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Abstract

Trace gas measurements of TOPSE and TRACE-P experiments and corresponding

global GEOS-CHEM model simulations are analyzed with the Positive Matrix Factor-

ization (PMF) method for model evaluation purposes. Specially, we evaluate the model

simulated contributions to O3 variability from stratospheric transport, intercontinental5

transport, and production from urban/industry and biomass burning/biogenic sources.

We select a suite of relatively long-lived tracers, including 7 chemicals (O3, NOy, PAN,

CO, C3H8, CH3Cl, and
7
Be) and 1 dynamic tracer (potential temperature). The largest

discrepancy is found in the stratospheric contribution to
7
Be. The model underesti-

mates this contribution by a factor of 2–3, corresponding well to a reduction of
7
Be10

source by the same magnitude in the default setup of the standard GEOS-CHEM

model. In contrast, we find that the simulated O3 contributions from stratospheric

transport are in reasonable agreement with those derived from the measurements.

However, the springtime increasing trend over North America derived from the mea-

surements are largely underestimated in the model, indicating that the magnitude of15

simulated stratospheric O3 source is reasonable but the temporal distribution needs im-

provement. The simulated O3 contributions from long-range transport and production

from urban/industry and biomass burning/biogenic emissions are also in reasonable

agreement with those derived from the measurements, although significant discrepan-

cies are found for some regions.20

1 Introduction

Tropospheric O3 has important environmental consequences. Photolysis of O3 and

the subsequent reaction of O(
1
D) with water vapor (H2O) in troposphere produces the

hydroxyl radical (OH), which is the most important oxidant in troposphere. This tro-

pospheric oxidation by OH determines the lifetime of major greenhouse gases such25

as methane (CH4). The sources of tropospheric O3 include photochemical produc-
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tion within the troposphere and transport from the stratosphere. Many studies have

investigated the main sources to tropospheric O3. Springtime O3 increase is attributed

to photochemical production (e.g., Penkett and Brice, 1986 and Liu et al., 1987). A

number of studies using 3-D chemical transport models have focused on the effect of

intercontinental transport on tropospheric O3 concentrations from Asia to North Amer-5

ica (e.g., Berntsen et al., 1999; Jaffe et al., 1999; Jacob et al., 1999; Bey et al., 2001).

The effect of trans-Pacific transport is particularly noticeable in the spring (e.g., Jacob

et al., 1999; Mauzerall et al., 2000; Wild and Akimoto, 2001; Tanimoto et al., 2002;

Wang et al., 1998, 2006). On the other hand, the studies based on the observed corre-

lations between O3 and
7
Be attributed this trend to transport of stratospheric O3 (e.g.,10

Oltmans and Levy, 1992; Dibb et al., 1994).

The observed relationships between tropospheric O3 and CO provide additional di-

agnosis of O3 sources (e.g., Fishman and Seiler, 1983; Chameides et al., 1987; Par-

rish et al., 1993). Furthermore, those relationships between simulated CO and O3 offer

a reasonable way to evaluate model simulations of O3 (e.g., Chin et al., 1994). Later15

studies using the positive matrix factorization (PMF) method, an advanced multi-variant

factor analysis, enabled better quantifications of source contributions to tropospheric

O3 and diverse volatile organic compounds (Wang et al., 2003b; Shim et al., 2007).

PMF analysis of the measurements obtained during the Tropospheric Ozone Produc-

tion about the Spring Equinox (TOPSE) experiment found that the increasing seasonal20

trend of springtime O3 at northern mid and high latitudes is attributed more to tropo-

spheric O3 production and transport, even though O3 transport from the stratosphere

is the largest contributor to O3 variability (Wang et al., 2003b).

One drawback noted in the study by Wang et al. (2003b) is that the PMF results can-

not be directly compared to 3-D model results. In this work, we apply the PMF method25

to the simulation results of a global 3-D chemical transport model (GEOS-Chem). As

such, we can compare the PMF results to model simulations and evaluate the perfor-

mance of GEOS-Chem on the basis of aircraft measurements. A main issue is how

model simulated factor contributions to O3 variability compare with those based on
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the measurements. Unlike direct comparisons between observed and simulated trace

gases, measurements and corresponding model results are first projected with PMF

onto the factor space before model evaluation. In the factor space, a suite of chemi-

cals can be evaluated simultaneously in a consistent and objective manner, which is

difficult to achieve using direct comparisons between the measurements and model re-5

sults. Aircraft measurements from two aircraft field campaigns, TOPSE and TRAnsport

of Chemical Evolution over the Pacific (TRACE-P, March–April 2001) experiments are

used. We describe data selections from TOPSE and TRACE-P and GEOS-CHEM sim-

ulations in Sect. 2.1. The PMF method is explained in Sect. 2.2. Evaluation of model

results in the projected factor space is discussed in Sect. 3. Conclusions are given in10

Sect. 4.

2 Methodology

2.1 Measurements and GEOS-Chem simulations

Figure 1 shows the measurement regions during TOPSE and TRACE-P. The TOPSE

experiment (February–May 2000) was conducted to investigate the photochemical15

transition during spring at northern mid and high latitudes (Atlas et al., 2003). The

TRACE-P experiment (March–April 2001) was conducted to investigate the Asian out-

flow to the Pacific (Jacob et al., 2003). Both experiments took place during spring when

significant transport of O3 from the stratosphere is expected (e.g., Wang et al., 1998b

and references therein)20

In this study, we analyze relatively long-lived chemical tracers including O3, total re-

active nitrogen (NOy), peroxyacetylnitrate (PAN), CO, C3H8, CH3Cl, and Beryllium-7

(
7
Be) and one dynamic tracer (potential temperature). Those tracers other than O3

generally have specific primary source characteristics. NOy is a good tracer for air

masses influenced by tropospheric NOx emissions or transport from the stratosphere.25

PAN is produced during oxidation of >C2 hydrocarbons and its lifetime increases rapidly
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with increasing altitude. Therefore, it is a good tracer for photochemically aged air

masses in the free troposphere. CO is for combustion influence and C3H8 is a good liq-

uefied gas tracer. CH3Cl has its major sources from terrestrial biosphere and biomass

burning (Yoshida et al., 2004, 2006).
7
Be is produced mainly by cosmic rays in the

stratosphere and upper troposphere and is generally used as a tracer for stratospheric5

air mass (Dibb et al., 2003). Potential temperature is a useful dynamic tracer since it

is conserved in adiabatic processes. The analytical approach for the observed species

is similar to the work by Wang et al. (2003b), but the number of chemicals used is

smaller because only measured species that are also simulated by GEOS-Chem are

selected. The resulting discrepancies with the previous work by Wang et al. (2003b)10

will be discussed in Sect. 3.

Photochemical and dynamical environments vary dramatically with latitude. We sep-

arate the analysis regions to low, mid, and high latitudes. The TOPSE measurement

data set is over mid (40–60
◦
N, 87–104

◦
W) and high latitudes (60–85

◦
N, 61–94

◦
W).

We consider only coincident measurements, which are mostly limited by availability of15
7
Be measurements (144 coincident data points of all selected tracers for mid latitudes

and 200 data points for high latitudes). We exclude missing data because including

large amounts of missing data (by assigning a large uncertainty to these data) would

lead to a large underweight of the
7
Be measurements and a loss of

7
Be and O3 correla-

tion signal (Wang et al., 2003b). The
7
Be and O3 correlation is critical for analyzing the20

effect of stratospheric transport. The selected data have a bias towards high altitudes

of 5–8 km (∼70% of the data); therefore the evaluation results are more relevant for the

middle and upper troposphere. The TRACE-P measurements data set is over mid lati-

tudes (30–45
◦
N, 125–240

◦
E, 65 data points) and low latitudes (15–30

◦
N, 120–205

◦
E,

78 data points). The selected data also have a bias towards 7–12 km (40–50% of the25

data) due to the availability of
7
Be measurements.

GEOS-Chem is a global 3-D chemical transport model driven by assimilated me-

teorological data from the Global Modeling Assimilation Office (GMAO) (Schubert et

al., 1993). The 3-D meteorological fields are updated every six hours, and the sur-
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face fields and mixing depths are updated every three hours. We use version 7.24

with a horizontal resolution of 2
◦×2.5

◦
and 30 vertical layers (GEOS-3 meteorological

fields were used). GEOS-Chem includes a comprehensive tropospheric O3-NOx-VOC

chemical mechanism (Bey et al., 2001), which includes the oxidation mechanisms of

6 VOCs (ethane, propane, lumped >C3 alkanes, lumped >C2 alkenes, isoprene, and5

terpenes). Climatological monthly mean biomass burning emissions are from Duncan

et al. (2003). The fossil fuel emissions are from the Global Emission Inventory Activ-

ity (GEIA) for other chemical compounds (Benkovitz et al., 1996; Olivier et al., 2001).

For standard simulations, the model was first spun up for one year. The GEOS-Chem

simulations for the selected five tracers and one dynamic tracer (O3, NOy, PAN, CO,10

C3H8, and potential temperature) are sampled at the same time and locations as the

aircraft measurements. Simulated total reactive nitrogen (NOy) is estimated by the sum

of simulated NOx HNO3 (nitric acid), HNO4 (pernitric acid), PAN, and N2O5(dinitrogen

pentoxide).

We follow Liu et al. (2001, 2004) in
7
Be simulations. The

7
Be source in GEOS-15

Chem is taken from the study by Lal and Peters (1967) as a function of altitude and

latitude and ∼70% of
7
Be is emitted in the stratosphere. The seasonal and longitudinal

dependence of
7
Be productions is very small and not considered. The major sink of

atmospheric
7
Be is by wet deposition; the model considers scavenging in convective

updrafts as well as first-order rainout and washout from both convective and large-scale20

precipitation (Liu et al., 2001). Liu et al. (2004) reduced the stratospheric
7
Be source

by a factor of 3. This simulation was first spun up for one year as well.

For model simulated CH3Cl, we used the GEOS-Chem results by Yoshida et

al. (2004). Contributions from the six sources (pseudo-biogenic, oceanic, biomass

burning, incineration/industrial, salt mash and wet land) are considered. The model25

results are evaluated extensively with surface and aircraft measurements; the model

simulations are usually in good agreement with measurements in the northern hemi-

sphere.

In order to investigate the stratospheric O3 contributions in the model, we conducted
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tagged O3 simulations to track the fractions of O3 transported from the stratosphere

(Liu et al., 2002). Photochemistry is considered in the simulations by taking archived

O3 production and loss rates from the GEOS-Chem standard simulations on a daily

basis. In this manner, when projecting simulated O3 variability in the factor space using

PMF, we can examine the fractional contribution from the stratosphere as compared to5

tropospheric production (Sect. 3) in each factor.

2.2 PMF applications

The PMF method (Paatero and Tapper, 1994) explores factor categorization through

the covariant structures of observed or simulated chemical and dynamical parameters

(e.g., Paatero, 1997; Wang et al., 2003b; Liu et al., 2005). PMF generates only positive10

factor contributions, which enables a better physical interpretation of the results. In

contrast, conventional the principal component analysis method lumps positively and

negatively correlated tracers together. The data matrix X of m measurements by n

tracers are decomposed in PMF analysis for p factors as

X = GF + E (1)15

Or

xi j =

p
∑

k=1

gikfkj + ei j

i=1, . . .,m; j=1, . . ., n; k=1, . . ., p. (2)

where the m by p matrix G is the mass contributions of kth factor to i th sample (factor

score), the p by n matrix F is the gravimetric average contributions of kth factor to j th20

chemical species (factor loadings), and the m by n matrix E is the error. In the PMF

model, the solution is a weighted least squares fit, where the data uncertainties are

used for determining the weights of the residuals in the error matrix. We also use the
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explained variation (EV),

EVkj=

m
∑

i=1

|gikfkj |

/

[

m
∑

i=1

(

p
∑

k=1

|gikfkj | + |ei j |

)]

(3)

to define the relative contributions of each factor to chemical species since the mixing

ratios of different compounds are directly comparable.

During PMF analysis, it is important to choose the number of factors that provide5

physically meaningful results. In this analysis, the order factor is determined by sorting

the center-of-mass locations of the G or F matrix in ascending order. By evaluating

the error matrix E, we define the range of mathematically acceptable number of factors

(Paatero et al., 2002). We then inspect the factor profiles to choose the number of

factors that gives the best physically meaningful results. In general, we pick as small a10

number of factors as possible to reduce the potential of overinterpreting of the dataset.

Rotation is further used to improve factor separation (Paatero et al., 2002). However,

the results presented in this work are insensitive to rotation.

As in the work by Wang et al. (2003b), the values of tracers are linearly scaled

to a nondimensional range of 0–1 and assigned uniformly small uncertainty for the15

dataset. The scaling is applied because the chemical and dynamical tracers have very

different scales that affect the least square fitting in PMF. By scaling and assigning a

uniform uncertainty, we assure that all tracers are weighted equally in the PMF analysis.

In the analysis, we selected only coincident measurements of the selected tracers

and corresponding model results. Missing measurement data are not used in order20

to reduce the uncertainty in the analysis. Following the procedure described above,

PMF resolved 5 factors for TOPSE and 4 factors for TRACE-P in both observed and

simulated datasets.

PMF was often used for source apportionments of surface aerosols (e.g., Lee et al.,

1999). For that purpose, it is often necessary to assume that the composition of the25

air mass from a specific source does not change during transport. That assumption

is unnecessary in this analysis since we evaluate how the simulated contributions to
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tropospheric ozone from different processes compare to the contributions derived from

observations. Obviously the chemical characteristics of air masses are affected by

transport. Our previous analyses (Wang et al., 2003b; Shim et al., 2007) indicate that

although some collocated sources are mixed during transport, clear air mass separa-

tion based on the covariance of chemical and dynamical tracers can be obtained. We5

did not find evidence that transport and mixing “create” chemically distinct air mass.

3 Results and discussion

3.1 TOPSE

As mentioned in Sect. 2.1, the TOPSE results are biased toward the middle and upper

troposphere. In order to capture the correlation between the stratospheric O3 and
7
Be10

using PMF, we have included the data points that have O3 concentrations >100 ppbv

(5% of the data set), which are generally associated with the lower stratospheric air.

When analyzing the PMF results, however, we only use data points with O3<100 ppbv

to minimize the effect of these lower stratospheric data (Wang et al., 2003b). The

simulated O3 mixing ratios do not exceed 100 ppbv. We analyze the datasets for mid15

(40–60
◦
) and high (60–85

◦
) latitudes separately.

3.1.1 TOPSE at mid latitudes

PMF derived EV profiles from the observed and simulated datasets for TOPSE mid

latitudes are shown in Fig. 2. Each factor is named after the tracers that show the

largest variability (
7
Be, θ, CH3Cl, NOy/PAN, and hydrocarbons). The figure shows20

reasonably consistent factor profiles between observed and simulated datasets (black

and yellow/red bars). Direct comparison of the EV profiles between the observed and

simulated datasets can be misleading when the simulated variability differ significantly

from the observations. For the simulated datasets, we therefore also show the scaled

15503
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EV profiles (blue/green bars in Fig. 2–6) by the following equation,

EVkj

∣

∣

scaled
=

(

m
∑

i=1

|gikfkj |

)

model

/

[

m
∑

i=1

(

p
∑

k=1

|gikfkj | + |ei j |

)]

measurements

(4)

The
7
Be factor in Fig. 2 shows the largest variability of

7
Be for both observations and

model (60% and 237 fCi/SCM for the observations, 85% and 188 fCi/SCM for the

model), indicating the stratospheric origin of the air masses. The stratospheric O3 frac-5

tion from tagged O3 simulation in this factor show ∼75% of the stratospheric origin,

and a small fraction of the tropospheric
7
Be origin (∼25%), due likely to upper tropo-

spheric
7
Be production, which is also evident in the small fractions of PAN in this factor.

The
7
Be factor is associated with the largest O3 variability at mid latitudes (40% and

20 ppbv for the observations, 58% and 14 ppbv for the model). A notable underestima-10

tion in the simulated
7
Be mean concentration is found (435 and 234 fCi/SCM for the

observations and model, respectively). Figure 3 shows the
7
Be factor profiles when the

measurements with [O3]>100 ppbv are included. The results are similar to Fig. 2. The

scaled EV of O3 for the model (green bar) is lower because the observed O3 variability

is higher.15

We examine the factor correlations with latitudes, altitude, and C2H6/C3H8 ratio in

order to further investigate the factor characteristics (Table 1). The higher C2H6/C3H8

ratio reflects photochemically aged air masses (Wang and Zeng, 2004). The positive

correlations of the
7
Be factor with altitude (r=0.42 and 0.62 for the observed and sim-

ulated datasets, respectively) are expected for a factor dominated by transport from20

the stratosphere. The weak negative correlations with latitude (r=−0.26 and −0.37)

indicate that stratosphere-troposphere exchange is likely more active at lower latitudes

in 40–60
◦
N region.

The potential temperature (θ) factor has large variability of θ (77% and 36.4 K for

the observations, 95% and 26.8 K for the model). It explains 14% of observed O3 vari-25

ability (3.6 ppbv) and 12.8% of simulated O3 variability (3.1 ppbv). The negative factor

correlations with latitude (r=−0.59 and −0.51 for the observed and simulated datasets,
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respectively) and CO (r=−0.64 and −0.52, respectively, not shown in the table), and

positive correlations with altitudes (r=0.65 and 0.75, respectively) and C2H6/C3H8 ratio

(r=0.61 and 0.43, respectively) imply that this factor is likely associated with intercon-

tinental long-range transport of O3 from lower latitudes, which is consistent with the

result by Wang et al. (2003b).5

The CH3Cl factor is characterized by large signals of CH3Cl (78% and 41.2 pptv

for the observations, 95% and 25.1 pptv for the model), and no O3 variability is ex-

plained by this factor. This factor contains significant CO variability, which can imply the

biomass burning influence. However, the very small factor correlations with C2H6/C3H8

ratio (r=0.01 and 0.09), and negative correlation with latitude (r=−0.34 and −0.2) may10

support the large biogenic CH3Cl emissions from the tropics (e.g., Yoshida et al., 2004,

2006) rather than biomass burning.

The NOy/PAN factor has large signals of NOy (44% and 120 pptv for the observa-

tions, 74% and 160 pptv for the model) and PAN (68% and 96.3 pptv for the observa-

tions, 45% and 63.4 pptv for the model). This factor is the second important factor for15

tropospheric O3 variability at mid latitudes (25.6% and 6.6 ppbv for the observations,

18.4% and 4.4 ppbv for the model). It correlates positively with latitude (r=0.32 and

0.32 for the observed and simulated datasets, respectively). The correlations with al-

titude (r=−0.12 and −0.1) and C2H6/C3H8 ratio (r=−0.23 and 0.07) are much weaker

compared to the hydrocarbon factor discussed below, implying that the factor repre-20

sents long-range transport of reactive nitrogen.

The hydrocarbon factor is characterized by large variability of CO (48% and

26.8 ppbv for the observations, 54% and 21.3 ppbv for the model) and C3H8 (90% and

360 pptv for the observations, 90% and 272 pptv for the model). There is no contribu-

tion to tropospheric O3 variability. It positively correlates with latitude (r=0.52 and 0.3125

for the observed and simulated datasets, respectively). Clear negative correlations

with altitudes (r=−0.65 and −0.46, respectively) and C2H6/C3H8 ratio (r=−0.64 and

−0.8, respectively) reflect the influence of relatively fresh emissions from the surface

at higher latitude in 40–60
◦
N region (Table 1).
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3.1.2 TOPSE at high latitudes

Five factors are identified for high latitudes (
7
Be, θ, CH3Cl, NOy/PAN, and hydrocar-

bons; Fig. 4). As mid latitudes, there is also significant difference in
7
Be variability

between observations and simulation (415 fCi/SCM and 206 fCi/SCM, respectively)

in the
7
Be factor, reflecting serious underestimation of

7
Be by GEOS-Chem. Liu et5

al. (2001) artificially scaled down the stratospheric
7
Be source by a factor of ∼3 in

order to adjust for some surface measurements of
7
Be. However, the simulated

7
Be

mean concentrations and the variability accounted for in the
7
Be factor show consis-

tent underestimations by about a factor of 2 in TOPSE and TRACE-P (to be shown)

datasets. It implies that the factor of 3 reduction in the stratospheric
7
Be source in the10

standard GEOS-Chem model is too large.

The
7
Be factor shows comparable O3 variabilities between observations and simula-

tion (34% and 13.7 ppbv for the observations, 45% and 12.4 ppbv for the model). The

stratospheric O3 fraction from the tagged O3 simulation suggests that ∼70% is of the

stratospheric origin (Fig. 4). The tropospheric fraction is ∼30% in this factor. The pos-15

itive correlations with altitude (r=0.48 and 0.4, respectively) and negative correlations

with CO (r=−0.41 and −0.38, not shown in the table) support its stratospheric origin

(Table 2).

The potential temperature (θ) factor shows large variabilities of θ (77% and 29 K for

the observations, 98% and 32.6 K for the model). Its contributions to O3 levels are20

as much as that of the
7
Be factor (39% and 15.4 ppbv for the observations, 41% and

10.7 ppbv for the model), which is different from mid latitudes. The positive correlation

with altitude (r=0.51 and 0.55, respectively) and C2H6/C3H6 ratio (r=0.22 and 0.4,

respectively) indicates that this factor is likely associated with transport of reactive-

nitrogen poor air masses from lower latitudes. Tagged O3 simulation shows that O325

variability accounted for in this factor is produced in the troposphere (orange bar).

The CH3Cl factor is characterized by large signals of CH3Cl (78% and 38.6 pptv for

the observations, 98% and 20.3 pptv for the model), but its contribution to O3 variability
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is insignificant. This factor is positively correlated with altitude (r=0.38 and 0.46 for the

observed and simulated datasets, respectively), which is consistent with long-range

transport of high CH3Cl air masses since there are no significant sources of CH3Cl at

high latitudes.

The NOy/PAN factor has large signals of NOy (60% and 135 pptv for the observa-5

tions, 57% and 119 pptv for the model) and PAN (72% and 132 pptv for the observa-

tions, 62% and 67.5 pptv for the model). This factor also has clear chemical signals

of CO but not
7
Be, implying that the air masses are influenced by industrial/fossil fuel

emissions at high latitudes (Table 2). This factor, however, contributes to less than

5% of O3 variability, reflecting the largely inactive photochemical environment at high10

latitudes in spring (Wang at al., 2003a).

The hydrocarbon factor is characterized by a large variability of CO (40% and

12.2 ppbv for the observations, 62% and 22.5 ppbv for the model) and C3H8 (90% and

314 pptv for the observations, 88% and 297 pptv for the model). It does not contribute

to tropospheric O3 variability. Just as mid latitudes, the negative correlations with al-15

titude (r=−0.43 and −0.49, respectively) and C2H6/C3H8 ratio (r=−0.77 and −0.79,

respectively) reflect air masses affected by relatively fresh emissions (Table 2).

3.1.3 Springtime O3 trends at northern mid and high latitudes

Understanding the contributions to the seasonal O3 trend is another important purpose

of this study. As stated in Sect. 2.1, this study analyzed only eight tracers due to the lim-20

ited availability of simulated tracers, while the previous study (Wang et al., 2003b, here-

after referred to as the previous study) included fourteen tracers with seven factors. At

mid latitudes, the seasonal increase of all factors of measurements is 6.48 ppbv/month

(Table 3), consistent with the previous study (6.3 ppbv/month). The largest contributor

to the O3 seasonal trend is the NOy/PAN factor (3.55 ppbv/month, Table 3) followed25

by the
7
Be factor (2.66 ppbv/month). That is also consistent with the previous study

(3.5 ppbv/month, and 2.5 ppbv/month, respectively). In contrast, the simulated overall
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seasonal increase is only 3.01 ppbv/month, indicating a large underestimation. The in-

crease from the NOy/PAN factor is underestimated (1.32 ppbv/month in the model), and

the
7
Be factor increase is also much smaller than that of observation (1.29 ppbv/month

in the model).

At high latitudes, the overall springtime increase from the measurements is5

4.29 ppbv/month (Table 3), comparable with the previous study (4.6 ppbv/month). In

comparison, the simulated increase is only 1.3 ppbv/month, indicating a significant un-

derestimation. The most contributions to the seasonal increases at high latitudes are

from
7
Be, θ, and NOy/PAN factors (1.78, 1.16, and 1.10 ppbv/month, respectively) in

the measurement dataset. In comparison, the corresponding trends in the model are10

much lower (0.76, 0.77, and 0.11 ppbv/month). The underestimation is particularly

large for the NOy/PAN factor, implying that simulated O3 production in reactive-nitrogen

rich air masses does not increase as much as in the observations. The negative O3

trend in the hydrocarbon factor in the simulation but not in the measurements is a likely

reflection of the problematic simulations of its major components (C2H6 and C3H6) in15

May by GEOS-Chem (Wang and Zeng, 2004).

The NOy/PAN factor trend is consistent with the previous study. However, the

contributions of
7
Be and θ factors are different from those of the previous study

(0.8 ppbv/month and 0.6 ppbv/month, respectively). The previous study had additional

tracers resulting in the CH4-halocarbon factor. It accounts for transport from lower20

latitudes, which contributes to the largest increase of O3 at 1.7 ppbv/month at high lati-

tudes. In this study, that large increase trend is apportioned into the
7
Be and θ factors

since we do not have CH4 and halocarbon (other than CH3Cl) simulations in GEOS-

Chem. Because the PMF factor projections are for the same number of tracers, model

results can still be evaluated in this analysis. The CH4-halocarbon factor contribution25

to O3 variability is, however, <10% (3 ppbv) at high latitudes in the previous study; thus

the effect of the missing factor on factor apportioned O3 variability is fairly insignificant

in this study.

During TOPSE, the major contributions to the seasonal O3 increase in springtime is
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from intercontinental transport of polluted air masses, while the major contributions to

O3 variability is from the stratospheric influences and long-range transport of O3 from

lower latitudes. While the model generally captures the factor contributions to O3, factor

contributions to the springtime increasing trend of O3 in the measurements are severely

underestimated. These model underestimations are also consistent with the results by5

Wang et al. (2006). Improvements in the seasonal transitions of cross-tropopause and

intercontinental transport are needed in the model.

3.2 TRACE-P

The TRACE-P experiment was conducted to investigate the effects of Asian outflow to

the Pacific during spring (Jacob et al., 2003). As mentioned in Sect. 2.1, the TRACE-10

P results are biased toward the middle and upper troposphere (more than 40% of

the data is above 7 km). Compared to TOPSE analysis, there are fewer coincident

measurements limited mostly by the availability of
7
Be measurements (65 and 79 for

mid and low latitudes, respectively). We analyze the datasets for low (15–30
◦
) and mid

(30–45
◦
) latitudes separately.15

3.2.1 TRACE-P at mid latitudes

Four factors are identified for mid latitudes (
7
Be, θ, CH3Cl, and NOy/hydrocarbons,

Fig. 5). The
7
Be factor shows larger O3 variability in the observations than model re-

sults (68% and 20.8 ppbv for the observations, 48.5 % and 13.8 ppbv for the model).

There is also a large underestimation in simulated
7
Be variability (428 fCi/SCM and20

211 fCi/SCM, respectively) for the reason discussed in Sect. 3.1.2. The tagged O3

simulation shows that ∼80% of O3 variability in this factor is of the stratospheric origin.

While this factor in the simulated dataset showed a positive correlation with altitude

(r=0.63), it has a much weaker correlation (r=0.12) in the measurements (Table 4).

One possible reason for the large difference is that transport from the stratosphere oc-25

curs too close to TRACE-P regions in the model, resulting in stronger correlations. If
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the stratosphere-troposphere exchange occurs in regions farther away, further down-

ward transport or mixing with low-altitude polluted air would reduce the gradients in

altitude.

The potential temperature (θ) factor shows large signals of θ (87% and 26.3 K for the

observations, 93% and 23.4 K for the model). The factor correlations in Table 4 char-5

acterize this factor as long-range transport of air masses from the tropics (r=0.79 and

0.67 with altitude for the observed and simulated datasets, respectively; and r=0.86

and 0.82 with C2H6/C3H8 ratio, respectively). While this factor accounts for 25.6%

of O3 variability in the simulated datasets, it has no contribution in the measurement

dataset.10

The CH3Cl factor is characterized by the large signals of CH3Cl (76% and 37.4 pptv

for the observations, 95% and 42.2 pptv for the model). The contributions of this fac-

tor to O3 variability are small in measured and simulated datasets. The significant

contributions to CO (65% and 74.5 ppbv for the observations, 38% and 26.6 ppbv for

the model), negative correlations with altitude (r=−0.25 and −0.77, respectively) and15

C2H6/C3H8 ratio (r=−0.33 and −0.6 for the observed and simulated datasets, respec-

tively), and the reactive nitrogen signals suggest a strong influence from biomass burn-

ing. This factor contributes to NOy vaiability (168 pptv) only in the simulated dataset,

and PAN variability (164 pptv) only in the observed dataset. Since PAN is an impor-

tant component of NOy, the signal in PAN will propagate to become a signal of NOy.20

However, another large component of NOy is HNO3, which can be removed rapidly by

wet deposition in the atmosphere. It appears to suggest that the scavenging of HNO3

(a major component of NOy) during transport and the production of PAN from biomass

burning NOx are underestimated by the model. The stronger negative correlation of the

factor with altitude suggests that the altitude of biomass burning transport is lower in25

the model. This model bias also leads to a higher negative correlation with C2H6/C3H8

as is found here because mixing with locally emitted C2H6 and C3H8 tends to destroy

the negative correlation.

In TRACE-P analysis, the NOy/PAN and hydrocarbon factors in TOPSE are com-
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bined (now NOy/hydrocarbon factor) because the separation of those factors leads

to incomparable factor profiles between the measurements and model results. The

NOy/hydrocarbon factor is characterized by a large variability of NOy (51% and 509 pptv

for the observations, 67% and 523 pptv for the model), PAN (40% and 195 pptv for the

observations, 72% and 234 pptv for the model), CO (25% and 27.8 ppbv for the ob-5

servations, 53% and 54.6 ppbv for the model), and C3H8 (78% and 335 pptv for the

observations, 87% and 461 pptv for the model). This factor shows a contribution to

tropospheric O3 variability only in the simulation (14.5%). This factor has negative cor-

relations with altitudes (r=−0.77 and −0.31 for the observed and simulated datasets,

respectively) and C2H6/C3H8 ratio (r=−0.64 and −0.16, respectively), likely reflecting10

relatively the influence of fresh industrial/fossil fuel emissions over Asia (Table 4). The

stronger negative correlations with C2H6/C3H8 ratio and altitude in the measurements

than the simulations imply that mixing is too fast at low altitudes in the model.

3.2.2 TRACE-P at low latitudes

Four factors also are identified for low latitudes (
7
Be, θ, CH3Cl, and NOy/hydrocarbons,15

Fig. 6). The
7
Be factor shows smaller O3 variability in the measurements than the

model simulation (17.4% and 7.1 ppbv for the observations, and 30.8% and 9.9 ppbv for

the model). Large underestimation by a factor of 3 is found in simulated
7
Be variability

(411 fCi/SCM and 139 fCi/SCM for the observed and simulated datasets, respectively).

There are no data with O3 above 100 ppbv in both observations and simulation results20

at low latitudes. The stratospheric O3 fraction from the tagged O3 simulation shows

that ∼50% is due to transport from the stratosphere, which is the smallest stratospheric

influence among the datasets. The positive factor correlations with altitude (r=0.39 and

0.67, respectively) reflect in part the contribution from the stratosphere (Table 5). The

weaker correlations with altitude and C2H6/C3H8 ratio in the observed than simulated25

datasets likely reflect either a problem in the transport locations from the stratosphere

or the mixing between stratospheric and tropospheric air masses in the model.

The potential temperature (θ) factor shows large signals of θ (96% and 34.5 K for
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the observations, 77% and 23.2 K for the model). While the
7
Be factor is the largest

contributor to simulated O3 variability at low latitudes, the θ factor is the largest con-

tributor to observed O3 variability (27.4% and 11.1 ppbv for the observations, and 21%

and 6.7 ppbv for the model). The model estimates a small stratospheric fraction of

15% in this factor. This factor contains small signals of simulated NOy, PAN, and CO,5

which are absent in the observed dataset, indicating again that mixing of different air

masses in the model is overestimated. The correlation coefficients are more consis-

tent between observed and simulated datasets for this factor. The positive correlations

with altitude (r=0.98 and 0.93 for the observed and simulated datasets, respectively)

and C2H6/C3H8 ratio (r=0.61 and 0.52, respectively) and negative correlations with CO10

(r=−0.66 and −0.49, not shown in the table) suggest the dominance of photochemi-

cally aged upper tropospheric air in this factor.

The CH3Cl factor is characterized by large signals of CH3Cl (81% and 39.7 pptv

for the observations, 67% and 42 pptv for the model) and a significant contribution to

O3 variability is found in this factor (24.6% and 9.9 ppbv for the observations, 15.7%15

and 5 ppbv for the model). This factor contributes more to O3 in the observations

than the model. The larger contribution in the observations is associated with CO

(50% and 40.7 ppbv), NOy (53.7 pptv), and PAN (52 pptv). In comparison, this factor

in the simulated dataset has a smaller contribution from CO (22% and 17.4 ppbv) and

negligible contributions from NOy and PAN. The observed profile is consistent with the20

characteristics of biomass burning.

It appears that the contributions to PAN, NOy, and CO from biomass burning are

attributed to the NOy/hydrocarbon factor in the model. Comparing the profiles between

CH3Cl and NOy/hydrocarbon factors, a major separation factor between these factors

is the correlation between C3H8 and CH3Cl. In both datasets, almost all the C3H825

signals are in the NOy/hydrocarbon factor. There is no correlation between C3H8 and

CH3Cl in the observed dataset. Consequently there is no CH3Cl signal in the observed

NOy/hydrocarbon factor. The opposite is true in the simulated dataset, leading to a

significant contribution to the CH3Cl variability (29% and 17 pptv). The inadequate
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separation of C3H8 and CH3Cl in the model may result from two sources. The first is

that mixing is overestimated in the model, which results in excessive mixing of biomass

burning and industrial/urban air masses. The second is that the locations of biomass

burning or industrial/urban sources are misplaced in the model, which also leads to

unrealistic mixing.5

The NOy/hydrocarbon factor is characterized by large variabilities of NOy (33% and

185 pptv for the observations, 60% and 376 pptv for the model), PAN (30% and 56.5

pptv for the observations, 55% and 94.3 pptv for the model), CO (40% and 34.2 ppbv

for the observations, 57% and 49.6 ppbv for the model), and C3H8 (85% and 172 pptv

for the observations, 75% and 234 pptv for the model). The factor contributions to10

these trace gases are lower in the observations than the model results because some

of the enhancements in the model are due in part to biomass burning emissions. In-

terestingly, the factor contributions to tropospheric O3 variability are comparable in the

observations (16% and 6.5 ppbv) and model results (18.5% and 6 ppbv) even though

the enhancements in NOy, PAN, and CO are higher in the model results. The two15

datasets have comparable positive factor correlations with latitude (r=0.25 and 0.35

respectively), and large negative correlations with altitude (r=−0.65 and −0.53, re-

spectively) and C2H6/C3H8 ratio (r=−0.68 and −0.75, respectively) indicating fresh

pollution plumes from East Asia.

4 Discussion and conclusions20

Trace gas measurements of TOPSE and TRACE-P experiments are analyzed with the

PMF method in order to evaluate the model performance in simulating source contri-

butions to tropospheric O3 variability and its springtime increase (during TOPSE). We

select a suite of relatively long-lived variables, which are available both in observations

and GEOS-Chem model: seven chemicals (O3, NOy, PAN, CO, C3H8, CH3Cl, and
7
Be)25

and one dynamic tracer (potential temperature). The evaluation has a bias towards a

high altitude of 5–8 km (∼70% of the data) for TOPSE and 7–12 km (∼50% of the data)
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for TRACE-P, due to the availability of
7
Be measurements.

In general, the factor loadings between the observations and simulations are in better

agreement during the TOPSE experiment than TRACE-P. The former experiment took

place in remote regions. Therefore, the model results are not as sensitive to source

locations as for the latter experiment. There are also slightly more data points (deter-5

mined largely by the availability of
7
Be measurements) in the former experiment. We

summarize the factor contributions to O3 variability in Figs. 7 and 8.

The
7
Be factor is found in all regions. Among all the factors, the largest discrepancy

is found in the variability of
7
Be, which is controlled largely by its source in the strato-

sphere. The simulated results are a factor of 2–3 lower than those observed. The large10

underestimation is due to the default reduction of the stratospheric
7
Be source by a

factor of ∼3 in the model. Inadvertently, the default reduction provides a test for the

PMF analysis.

Tagged O3 simulations in the model indicate that the O3 signal in the
7
Be factor is

controlled largely (70–80%) by transport from the stratosphere at mid and high lati-15

tudes. Only over the lower latitude does the stratospheric contribution drop to ∼50%.

The
7
Be factor explains 34–40% of O3 variability in the measurement dataset dur-

ing TOPSE, in agreement with the simulated dataset. During TRACE-P, this factor

contributes 68% and 17% at mid and low latitudes, respectively in the measurement

dataset. In comparison, the contributions in the simulated datasets are also higher20

at mid latitudes (49%) and lower at low latitudes (31%). In general, we find that the

decrease of stratospheric O3 contributions (and the increase of tropospheric O3 con-

tributions) from mid to low latitudes during TRACE-P are much larger in the measured

than simulated datasets. One potential reason is that mixing is overestimated between

mid and low latitudes in the model, reducing the gradients between the two latitude25

bands.

Another common factor is the θ factor. There are consistent positive correlations

of this factor with altitude and C2H6/C3H8 ratio, indicating long-range transport in the

upper troposphere. The contribution of this factor to reactive nitrogen is small, re-
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flecting likely chemical aging during transport. The large contribution to O3 variability

at high latitudes during TOPSE (∼40%) in the measurement dataset is in agreement

with the simulated dataset. In comparison, its contributions to mid latitudes during

TOPSE are much lower in both datasets. During TRACE-P, there is no contribution

from this factor to O3 variability in the measurement dataset at mid latitudes. However,5

26% contribution is found in the simulated dataset. A similar situation is found for the

NOy/hydrocarbon factor. Excessive mixing between mid and low latitudes could explain

some of the discrepancy. Further, the unresolved portion of O3 variability is ∼30% in

this case, much higher than the range of 11–19% in the other cases. Some of the

unresolved portion is due to O3 production in the troposphere.10

A third common factor found is the CH3Cl factor. The contributions of this factor to

O3 are usually small. The exception is at low latitudes during TRACE-P, when biomass

burning contributes to both CH3Cl and O3. Some of the biomass burning contribution

in the simulated datasets is attributed to the NOy/hydrocarbon factor since simulated

C3H8 is correlated with CH3Cl. The latter correlation was not found in the measurement15

dataset. Thus, we combine the CH3Cl and NOy/hydrocarbon factor contributions to O3

variability; it is somewhat higher in the measurement dataset (41%) than the simulated

dataset (34%). As discussed previously, the difference can be reduced if mixing is

reduced between mid and low latitudes in the model.

During TOPSE, the NOy/PAN factor is resolved separately from the hydrocarbon fac-20

tor. The latter made no contribution to O3 variability. The NOy/PAN factor contributions

are much higher at mid latitudes (18–26%) than high laitutdes (<5%) in measured and

simulated datasets, reflecting more active photochemistry at mid latitudes in spring.

Since the TOPSE experiment last longer than TRACE-P, we compare the factor con-

tributions to the seasonal trend of O3 in the observed and simulated datasets. De-25

spite of reasonably good agreements in the averaged contributions, the trends of factor

contributions are quite different. The observed springtime O3 increase is higher than

simulated by a factor 2 at mid latitudes (6.5 vs. 3 ppbv/month) and a factor of 3 at high

latitudes (4.3 vs. 1.3 ppbv/month). The increasing trend from the stratospheric contri-
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bution (the
7
Be factor) is underestimated by a factor of 2. The increasing trend from

the tropospheric contribution is simulated well for the θ factor. However, the increasing

trend from O3 production by reactive nitrogen (the NOy/PAN factor) is underestimated

by a factor of >3 (3.5 ppbv/month vs. 1.3 ppbv/month at mid latitudes and 1 ppbv/month

vs. 0.1 ppbv/month at high latitudes). These results suggest that more attention needs5

to be placed on improving the simulations of the temporal trends of trace gases in

chemical transport models.
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Table 1. The factor scores correlations (r) with latitude, altitude, and C2H6/C3H8 for TOPSE

mid latitudes.

R Latitude Altitude C2H6/C3H8

Factors Obs Mod Obs Mod Obs Mod
7
Be −0.26 −0.37 0.42 0.62 0.02 0.1

θ −0.59 −0.51 0.65 0.75 0.61 0.43

CH3Cl −0.34 −0.2 0.38 0.31 0.01 0.09

NOy/PAN 0.32 0.32 −0.12 −0.1 −0.23 0.07

HC
1

0.52 0.31 −0.65 −0.46 −0.64 −0.80

Extreme factor scores (outside 2σ range) and the measurements that have O3 greater than

100 ppbv are excluded.
1

HC denotes the hydrocarbon factor.
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Table 2. Same as Table 1, but for TOPSE high latitudes.

R Latitude Altitude C2H6/C3H8

Factors Obs Mod Obs Mod Obs Mod
7
Be −0.08 −0.08 0.48 0.4 0.25 0.11

θ −0.1 −0.2 0.51 0.55 0.22 0.4

CH3Cl −0.07 −0.2 0.38 0.46 0.18 −0.18

NOy/PAN 0.16 0.07 0.02 −0.34 0.25 −0.14

HC
1 −0.08 0.04 −0.43 −0.49 −0.77 −0.79
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Table 3. Factor contributions to O3seasonal increase (ppbv/month) for TOPSE.

Mid latitudes High latitudes

Obs Mod Obs Mod
7
Be 2.7 1.3 1.8 0.8

θ 0.3 0.4 1.2 0.8

CH3Cl 0 0 0.3 0

NOy/PAN 3.5 1.3 1.1 0.1

HC 0 0 0 −0.4

Total 6.5 3.0 4.3 1.3

Only the measurements O3<100 ppbv are analyzed.
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Table 4. Same as Table 1, but for TRACE-P mid latitudes.

R Latitude Altitude C2H6/C3H8

Factors Obs Mod Obs Mod Obs Mod
7
Be −0.37 0.05 0.12 0.63 0.32 0.28

θ −0.33 −0.67 0.79 0.67 0.86 0.82

CH3Cl −0.02 0.11 −0.25 −0.77 −0.33 −0.6

NOy/HC 0.18 −0.42 −0.77 −0.31 −0.64 −0.16
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Table 5. Same as Table 1, but for TRACE-P low latitudes.

R Latitude Altitude C2H6/C3H8

Factors Obs Mod Obs Mod Obs Mod
7
Be 0.33 −0.06 0.39 0.67 0.06 0.41

θ −0.05 0 0.98 0.93 0.61 0.52

CH3Cl 0.22 0.4 0.03 0.13 −0.33 −0.4

NOy/HC 0.25 0.35 −0.65 −0.53 −0.68 −0.75
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Fig. 1. Locations of aircraft measurements.
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Fig. 2. Explained variation (%, defined in Sect. 2.2) profiles of the observed (shown in black)

and simulated datasets (shown in yellow and red) at mid latitudes (40–60
◦
N) during TOPSE.

Also shown is the scaled EV profiles (in blue and green) for the simulated datasets for di-

rect comparison with the measurements (Eq. (4), see text for details). The two-color bars for

O3 show the model simulated stratospheric (upper bar, red or green) and tropospheric (lower

bar, yellow or blue) fractions. The results are for measurement data with O3 concentrations

<100 ppbv (and the corresponding model dataset).
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Fig. 3. Same as Fig. 2 for the
7
Be factor, but the results are for all the measurement data

including those with O3>100 ppbv. Only the
7
Be factor is shown since other factors are same.
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Fig. 4. Same as Fig. 2, but for TOPSE high latitudes (60–85
◦
N).
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Fig. 5. Same as Fig. 2, but for TRACE-P mid latitudes (30–45
◦
N).
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Fig. 6. Same as Fig. 2, but for TRACE-P low latitudes (15–30
◦
N).

15530

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/15495/2007/acpd-7-15495-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/15495/2007/acpd-7-15495-2007-discussion.html
http://www.egu.eu


ACPD

7, 15495–15532, 2007

Evaluation of

simulated

contributions to

tropospheric O3

C. Shim et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Fig. 7. O3 variability ([O3]average-[O3]min) by factors for TOPSE. The two bars on the left are for

mid latitudes and the two bars on the right are for high latitudes. “O” and “S” denote “observa-

tions” and “simulation”, respectively. “Other” denotes the unexplained fractions by PMF. “HC”

denotes hydrocarbon.
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Fig. 8. Same as Fig. 7, but for TRACE-P. Two bars on the left are for mid latitudes and the two

bars on the right for low latitudes.
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