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Abstract

A new formulation for the turbulence dissipation rate ε occurring in meandering con-

ditions has been presented. The derivation consists of a MacLaurin series expansion

of a lateral dispersion parameter that represents cases in which turbulence and oscil-

latory movements associated to the meandering events coexist. The new formulation5

presents the identical physical premises contained in the classical and largely used

one, but the new formulation derived from meandering situations is expressed in terms

of the loop parameter m that controls the absolute value of the negative lobe in the

meandering autocorrelation function. Therefore, the m magnitude regulates the turbu-

lence dissipation rate. This dissipation rate decreases for cases in which turbulence10

and low frequency horizontal wind oscillations coexist and increases for a fully de-

veloped turbulence. Furthermore, a statistical comparison to observed concentration

data shows that the alternative relation for the turbulent dissipation rate occurring in sit-

uations of meandering enhanced dispersion is suitable for applications in Lagrangian

Stochastic dispersion models.15

1 Introduction

Lagrangian turbulent velocity correlation coefficient is an important physical quantity

in turbulent diffusion problems. Generally, the use of this autocorrelation coefficient

in the Taylor statistical diffusion theory allows calculating the dispersion parameters

associated to the turbulent diffusion modeling studies in the Planetary Boundary Layer20

(PBL) (Taylor, 1921).

For a stationary and isotropic turbulence, the two-time Lagrangian velocity correlation

coefficient may be written as

ρLi
(τ) =

u′
i
(t)u′

i
(t+τ)

u′2
i

, (1)

15252

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/15251/2007/acpd-7-15251-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/15251/2007/acpd-7-15251-2007-discussion.html
http://www.egu.eu


ACPD

7, 15251–15276, 2007

Turbulence

dissipation rate

derivation

G. A. Degrazia et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

where τ is the time lag, u′
i (t) is the Lagrangian turbulent velocity of a fluid particle at

time t, i = 1, 2 and 3; u′
i represents the turbulent wind components in x, y and z

directions(u′
1 = u′

, u′
2 = v ′ and u′

3 = w ′
).

Based on the Taylor statistical diffusion theory, the following formula has been pro-

posed by Frenkiel (1953) to represent the turbulent Lagrangian autocorrelation coeffi-5

cients

ρLi
(τ) = exp

(

− τ
(

m2 + 1
)

TLi

)

cos

(

mτ
(

m2 + 1
)

TLi

)

. (2)

This functional form is composed of the product of the classical exponential function

(representing the autocorrelation function for a fully developed turbulence) by the co-

sine function (describes the meandering phenomenon associated to the observed low10

frequency horizontal wind oscillations). This latter allows Eq. (2) to reproduce the neg-

ative lobes observed in the meandering autocorrelation functions (Anfossi et al., 2005).

The Frenkiel function is a hybrid formula described in terms of TLi
, the Lagrangian in-

tegral time scale for a fully developed turbulence, and m, the loop parameter, which

controls the meandering oscillation frequency associated to the horizontal wind. In-15

deed, the m parameter controls the negative lobe absolute value in the autocorrelation

function and hence establishes the meandering phenomenon magnitude (Anfossi et

al., 2005).

Recently, Oettl et al. (2005) and Goulart et al. (2007) proposed a theory on meander-

ing atmospheric flow in low wind speed situations. This theory shows that, in simplified20

conditions, the forecast equation for mean wind in the PBL (Stull, 1988) provides a

particular solution that is capable of describing the meandering behavior. Here, we

succinctly present this derivation employing the three-dimensional Reynolds-average

momentum conservation equation in an atmospheric boundary layer Holton (1992).

Neglecting viscosity terms, this equation that describes the horizontal mean wind may25
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be written as

∂ui

∂t
+ uj

∂ui

∂xj
= −δi3g + fcεi j3uj −

1

ρ

∂pi

∂xi
−

∂
(

u′
i
u′
j

)

∂xj
(3)

where i , j =1, 2 and 3; ui represents the mean wind components in x, y and z di-

rections (u1 = u, u2 = v and u3 = w) averaged over a certain time interval, fc is the

Coriolis parameter, εi j3 is the Levi-Civita tensor, ρ is the mean density,pi is the mean5

pressure and g is the gravity acceleration.

The complexity of Eq. (3) does not allow it to be analytically solved, except under

some appropriate simplifying assumption yields from Eq. (3) an analytical solution.

However, we assume that all the horizontal and vertical gradients of the horizontal wind

velocity components and pressure may be considered as constant. Furthermore, the w10

magnitude, which characterizes subsidence in fair weather boundary layer conditions,

may range from 0 to 0.1ms−1
(Stull, 1988). Thus, assuming these values in Eq. (3),

the terms containing w and horizontal gradients of w could be neglected. With these

simplifications and assuming the hydrostatic balance condition yields







∂ū
∂t

= −a1ū + b1v̄ + c1 (4a)
∂v
∂t

= −a2v + b2ū + c2 (4b)
∂w̄
∂t

= 0 (4c)

15

where a1 =
∂ū
∂x

, a2 =
∂v̄
∂y

, b1 = fc − ∂u
∂y

, b2 = −fc − ∂v̄
∂x

, c1 = − 1
ρ̄
∂p̄
∂x

−
[

∂(u′u′)
∂x

+
∂(u′v ′)
∂y

+
∂(u′w ′)

∂z

]

and c2 = − 1
ρ̄
∂p̄
∂y

−
[

∂(u′v ′)
∂x

+
∂(v ′v ′)
∂y

+
∂(v ′w ′)

∂z

]

.

Considering the a1, a2, b1, b2, c1 and c2 terms as constants, the system Eq. (4)

becomes a first-order linear differential equation system, where the horizontal wind

components in Eq. (4a) may be written as a second-order linear ordinary differential20

15254

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/15251/2007/acpd-7-15251-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/15251/2007/acpd-7-15251-2007-discussion.html
http://www.egu.eu


ACPD

7, 15251–15276, 2007

Turbulence

dissipation rate

derivation

G. A. Degrazia et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

equation with constant coefficients

d2u

dx2
+ B

du

dx
+ Cu = D, (5)

where B=a1+a2, C=a1a2−b1b2 and D=a2c1+b1c2.

According to the values of roots r1 and r2 from the auxiliary equation, there are three

cases in the solution of Eq. (5). We select the case that presents oscillatory behavior,5

which means the condition B2 − 4C < 0, in the auxiliary (or characteristic) equation for

the given differential Eq. (5), r1,2 =
B±

√
B2−4C
2

.

Therefore, the following solution for u (t) and v (t) is obtained

u (t) = e−pt
[α1 cos (qt) + α2 sin (qt)] + D

C
(6a)

and10

v (t) = e−pt

[ −α1p+α2q+a1α1

b1
cos (qt) +

−α2p−α1q+a1α2

b1
sin (qt)+

+
D
C

a1

b1
+

c1

b1

]

(6b)

with

p =
B
2
=

1
2

(

∂u
∂x

+
∂v
∂y

)

6= 0
(

by the fact that w 6= 0
)

, q=

√
−B2+4C

2
,

α1 = u0 − D
C
, α2 =

1
q

[

v0b1 − (a1 − p)u0 −
Dp
C

+ c1

]

, u0 = u (t0) and v0 = v (t0) .

If the horizontal and vertical gradients of the turbulent momentum fluxes may be

disregarded, a scale analysis allows the derivation of the following simplified form for15

Eq. (6a) and Eq. (6b) (Oettl et al., 2005; Goulart et al., 2007)

u (t) = α1e
−pt cos (qt) (7a)

and

v (t) = α1e
−pt sin (qt) , (7b)
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which is expressed in an analytical functional form as

U (t) = α1e
−(p+iq)t (8)

Employing Eq. (8) into Eq. (1), the following turbulent velocity correlation coefficient is

obtained

ρLu,v = e−pτ [cos (qτ) + i sin (qτ)] , (9)5

considering the real part of the Eq. (9) yields

ρLu,v (τ) = e−pτ cos (qτ) , (10)

which presents the same functional form as the autocorrelation function proposed by

Frenkiel Eq. (2). Anfossi et al. (2005) employed Frenkiel classical mathematical ex-

pression to reproduce autocorrelation functions observed during meandering periods,10

which presented negative lobes.

Therefore, based on observational evidences (Anfossi et al., 2005) and on the fact

that the general form of the autocorrelation coefficient proposed by Frenkiel is derived

from the first principles (forecast equation for mean wind), we assume in this study

that the Frenkiel autocorrelation function captures well the physical properties of a fully15

developed turbulence as well as hybrid flow cases, in which turbulence and meandering

occurrences coexist. Indeed, the Frenkiel formulation Eq. (2) presents an empirical

flexibility that allows represent observations in the PBL (Manomaiphiboon and Russel

(2003) and Anfossi et al., 2005). This imparts to Eq. (2) a heuristic validity.

The turbulence dissipation rate is a quantity frequently used in turbulent parameter-20

izations applied to Lagrangian stochatic dispersion models. Indeed, formulations for

the turbulence dissipation rate are extensively employed in turbulent diffusion models

to simulate the transport of passive scalars and the dispersion of contaminants in a fully

developed turbulence (Thomson, 1987; Luhar and Britter, 1989; Sawford, 1991; Wilson

and Sawford, 1996; Yeung, 2002; Degrazia et al., 2005). In this study, employing the25

Frenkiel autocorrelation coefficient, we derive a new relation to the turbulence dissi-

pation rate for distinct types of turbulent flows. This new relation presents the same
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physical contents as those classical derived by Hinze (1975) and Tennekes (1982),

however the dissipation rate could be described not only for a fully developed turbu-

lence, but also for situations in which the turbulence weakness allows the occurrence

of the meandering phenomenon. With the above statements becomes evident the exis-

tence of a strong constraint between the turbulence dissipation rate and the Lagrangian5

stochastic dispersion models. Therefore to investigate the influence of this new dissi-

pation rate in turbulent diffusion problems, it is introduced in a Lagrangian stochastic

dispersion model in order to simulate diffusion experiments performed under low wind

speed meandering conditions.

2 Theoretical development10

The lateral dispersion parameter σy is a statistical quantity fundamental for the dis-

persion modeling and for the derivation of turbulence dissipation rate functional form

(Tennekes, 1982; Degrazia et al., 2005). From the Taylor statistical diffusion theory,

this important parameter may be described as

σ2
y (t) = 2σ2

v

t
∫

0

(t − τ)ρv (τ)dτ, (11)15

where t is the travel time of the fluid particle and σv is the standard deviation of the

turbulent lateral velocity. The substitution of the Frenkiel autocorrelation function into

Eq. (11) yields

σ2
y (t) = 2σ2

v TLV

{

t +
(

m2 − 1
)

TLV
− TLV

exp

(

−t
(

1 +m2
)

TLV

)

[

(

m2 − 1
)

cos

(

mt
(

1 +m2
)

TLV

)

+ 2msen

(

mt
(

1 +m2
)

TLV

)]}

(12)20

15257

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/15251/2007/acpd-7-15251-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/15251/2007/acpd-7-15251-2007-discussion.html
http://www.egu.eu


ACPD

7, 15251–15276, 2007

Turbulence

dissipation rate

derivation

G. A. Degrazia et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Therefore, the relation Eq. (12) may be considered as a lateral dispersion parameter

applied to different types of turbulence. For the special case m = 0, the Eq. (12) re-

produces the classical expression for the lateral dispersion parameter valid to a fully

developed turbulence, which is obtained by substituting the classical exponential auto-

correlation function e−τ/−TLv into Eq. (11) (Pope, 2000). Thus, the Eq. (12) represents a5

more general formulation since it describes hybrid cases, in which turbulence and oscil-

latory movements associated to the meandering occurrences coexist (weak turbulence

conditions).

For t<TLv
, a MacLaurin series expansion of the general dispersion parameter

Eq. (12) may be obtained10

σy
2 (t) = 2σv

2

[

t2

2
− t3

6
(

1 +m2
)

TLv

+ ...

]

= σ2
v t

2 −
σ2
v t

3

3
(

1 +m2
)

TLv

+ .... (13)

The comparison of Eq. (13) with the Taylor theorem Eq. (11) for small diffusion times

shows that the negative term in the right side of Eq. (13) contributes for the decrease

on the hybrid dispersion parameter. From the physical point of view, representing the

Taylor model in the spectral form (Degrazia et al., 2005) may be seen that this neg-15

ative contribution results in the suppression of a number of degrees of freedom of

the turbulent field associated to the high-frequency harmonics. As a consequence, it

is reasonable to relate the term
σ2
v t

3

3(1+m2)TLv
to the inertial subrange high frequency ed-

dies. This relationship was firstly obtained by Tennekes (1982) through the use of the

Lagrangian structure function, the Lagrangian autocorrelation function and the iner-20

tial subrange Lagrangian turbulent spectrum. The Tenneke‘s development establishes

the following formulation for the Lagrangian autocorrelation function in terms of inertial

subrange quantities:

ρLv
= 1 −

Coετ

2σ2
v

(14)
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Employing relation Eq. (14) in the Taylor‘s theorem results in σ2
y (t) = σ2

v t
2 − C0ε

6
t3

,

which after comparison with the truncated hybrid dispersion parameter Eq. (13), leads

to the following fundamental relation

ε =
2

(

1 +m2
)

C0

σ2
v

TLv

. (15)

As seen from Eq. (15), this new formula for the turbulence dissipation rate preserves5

the fundamental physical premise that turbulence is dissipated at a rate proportional to

the energy available and inversely proportional to the time scale of the energy contain-

ing eddies (Tennekes, 1982). However, as a new element in the relation Eq. (15), the

parameter m appears, which establishes a new formulation for the turbulent dissipa-

tion rate applied to hybrid situations, including the presence of low-frequency horizontal10

wind oscillations (meandering). In comparison with the classical turbulent dissipation

rate derived from the exponential autocorrelation function for a fully developed turbu-

lence, the m magnitude in the denominator controls the turbulence dissipation rate that

will be larger for the fully developed turbulence case (small m) and smaller for the me-

andering case (large m). Therefore, we expect that the new functional form, Eq. (15),15

when employed in Lagrangian stochastic particle models, reproduces the dispersion

process occurring under different types of turbulent flows in a more robust manner.

Recently, Manomaiphiboon and Russel (2003), through consideration of mathematical

and physical requirements, evaluated Eq. (2) for the special case m = 1. They con-

cluded that for this particular m value, the Eq. (2) is appropriate to be used in turbulence20

studies because it complies well with most requirements. According to this procedure,

we can see that the more general autocorrelation form, as given by Eq. (2), satisfies the

condition
∫∞

0
ρLv

(t)dt = TLv
so that the Frenkiel formula is valid as long as TLv

is well

defined. From the physical point of view, Eq. (2) satisfies the inertial subrange con-

ditions as proposed by Kolmogorov (1941, K41 theory) and suggested by Tennekes25

(1979); Lagrangian velocity fluctuations should be in accordance with FLv
(n) ≈ n−2

and ρLv
(t) = 1−ct where c is a constant and FLv

(n) is the Lagrangian lateral turbulent
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spectrum. This is shown in Figs. 1, 2, and 3 where a comparison between the en-

ergy spectra derived from both models (classical exponential autocorrelation function

and Eq. 2) is presented. From these figures, we observe that the Frenkiel‘s formu-

lation for distinct m values (including m values associated to strong negative lobes)

captures the n−2
falloff. Therefore, Eq. (2) agrees with the K41 theory. Furthermore,5

it can be also seen from Figs. 1, 2, and 3 that as m increases, passing from non-

meandering to meandering conditions, the turbulent energy associated to the inertial

subrange frequencies (scales) decreases abruptly. Figure 4 exhibits an autocorrelation

function characterized by a large negative lobe, which is associated to the meander-

ing phenomenon. The minimum value of this negative lobe, and the general form in10

Fig. 4 agrees well with the meandering autocorrelation functions observed by Anfossi

et al. (2005). Therefore, for large m values characterizing the dominant presence of

the meandering phenomenon in comparison with the fully developed turbulence, the

turbulent energy of the inertial subrange becomes negligible and the low frequency

horizontal wind oscillations (meandering) represent the fundamental energy source for15

the velocity variance observed in low wind speed conditions.

From the analysis above, we conclude that the Frenkiel hybrid formula Eq. (2), de-

rived from a simplified solution of the forecast equation for mean wind in the PBL, rep-

resents a general expression that could be used to reproduce autocorrelation functions

observed in the PBL. As a consequence, the turbulence dissipation rate derived from20

Frenkiel autocorrelation function and given by Eq. (15) represents a general functional

form that converges to the classical relation ε =
2
C0

σ2
v

TLv
(obtained from the exponential

autocorrelation function for a fully developed turbulence) when meandering effects are

excluded (i.e. by setting m ∼
=0 in Eq. 2).
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3 Test of the derived parameterization with the INEL tracer experiment.

The purpose of this section is to test our parameterization as given by Eq. (15) in a

practical application and to show how it works. Therefore, a Lagrangian stochastic

dispersion model using the turbulent dissipation rate containing the loop parameter m
(Eq. 15) has been employed to simulate the measured concentration data.5

The concentration data employed in the comparison with the model were obtained

from the low wind speed experiment performed in a stable boundary layer from the se-

ries of field observations conducted at the Idaho National Laboratory - INEL (Sagendorf

and Dickson, 1974).

3.1 Model Description10

a. Horizontal Components

Recently, Carvalho and Vilhena (2005) suggested an approach to obtain the solu-

tion of the Langevin equation for low-wind dispersion. The solution consists of the

linearization of the Langevin equation as stochastic differential equation:

dui

dt
+ f (t)ui = g (t) , (16)15

which has the well-known solution determined by the integrating factor e

t
∫

t0

f (t′)dt′

:

ui =
1

e

t
∫

t0

f (t′)dt′

t
∫

t0

g(t′) e

t
∫

t0

f (t′)dt′

dt′. (17)

In order to embody the low wind speed condition in the Langevin equation, it is as-

sumed that the function f (t) is a complex function. Therefore, the exponentials appear-
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ing in Eq. (17) may be rewritten as:

e

t
∫

t0

f (t′)dt′

= e

t
∫

t0

pdt′+
t
∫

t0

iq dt′

(18)

or

e

t
∫

t0

f (t′)dt′

= ept+iqt. (19)

Applying the Euler formula and neglecting the imaginary component because the wind5

speed is a real function, Eq. (17) becomes:

ui = e−pt cos(qt)

t
∫

t0

g(t′)

(

1

e−pt′ cos(qt′)

)

dt′. (20)

In Eq. (20), the term e−pt
cos(qt) is analogous to the autocorrelation function sug-

gested by Frenkiel (1953) and written in a different way by Murgatroyd (1969), where

p and q are given by p =
1

(m2+1)T
and q =

m
(m2+1)T

and T is the time scale for a fully10

developed turbulence.

Using the Lagrangian particle models, the turbulence is considered as Gaussian in

the horizontal directions (i = 1,2) and, therefore, Eq. (20) may be written as:

ui = e−pt cos(qt)

t
∫

t0

(

1

e−pt′ cos(qt′)

)

[

βi + γiu
2
i
+ (C0ε)1/2 ξi (t

′)
]

dt′ (21)

whereβi =
1
2

∂σ2
i

∂xj
and γi =

1

2σ2
i

(

∂σ2
i

∂xj

)

.15
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The Picard Method is applied to Eq. (21), assuming that the initial guess is deter-

mined from a Gaussian distribution. The generic iterative step is written as:

un+1
i

=e−pt cos(qt)











un
i
+

t
∫

t0

(

1

e−pt′ cos(qt′)

)

[

βi+γi (u
2
i
)n+ (C0ε)1/ 2 ξi (t

′)
]

dt′











. (22)

Concerning the m values, it is important to note two distinct cases about Eq. (22). For

m > 1, the meandering phenomenon has an effect upon the dispersion process. On5

the other hand, for m = 0, the meandering phenomenon is vanished and Eq. (22) is

written in terms of the exponential autocorrelation function (e−t/τl ), which Lagrangian

particle models are usually employed in windy conditions. Therefore, the approach

Eq. (22) is capable of simulating the contaminant dispersion in the PBL in both cases,

that is, when the contaminant plume evolution is governed by eddies associated to10

a fully developed turbulence and exhibits a ‘fanning’ kind of behavior (typical of windy

conditions) and when the plume evolution is governed by low frequency horizontal wind

oscillations (meandering behavior associated to low wind conditions).

For applications, the values obtained for the parameters m and T are calculated

by the empirical formulation employed by Carvalho and Vilhena (2005): m =
8.5

(1+U)2 ,15

T =
mT∗

2π(m2+1)
and T∗ = 200m + 500.

b. Vertical Component

For the vertical component, the Langevin equation is solved by the approach as sug-

gested by Carvalho et al. (2005). While for the horizontal directions the PDF is consid-

ered as Gaussian, for the vertical direction the PDF is assumed to be non-Gaussian (to20

deal with non-uniform turbulent conditions and/or convection). In both cases, a Gram-

Charlier PDF, which is given by the series of Hermite polynomials, may be adopted

(Anfossi et al., 1997; Ferrero and Anfossi, 1998).

The Gram-Charlier PDF truncated to the fourth order is given by the following ex-
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pression (Kendall and Stuart, 1977):

P (ri ) =
e
−
(

r2
i

/

2
)

√
2π

[

1 + C3H3(ri ) + C4H4(ri )
]

(23)

where ri = ui

/

σi , σi is the turbulent velocity standard deviation, H3 and H4 are the Her-

mite polynomials and C3 and C4 their coefficients. In the case of Gaussian turbulence,

Eq. (23) becomes a normal distribution, considering C3 and C4 equal to zero. The third5

order Gram-Charlier PDF is obtained with C4 = 0.

Applying the Eq. (23) in the Fokker-Planck equation (Rodean, 1996), the Langevin

equation may be written as:

dui

dt
+ αiui = βi + γi + (C0ε)1/2 ξi (t), (24)

whereαi =
15C4+1

hi

C0ε

2σ2
ui

,βi = [fi + ri (15C4 + 1)] 1
hi

C0ε

2σui
and γi = σi

∂σi
∂xj

gi

hi
,10

j may assume 1,2,3 and j 6= i and fi , gi and hi are expressions written as:

fi = −3C3 − ri (15C4 + 1) + 6C3r
2
i
+ 10C4r

3
i
− C3r

4
i
− C4r

5
i

(25)

gi=1−C4 + r2
i
(1 + C4)−2C3r

3
i
−5C4r

4
i
+ C3r

5
i
+ C4r

6
i

(26)

hi = 1 + 3C4 − 3C3ri − 6C4r
2
i
+ C3r

3
i
+ C4r

4
i
. (27)

Multiplying the integrating factor [exp(
∫t
t0
αids)] by all terms in Eq. (24), the following15

integral equation is obtained:

ui = exp






−

t
∫

t0

αids

















t
∫

t0

exp







t′
∫

t0

αids







[

βi + γi + (C0ε)1/ 2 ξi (t
′)
]

dt′











, (28)
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The Picard Method is now applied to Eq. (28), assuming that the initial value for the

turbulent velocity is a random value supplied by a Gaussian distribution: The generic

iterative step is written as:

un+1
i

=exp






−

t
∫

t0

αn
i
ds

















u0
i
+

t
∫

t0

exp







t′
∫

t0

αn
i
ds







[

βn
i
+ γn

i
+ (C0ε)1/ 2 ξn

i
(t′)
]

dt′











.(29)

3.2 Dispersion simulation5

The results of the proposed model are compared with concentration data collected

under stable conditions in low wind speeds over flat terrain at the Idaho National Engi-

neering Laboratory (INEL). The results have been published in a U.S. National Oceanic

and Atmospheric Administration (NOAA) report (Sagendorf and Dickson, 1974).

For simulations, the turbulent flow is considered as inhomogeneous only in the verti-10

cal direction and the transport is performed by the longitudinal component of the mean

wind velocity. The horizontal domain was determined according to sampler distances

and the vertical domain was set as equal to the observed PBL height. The time step

was maintained constant and it was obtained according to the value of the Lagrangian

decorrelation time scale (∆t = τL/c), where τL must be the smallest value between15

τLu
, τLv

, τLw
and c is an empirical coefficient set as equal to 10. For each simulation,

the number of particles released was 10
6
and the concentration was obtained by count-

ing the number of particles in volumes with dimensions 5 m×5 m and 0.5 m in height.

Values of σi and τLi
were parameterized according to scheme developed by Degrazia

et al. (1996). For the horizontal components Eq. (22) the parameterization of C0ε has20

been calculated from the Eq. (15) employing m values given by the empirical formula-

tion utilized by Carvalho and Vilhena (2005). For the vertical component, the Eq. (15) is

employed with m = 0. The third moment of the vertical velocity component is assigned

according to Chiba (1978) and the fourth moment is calculated based on method sug-

gested by Anfossi et al. (1997). The integration method used to solve the integrals25
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appearing in Eq. (22) and Eq. (29) was the Romberg technique.

Due to the wind direction variability, a full 360
◦

sampling grid was implemented. Arcs

were laid out with radii of 100, 200 and 400 m from the emission point. Samplers were

placed at intervals of 6
◦

on each arc for a total of 180 sampling positions. The receptor

height was 0.76m. The tracer SF6 was released at a height of 1.5 m. The 1 h average5

concentrations were determined by means of an electron capture gas chromatography.

Wind speeds measured at levels 2, 4, 8, 16, 32 and 61 m were used to calculate the

coefficient for the exponential wind vertical profile. According to Brusasca et al. (1992)

and Sharan and Yadav (1998), the roughness length used was z0 =0.005 m. The

Monin-Obukhov length L and the friction velocity u∗ were not available for the INEL ex-10

periment but may be roughly approximated. Then, L may be written from an empirical

formulation suggested by Zannetti (1990) and the stable PBL height h was determined

according to expression suggested by Zilitinkevich (1972).

The model performance is shown in Table 1 and Fig. 5. Table 1 shows the result of

the statistical analysis performed with observed and predicted ground-level centerline15

concentration values according to Hanna’s (1989) statistical indices. Figure 5 shows

the scatter diagram between observed and predicted concentration. Observing the

results obtained, we may promptly conclude that the model simulates quite well the

experimental data in low wind stable conditions. The statistical analysis reveals that all

indices are within acceptable ranges, with NMSE, FB and FS values relatively near to20

zero and R and FA2 relatively near to 1.

4 Conclusions

In this study, a new formulation for the turbulence dissipation rate ε has been derived

and tested. Unlike the classical form, which is derived from the exponential autocorrela-

tion function, this new expression Eq. (15) is obtained from an autocorrelation function25

that describes negative lobes in the observed autocorrelation functions associated to

the meandering phenomenon, and that has been derived from the forecast equation

15266

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/15251/2007/acpd-7-15251-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/15251/2007/acpd-7-15251-2007-discussion.html
http://www.egu.eu


ACPD

7, 15251–15276, 2007

Turbulence

dissipation rate

derivation

G. A. Degrazia et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

for mean wind in the PBL, when a number of simplifications are assumed. Therefore,

the new formulation for the turbulence dissipation rate is expressed in terms of the loop

parameter m and may be employed to parameterize the turbulence dissipation rate as-

sociated to the low frequency horizontal wind oscillations (meandering phenomenon)

occurring in low wind stable conditions. The new parameterization may be applied in5

situations in which turbulence and meandering phenomenon coexist. Consequently,

the turbulence dissipation rate as given by Eq. (15) constitutes a general functional

form that may be used in distinct turbulent flow patterns.

The presence of m in Eq. (15) controls the turbulence dissipation rate. It will be

larger for a well-developed turbulence (neglected m value) and smaller for the physical10

state described by the turbulence and meandering phenomenon coexistence (hybrid

situation).

The present parameterization for the turbulence dissipation rate was evaluated and

validated through the comparison with experimental data. Particularly, the results ob-

tained by the Lagrangian stochastic dispersion model, employing the new formula for15

the turbulence dissipation rate, show that the model correctly represents the diffusion

process in low wind speed stable conditions.

Considering the statistical evaluation and the scatter diagram given in Fig. 5, the new

parameterization for the turbulence dissipation rate seemed to be suitable to simulate

the meandering enhanced diffusion of passive scalars occurring in situations in which20

turbulence and meandering phenomenon coexist. Therefore, the main result of the

present study is Eq. (15), which represents an alternative expression for the turbulence

dissipation rate for hybrid flow cases and that has been derived from an autocorrelation

function that reproduces experimental meandering data.
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Table 1. Statistical evaluation of the model results.

NMSE R FA2 FB FS

0.14 0.93 0.73 0.08 −0.23
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Fig. 1. Lagrangian turbulent energy spectrum in the inertial subrange, as determined from

Eq. (2) for m= 0.5.
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Fig. 2. Lagrangian turbulent energy spectrum in the inertial subrange, as determined from

Eq. (2) for m= 1.
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Fig. 3. Lagrangian turbulent energy spectrum in the inertial subrange, as determined from

Eq. (2) for m= 5.
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Fig. 4. Lagrangian autocorrelation function as given in Eq. (2) for m=5.
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Fig. 5. Scatter diagram between observed (Co) and predicted (Cp) ground-level centerline

concentration values for the stable case. Dashed lines indicate factor of 2, dotted lines indicate

factor of 3 and solid line indicates unbiased prediction.
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