground based observations indicate

that, when pollution and clouds are coincident, the result is a positive forcing at the5

surface of +3.3 to 5.2 W m
−2

which is estimated to yield an enhanced surface warming

of 1
◦

to 1.6
◦

C (Garrett and Zhao, 2006).

Concentrations of BC are enhanced in the Arctic atmosphere during winter and

spring due to the transport of Arctic Haze from the mid-latitudes. The deposition of

the soot onto the highly reflective snow/ice surfaces lowers the surface albedo and10

yields a positive surface forcing of 0.53 W m
−2

in the spring, the season of maximum

forcing (Flanner et al., 2007). The corresponding increase in surface temperature is

about 0.5
◦

C.

Finally, direct shortwave climate forcing by atmospheric aerosols occurs when so-

lar radiation is abundant and springtime Arctic Haze or summertime fire plumes are15

present leading to a reduction in the amount of solar radiation reaching the surface.

The result is a negative surface forcing during the spring (−0.72 W m
−2

for the total

fossil + bio-fuel + biomass burning aerosol) and a change in surface temperature of

−0.93
◦

C. As FS is an instantaneous forcing, this temperature change applies before the

surface equilibrates with the warmer atmosphere. Additional effects include a reduction20

in Arctic sea level pressure and an increase in snow/ice cover. These aerosol impacts

on circulation and the cryosphere may contribute to an offset between the season of

maximum forcing (spring and summer) and maximum temperature response (winter).

Mentioned in the discussion above but worth reiterating here is the offset between

forcing and surface temperature response in several of the climate model simulations25

included in Table 1. Recently reported modeling results indicate that during the boreal

summer, Arctic temperature response is well-correlated with either global or Arctic forc-

ing (Shindell, 2007). During the remaining seasons, however, the surface temperature

response follows the global or Northern Hemisphere extratropical forcing more closely
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than local Arctic forcing, indicating that distant regions have a large impact on Arctic

climate.

Conditions specific to the Arctic must also be considered when comparing the sea-

sonality of forcing and the surface temperature response. For example, during the

summer, the tropospheric aerosol indirect effect has the largest value of FS but the5

smallest value of ∆TS . This discrepancy occurs because surface temperatures over

the Arctic Ocean are limited as long as sea ice is present. This scenario (discrep-

ancy between seasonal maxima in forcing and response) is likely to change with future

decreases in sea ice extent.

5 Near-term Arctic climate mitigation opportunities10

Reducing emissions of CO2 globally will reduce the rate of surface warming and

snow/ice melt in the Arctic. However, targeting emissions of short-lived pollutants

along with CO2 has the advantage of impacting Arctic climate on a more immediate

timescale. The most effective mitigation strategy will target those pollutants that domi-

nate surface radiative absorption. Specific mitigation opportunities include:15

– Methane.Reducing methane emissions will require targeting major controllable

anthropogenic sources including gas and coal production and use, landfills,

wastewater treatment, rice cultivation, and enteric fermentation.

– Ozone.Reducing methane emissions will decrease ozone production. Reduc-

tions in NOx emissions also will decrease ozone production but, at the same20

time, will decrease OH which is the major sink for methane. Hence, an ozone

reduction strategy using NOx controls must also include reductions in methane,

non-methane volatile organic carbon species, and/or CO.

– Black carbon. Reducing black carbon emissions will require targeting northern

hemisphere emissions with a particular emphasis on sources that emit aerosols25
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with a high absorptivity and relatively low reflectance (e.g., diesel combustion and

residential stoves). Reducing within-Arctic emissions of black carbon (e.g., gen-

erators) and implementing emission controls on marine vessels operating within

Arctic waters (particularly in light of the likely increase in shipping activity as the

snow/ice pack decreases) will also be required. Additional strategies include re-5

ducing prescribed agricultural burns in eastern Europe so that black carbon emis-

sion and deposition does not occur in spring as radiation is increasing and the

area of snow/ice pack is large. Reducing black carbon emissions has the added

benefit of improving air quality and decreasing associated health hazards.

6 Future directions for research10

Many of the impacts of short-lived pollutants on Arctic climate are not well understood

or quantified. Specific scientific issues and areas of uncertainty in need of future re-

search include the following:

– Methane.Wetland and permafrost methane emissions within the Arctic and sub-

Arctic that result from rising surface temperatures are highly uncertain. Quanti-15

fying the changes in these emissions is critical to assessing the effectiveness of

controlling anthropogenic sources.

– Ozone. The effectiveness of controlling near-Arctic or within-Arctic NOx emissions

to reduce tropospheric ozone within the Arctic is unknown. Local NOx emissions

are likely to become significant if Arctic shipping activity increases as predicted.20

Research is needed to improve our understanding of reactive nitrogen chemistry

and the oxidation capacity of the Arctic atmosphere.

– Black carbon. Black carbon levels appear to be on the rise in the Arctic but source

regions and processes are not well characterized. To reduce Arctic warming due

to black carbon in snow and ice, combined measurement and modeling efforts25
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are needed to identify sources, particularly those that impact the timing and rate

of snow/ice melt, and gain a better understanding of transport pathways and de-

position processes.

– Other tropospheric aerosols – surface warming. The enhancement of longwave

emissivity from thin liquid-phase Arctic clouds due to interactions with anthro-5

pogenic aerosols may lead to significant surface temperature increases. These

increases occur in phase with sea ice melt, potentially leading to a resonant am-

plification. Understanding the impact of different aerosol types (source regions

and chemical composition) is required to reduce this source of warming. In addi-

tion, further research is required to evaluate the role of aerosols in ice formation10

in low level mixed-phase clouds.

– Other tropospheric aerosols – surface cooling. Reflective aerosols in atmospheric

layers prevent incoming solar radiation from reaching the ground and yield a cool-

ing at the surface. Hence, reductions in aerosol concentrations within the Arctic

and in distant source regions may contribute to Arctic warming. Assessing the15

overall impact of tropospheric aerosols in the Arctic (direct and indirect effects) is

required to determine how reductions in aerosol concentrations will affect Arctic

climate.

– Feedbacks and Climate Responses. Individual forcing mechanisms are relatively

well understood for each of the short-lived pollutants discussed. More uncer-20

tain are the feedback mechanisms that come into play due to the combination of

forcings from all pollutants and the complexity of the Arctic environment. These

feedback mechanisms and the resulting Arctic climate responses (e.g., increased

surface temperature and melt rate) require further evaluation through a combina-

tion of measurement and modeling studies.25
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Table 1. Comparison of the seasonality and magnitude of the forcing as well as the surface

temperature response due to short-lived pollutants in the Arctic (60
◦

to 90
◦

N). Values of FS and

FTOA are reported here as the change in the instantaneous forcing due to the addition of fossil

fuel and biofuel emissions to present-day biomass burning emissions.

Forcing Agent Season FS

W m
−2

FTOA

W m
−2

FTOA-FS
W m

−2

∆T sa
◦

C

Tropospheric Aerosols – Direct Effect
b

Total
∗

Fossil+Bio Fuel Winter −0.04 (−0.001) 0.08 (0.004) 0.12 (0.005) −1.4
c

(Biomass Burning) Spring −0.72 (−0.1) 0.92 (0.17) 1.6 (0.27) −0.93
c

∗

SO
=

4 + OC + BC Summer −0.93 (−0.43) 0.11 (0.16) 1.0 (0.59) −0.47
c

Fall −0.14 (−0.07) 0.08 (0.04) 0.22 (0.11) −1.1
c

SO
=

4 Fossil Fuel Winter −0.006 −0.01 −0.006

Spring −0.26 −0.32 −0.06

Summer −0.50 −0.54 −0.04

Fall −0.07 −0.08 −0.01

OC Fossil+Bio Fuel Winter −0.003 (0) 0 (0) 0.003 (0)

(Biomass burning) Spring −0.06 (−0.05) 0.03 (0.02) 0.09 (0.07)

Summer −0.04 (−0.24) −0.01 (−0.09) 0.03 (0.15)

Fall −0.008 (−0.04) −0.001 (−0.02) 0.007 (0.02)

BC Fossil+Bio Fuel Winter −0.03 (−0.001) 0.09 (0.004) 0.12 (0.005)

(Biomass burning) Spring −0.39 (−0.05) 1.2 (0.15) 1.6 (0.20)

Summer −0.39 (−0.19) 0.66 (0.25) 1.0 (0.44)

Fall −0.07 (−0.03) 0.16 (0.05) 0.23 (0.08)

Tropospheric Aerosols – Indirect Effects

Total
∗

Fossil+Bio Fuel Cloud Winter −0.04, 0.24, 0.2
d

0.07, −0.1, −0.03
e

0.11, −0.34, −0.23 −0.77
f

albedo + cloud cover Spring −3.0, 1.9, −1.1 0, 0.1, 0.1 3.0, −1.8, 1.2 −0.68
f

SW, LW, SW+LW Summer −12.2, −0.5, −13 6.6, −0.5, 6.1 19, 0, 19 −0.45
f

∗

SO
=

4 + OC + BC Fall −0.4, −0.1, −0.5 0.49, −0.9, −0.41 0.89, −0.8, 0.09 −0.89
f

Cloud longwave emissivity Winter +3.3 to 5.2
g

1 to 1.6
g

Black carbon aerosol – Snow Albedo

BC Fossil+Bio Fuel Winter 0.02
h

0.27–0.61
h

Spring 0.53
h

0.36–0.76
h

Summer 0.21
h

0.24–0.59
h

Fall 0.002
h

0.31–0.76
h

Tropospheric Ozone GHG warming + SW absorption
i

O3 Fossil+Bio Fuel and Winter 0.13 0.43

Biomass burning Spring 0.34 0.31

Summer 0.14 0.11

Fall 0.24 0.26

Methane – GHG warming
j

Methane Winter 0.29 0.34

Spring 0.45 0.27

Summer 0.55 0.15

Fall 0.34 0.35
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Table 1. Foonotes to Table 1.

a
Zonal mean temperature change at the surface for 60

◦

to 90
◦

N. Climate models used to calculate the Arctic response

were forced globally (not just within the Arctic region) with changing composition.
b
FS and FTOA are based on the GISS ModelE GCM, using present-day fossil, bio-fuel, and biomass burning emissions

relative to present-day biomass burning emissions (Koch and Hansen, 2005). Values for present-day biomass burning

emissions are shown in parentheses.
c

Values are reported as the zonal mean temperature change for 1880 to 2003 at the surface relative to half present-

day biomass burning emissions. Biofuel emissions are not included in these calculations. A small fossil fuel source

was included for the late 1880s. Taken from Fig. 11 of Hansen et al. (2007).
d

Direct plus indirect effects (cloud albedo and cloud cover) together. Based on the GISS ModelE GCM, using present-

day fossil, bio-fuel, and biomass burning emissions relative to present-day biomass burning emissions (Menon and

Rotstayn, 2006). Three values are given: shortwave, longwave, and shortwave plus longwave forcing.
e

Based on the GISS ModelE GCM, for changes in net cloud radiative forcing using the same emissions scenario as

described above. Three values are given: shortwave, longwave, and shortwave plus longwave forcing.
f
Temperature change due to cloud cover aerosol indirect effect only. Taken from Fig. 11 of Hansen et al. (2007).

g
Based on measurements of the sensitivity of low-level cloud emissivity to pollution at Barrow, Alaska (Garrett and

Zhao, 2006). Not a seasonal average as it only includes times when pollution aerosol and clouds were coincident.
h

Based on radiative transfer calculations with SNICAR coupled to the NCAR CAM3 using present-day fossil, bio-fuel,

and biomass burning emissions relative to present-day biomass burning emissions (Flanner et al., 2007).
i
Ozone forcing calculated at the tropopause over 60–90

◦

N for 1900–2000 (Shindell et al., 2006).
j
Methane’s forcing and response are estimated based on simulations for 1900–2001 driven by changes in all well-mixed

greenhouse gases (WMGHGs), accounting for the fractional contribution of methane to the total forcing (0.20) and its

efficacy relative to the total WMGHG efficacy (1.05/1.02). As the well-mixed greenhouse gases are evenly distributed,

we believe this is a realistic approach. Values are calculated at the tropopause. Methane’s role in ozone production is

included in the tropospheric ozone calculation. Based on the contribution to the global increase in tropospheric ozone,

it is responsible for ∼50% of the overall tropospheric ozone increase. Its percentage contribution to the Arctic ozone

concentration will be lower, however, as ozone changes in the Arctic are dominated by increases in NOx (Shindell et

al., 2005).
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Fig. 1. Forcing mechanisms in the Arctic environment resulting from the poleward transport of

middle latitude gas and particulate phase pollutants. Season of maximum forcing at the surface

(FS ) is indicated for each forcing agent. ∆T indicates the surface temperature response.
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Fig. 2. Seasonally averaged values of radiative forcing and temperature response at the surface

(FS and ∆TS , respectively) for 60
◦

to 90
◦

N based on the calculations described in Sect. 2 and

Table 1. Values for Cloud Longwave Emissivity are not seasonal averages as they only include

times when pollution aerosol and clouds were coincident. Central values of FS and ∆TS are

plotted in cases where a range of values was reported in Table 1.
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