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Abstract

Particle emissions from ship engines and their atmospheric transformation in the ma-

rine boundary layer (MBL) were investigated in engine test bed studies and in airborne

measurements of expanding ship plumes. During the test rig studies, detailed aerosol

microphysical and chemical properties were measured in the exhaust gas of a serial5

MAN B&W seven-cylinder four-stroke marine diesel engine under various load con-

ditions. The emission studies were complemented by airborne aerosol transforma-

tion studies in the plume of a large container ship in the English Channel using the

DLR aircraft Falcon 20 E-5. Observations from emission studies and plume studies

combined with a Gaussian plume dispersion model yield a consistent picture of parti-10

cle transformation processes from emission to atmospheric processing during plume

expansion. Particulate matter emission indices obtained from plume measurements

are 8.8±1.0×10
15

(kg fuel)
−1

by number for non-volatile particles and 174±43 mg (kg

fuel)
−1

by mass for Black Carbon (BC). Values determined for test rig conditions be-

tween 85 and 110% engine load are of similar magnitude. For the total particle num-15

ber including volatile compounds no emission index can be derived since the volatile

aerosol fraction is subject to rapid transformation processes in the plume. Ship ex-

haust particles occur in the size range Dp<0.3µm, showing a bi-modal structure. The

combustion particle mode is centred at modal diameters of 0.05µm for raw emissions

to 0.10µm at a plume age of 1 h. The smaller-sized volatile particle mode is centred at20

Dp≤0.02µm. From the decay of ship exhaust particle number concentrations in an ex-

panding plume, a maximum plume life time of approx. 24 h is estimated for a well-mixed

marine boundary layer.

1 Introduction

Shipping represents a major contribution to the international transportation sector25

which, however, is not well quantified in terms of global emissions and climate impacts.
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In this context, gaseous and particulate matter emissions from seagoing ship are gain-

ing increasing attention because of likely environmental and climate effects (Corbett

and Fischbeck, 1997; Capaldo et al., 1999; Lawrence and Crutzen, 1999; Endresen

et al. 2003; Eyring et al., 2005a, b). Even from satellites, main shipping routes were

detectable from their increased NO2 level (Beirle et al., 2004). Those emitted species5

may have a significant impact on the atmospheric composition and on air quality, and

in particular on the ozone chemistry in the troposphere.

As for any combustion source, ship engines also emit particulate matter. Ship engine

exhaust aerosol is composed of combustion aerosol particles consisting of elemental

and organic carbon, sulphate and ash (Cooper, 2003; Petzold et al., 2004; Kasper10

et al., 2007), and of volatile particles forming from sulphuric acid in the expanding

plume (Song et al., 2003; Gopalakrishnan et al., 2005; Chen et al., 2005; Petzold et

al., 2007). Elemental or black carbon (BC) as one of the most efficient particulate

absorbers of solar radiation and sulphuric acid particles as the major light-scattering

aerosol fraction are the two exhaust components of highest relevance (Capaldo et al.,15

1999). Both constituents are expected to having a strong impact on the atmospheric

radiation budget. The magnitude of any resulting direct climate impact of BC emitted

from ship traffic as well as the properties of particles emitted by cruising ships and their

fate in the marine environment are not well known.

Beyond the direct effects of the emitted particles on Earth’s radiation budget, these20

particles may act as cloud condensation nuclei (CCN) and thus may increase the con-

centration of cloud droplets, which in turn modifies life cycle and radiative properties of

marine stratiform clouds at the top of the MBL (Durkee et al., 2000a, b). In the detailed

Monterey Area Ship Track Experiment MAST (Durkee et al., 2000a, b and references

given there; Frick and Hoppel, 2000; Hobbs et al., 2000; Noone et al., 2000) the influ-25

ence of particulate emissions from cruising ships on marine stratiform clouds and the

formation of so-called ship tracks in the marine stratus deck were extensively studied.

Beyond the local scale close to the emitting ship, first evidence of a larger-scale im-

pact of ship emissions on cloud albedo and cloud top temperature of marine clouds is
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recently reported from satellite data analyses (Devasthale et al., 2006). Based on the

analysis of AVHRR data, the authors show that over areas with high shipping frequency,

a statistically significant increase in cloud albedo is found. Thus, ship emissions are

likely to impact the atmosphere even on a larger scale than expected so far.

In contrast to the increasing interest on particle emissions from international shipping5

(Corbett, 2003), detailed chemical composition and aerosol microphysical data as well

as data on aerosol transformation processes in the plume are sparse. Before we de-

scribe the scope of our study which aims at filling some of the existing gaps, we briefly

summarise the current knowledge on the properties and fate of particle emissions from

ship engines.10

Current emission data originate from few engine studies using engine test rigs

(Lyyränen et al., 1999, 2002; Petzold et al., 2004; Kasper et al., 2007), or sampling

from auxiliary engines of ships at berth (Cooper, 2003). Aerosol properties in ship

plumes were investigated in-situ during MAST by instrumented airship (Frick and Hop-

pel, 2000) or aircraft (Hobbs et al., 2000; Osborne et al., 2001), and during plume15

studies in the southern Atlantic Ocean (Sinha et al., 2003), as part of the NOAA Inter-

national Transport and Chemical Transformation (ITCT) 2K2 airborne field campaign

(Chen et al., 2005), and during the New England Air Quality Studies in 2002 and 2004

(Williams et al., 2005).

Total particulate matter emission factors for cruising ship in terms of particle number20

per kg of burnt fuel are 1.2–6.2×10
16

(kg fuel)
−1

(Hobbs et al., 2000; Frick and Hoppel,

2000; Sinha et al., 2003, Chen et al. 2005). For accumulation mode particles with

Dp>0.1µm, an emission factor of 0.1–0.5×10
16

(kg fuel)
−1

is reported by Sinha et

al. (2003). The only test rig emission factors reported so far are 1–8×10
15

kWh
−1

at 100% engine load for a two-stroke marine diesel engine of type Wärtsilä 4RTX-325

(Kasper et al., 2007). Although, the conversion to (kg fuel)
−1

is not available for this

data set, we can estimate a range of emission factors of 5×10
15

–4×10
16

(kg fuel)
−1

by

applying the average ratio of 0.212 kg fuel/kWh (Eyring et al., 2007). The only available

emission factor for BC mass emissions from cruising ship is 180±20 mg BC (kg fuel)
−1
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(Sinha et al., 2003).

Size distributions covering the entire nucleation to coarse mode size range (0.005–

3µm in diameter) are available for plumes embedded in the MBL (Frick and Hoppel,

2000; Hobbs et al., 2000; Petzold et al., 2004), and for emission conditions (Lyyränen

et al., 1999; Kasper et al., 2007). In fresh exhaust at full engine load, particle number5

size distributions are characterised by a bi-modal structure with modal diameters of

0.04–0.05µm (two-stroke engine: Kasper et al., 2007) and 0.04–0.06µm (four-stroke

engine: Lyyränen et al., 1999) for the main particle mode. For the two-stroke engine,

a second but weaker mode is found at modal diameters >0.1µm. The application of

a thermodenuder for the removal of volatile particles (Burtscher et al., 2001) reduces10

the number of particles by a factor of 10 (Kasper et al., 2007). Information on particle

volatility and size distributions for Dp>0.1µm are not reported in literature for four-

stroke diesel engines.

Inside ship plumes embedded in the cloud-free MBL, particle size distributions show

a broad mode at 0.06–0.1µm (Hobbs et al., 2000; Frick and Hoppel, 2000). Parti-15

cles larger than 0.2µm contribute less than 5% by number. Almost no data exist on

the modification of aerosol size distributions during plume expansion and dispersion,

although the non-volatile accumulation mode fraction is most important for ship track

formation (Frick and Hoppel, 2000; Dusek et al., 2006). The only available source (Os-

borne et al., 2001) provides size distribution data limited to the accumulation mode size20

range with Dp>0.10µm.

Whereas the engine emission studies provide emission factors for particulate matter

in terms of number and mass, they do not go into details of the chemical composition

which, however, is needed for modelling the CCN activation process. The airborne

studies in ship plumes again focus on emission factors, while size distribution informa-25

tion is reported only to a limited extent. Particle size distributions, however, reflect the

aerosol transformation process from emission to CCN activation. Both objectives are

tackled in the presented study.

Airborne aerosol transformation studies in the marine boundary layer were con-
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ducted as part of the ICARTT-ITOP (Intercontinental Transport of Ozone and Precur-

sors) experiment in 2004 using the DLR aircraft Falcon 20 E-5. Ship emission studies

were conducted in 2006 as part of the European Integrated Project HERCULES (High

Efficiency R&D on Combustion with Ultra Low Emissions for Ships). We analysed the

whole data set with respect to emission factors for black carbon mass and particle5

number, chemical speciation, aerosol transformation in an expanding plume and to an

estimate for plume and particle life times in the MBL. For the first time, emission and

plume data gathered with similar instrumentation are combined in such a study.

2 Methods

2.1 Test rig studies10

In the framework of HERCULES particle emissions from a serial MAN B&W four-stroke

marine diesel engine were studied at the engine manufacturer’s test facilities in Augs-

burg, Germany. The engine was operated at various load conditions between 10% and

100%, running on heavy fuel oil (HFO) with a sulphur content of 2.21 wt%. Detailed

aerosol microphysics and chemistry were measured including aerosol number and size15

distribution for total exhaust aerosol and non-volatile combustion particles from on-line

measurements, and chemical composition in terms of total particulate mass (PM), ele-

mental carbon (EC), organic matter (OM), and sulphate from bulk filter samples.

The applied instrumentation consisted of three Condensation Particle Counters

(CPC, TSI 3010/3760A), one Differential Mobility Analyser (DMA, TSI 3071), and a20

Multi-Angle Absorption Photometer MAAP (Thermo Instruments Model 5012; Petzold

and Schönlinner, 2004) for black carbon monitoring. The CPC were partially equipped

with Diffusion Screen Separators consisting of nDS screens (Feldpausch et al., 2006)

which yielded lower cut-off diameters of 0.01µm (CPC#1, nDS=0), 0.03µm (CPC#2,

nDS=3), and 0.08µm (CPC#3, nDS=10). Separation of volatile and non-volatile aerosol25

compounds was achieved by a thermodenuder (Burtscher et al. 2001). The samples

15110
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for the on-line aerosol microphysics were diluted by a factor of 10
5

using a set of isoki-

netic dilution stages Model VKL-10 (Palas, Karlsruhe, Germany). The dilution was

monitored by simultaneous measurements of the CO2 mixing ratio in the dilution air

and in the diluted exhaust gas sample after the first set of dilution stages. The sample

lines were kept at 150
◦
C up to the first dilutor. The first dilutor was operated with heated5

dilution air in order to prevent condensation of water vapour. The subsequent dilutors

were operated with dry and particle-free air at ambient temperature. The measurement

set-up for the test rig studies is shown in Fig. 1.

Filter stack samples were taken with an AVL 472 Smart Sampler Modular dilution

system. Teflon filters were analysed by gravimetry for total mass, pre-conditioned10

quartz filters were analysed by a multi-step combustion method for organic (OC) and

elemental (EC) carbon (VDI guideline 2465-2, 2005 Schmid et al., 2001) and by ion

chromatography for sulphate. Prior to thermal analysis, the extractable organic carbon

fraction was removed in a solvent mixture of toluol and isopropanol. In the first step of

the multi-step combustion method, the filter sample was heated to 550
◦
C in a nitrogen15

flow to volatilise organic carbon which is subsequently oxidised to CO2 by copper ox-

ide and measured by infrared absorption. In a second step the residual carbon on the

filter sample was oxidised in oxygen airflow at 650
◦
C and detected as CO2. Step #1

provided OC, step #2 provided EC. Organic matter was calculated from organic car-

bon via the relationship OM=1.2×OC, and sulphate-bound water was calculated from20

the average relationship of bound H2O=0.8×SO4 for engine test conditions (P. Lauer,

personal communication, 2004).

An extensive presentation of the test rig data is beyond the scope of this study and

will be published elsewhere. Here, we focus on the emission factors in terms of EC,

and of particle number and size for total as well as for non-volatile particles. Engine25

load conditions of 85%–110% were considered because they include typical operation

conditions for ships at cruise. Particle size distributions measured by means of a DMA

are compared to chemical analyses of the key components EC, OM, sulphates and ash.

The chemical composition and size distribution data measured for emission conditions

15111
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cannot be related quantitatively to plume data obtained from airborne measurements.

However, conclusions on the chemical key components of aerosol modes identified in

the plume can be drawn.

2.2 Airborne measurements

In the course of the ICARTT-ITOP experiment in 2004, the DLR research aircraft Falcon5

was used to study fresh and aged ship plumes at the exit of the English Channel

towards the Gulf of Biscay. The ship plume studies consisted of two different parts. On

23 July 2004, a ship corridor survey flight was conducted which traversed the English

Channel perpendicular to the major ship routes at a constant altitude of 300 m above

sea level (a.s.l.). On 30 July 2004, a single plume of a large container ship operated by10

the MAERSK shipping company was extensively studied. Figure 2 show the respective

Falcon flight tracks with ship plume encounters inserted. In both cases no ship tracks

have formed.

On board of the DLR Falcon, a comprehensive set of instruments was operated for

the in situ measurement of aerosol microphysical properties of both the secondary15

volatile aerosol and the primary combustion aerosol, and trace gases H2O, NO, NOy,

O3, CO, CO2, SO2, and meteorological parameters. The aerosol instrumentation con-

sisted of six Condensation Particle Counters (CPC) set to different lower cut-off di-

ameters (Schröder and Ström, 1997), Diffusion Screen Separators (Feldpausch et al.,

2006), one Differential Mobility Analyser (DMA), one thermodenuder with two chan-20

nels set to 20
◦
C and 250

◦
C, two optical particle counters of types Passive Cavity

Aerosol Spectrometer Probe (PCASP 100X) and Forward Scattering Spectrometer

Probe (FSSP 300), and one Particle Soot Absorption Photometer (PSAP; Bond et al.,

1999).

The combination of CPC and Diffusion Screen Separators with a DMA instrument25

and several optical particle spectrometers covered the entire size range from small-

est particles in the nucleation mode (Dp<0.01µm) to coarse mode particles in the

far super-micron size range. The probed size range included optically active back-
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ground Aitken and accumulation mode particles (0.05µm<Dp<1–2µm), coarse mode

sea salt particles (Dp>1µm) and particle sizes relevant for particle formation processes

(Dp<0.02µm). The non-volatile fraction in the sub-micron aerosol and the aerosol ab-

sorption coefficient were measured as well.

The aerosol population was subdivided intro nucleation mode particles (NUC) with5

Dp<0.014µm, Aitken mode particles (AITK) with 0.014µm<Dp<0.1µm, and accumu-

lation mode particles (ACC) with 0.1µm<Dp<3.0µm. The aerosol absorption coeffi-

cient σap at a wavelength λ=550 nm, which was measured by the PSAP, can be con-

verted to an equivalent BC mass concentration BCe using a mass-specific absorption

cross-section of 8 m
2

g
−1

(Bond and Bergstrom, 2006). The terminology equivalent BC10

follows a recommendation by Andreae and Gelencser (2006), since this BC value is

derived from optical measurements and requires the assumption of a certain mass-

specific absorption cross-section. Table 1 summarises the instrumentation of the air-

craft.

If number or mass concentrations or aerosol absorption coefficients refer to standard15

temperature and pressure conditions STP (273.14 K, 1013.25 hPa), they are given as

particles per standard cm
3

(scm
−3

), or µg per standard m
3

(µg sm
−3

). These concen-

tration data correspond to mixing ratios which do not depend on the respective pres-

sure and temperature during the measurement. Otherwise concentration data refer to

ambient conditions.20

2.3 The plume model

One key to further understanding of the atmospheric transformation and processing of

particles emitted from ships is the transformation of the exhaust plume during expan-

sion and dilution. Von Glasow et al. (2003) proposed a Gaussian plume dispersion

model which describes the evolution of the plume on a horizontal and a vertical scale.25

Dilution of the plume takes place by expansion and associated entrainment of marine

background air. The model describes plume dispersion by two separate power laws for

15113
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horizontal (wpl ) and vertical (hpl ) plume dimensions

wpl (t) = w0

(

t
t0

)α

hpl (t) = h0

(

t
t0

)β (1)

with w0 and h0 referring to the initial width and height of the plume at age t0=1 s.

The respective values of 10 m and 5.5 m, respectively, were estimated from data in

the literature (von Glasow et al., 2003). They approximately correspond to the cross-5

sectional area of a plume after 1 s. Exponents α and β are the plume expansion rates

in the horizontal and vertical with “best guess” values of 0.75 and 0.60 (von Glasow et

al., 2003). Using Eq. (1), plume dilution can be described by the evolution of a semi-

elliptic plume cross section Apl=π/8wpl hpl with time. Since the top of the MBL is

considered impenetrable by the plume, the vertical expansion stops when the plume10

reaches the top of the MBL, i.e., hpl=zMBL . The change in concentration ∆cpl of a

given compound compared to its background value can be written as (von Glasow et

al., 2003)

d cpl (t)

d t
=

{

α + β

t
∆ cpl , hpl (t) < zMBL

α
t
∆ cpl , hpl (t) = zMBL

. (2)

The plume expansion rates α and β can be derived from measurements of a chemically15

inert tracer like CO2 at different plume ages t by applying Eq. (2). The quantity ∆CO2,

also referred to as excess CO2, describes the increase in CO2 above the average

background mixing ratio by adding CO2 from the combustion process. ∆CO2 is a

direct measure of plume dilution, if the initial mixing ratio for exhaust conditions CO2ex

is known.20

The temporal evolution of any aerosol property or trace gas mixing ratio can be in-

vestigated by applying the plume dilution function. If the considered exhaust compound

EX is conserved during plume expansion, then it follows the same dilution law like the

chemically inert tracer CO2 and EX (t)/∆CO2 (t) = constant. If the exhaust compound

15114
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decays during plume expansion due to chemical degradation or particle coagulation,

then EX (t)/∆CO2 (t) decreases with increasing plume age, i.e.

d

d t

EX(t)

∆CO2(t)







= 0 , conservation of EX(t)

< 0 , loss of EX(t)

> 0 , production of EX(t)

Emission factors are calculated based on this behaviour. During plume encounters,

observed peak concentrations of the exhaust constituent EX are transformed to STP5

conditions. The peak volume mixing ratio ∆CO2 is transformed to a mass concentration

of CO2 at STP by multiplying with the molar weight of CO2 (MWCO2=0.044 kg mol
−1

)

and dividing by the molar volume at STP (VMOL=0.0224 sm
3
). The mass ratio of EX

per CO2 is converted to an emission factor by multiplication with the emission factor of

CO2 in units of kg CO2 (kg fuel)
−1

. The final equation for the calculation of an emission10

factor from the respective mass concentration and the ∆CO2 volume mixing ratio is

EIEX =
EX (STP)

∆CO2

VMOL
MWCO2

× EICO2 (3)

Equation (3) yields the emission factor in units of mass of compound EX per kg fuel or

number of particles per kg fuel. It is evident that emission factors can be determined

by Eq. (3) only for those compounds which are conserved during plume expansion.15

As soon as EX (t)/∆CO2(t) varies with plume age t, the emission factor becomes a

function of plume age and effective emission indices have to be considered instead.

If the corresponding measurements of EX and ∆CO2 have about the same time re-

sponse, the ratio of the observed peak concentrations in the plume can be used for the

calculation of emission factors, otherwise integrals have to be used (Schlager et al.,20

2007).

In the following, the plume dilution function and the observed behaviour of aerosol

properties with plume age and for emission conditions are used to discuss particle
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transformation processes and plume lifetimes. The test rig studies provide the bound-

ary conditions for aerosol properties at emission conditions. The ship corridor survey

flight provides aerosol and plume properties for aged plumes which have mixed with

the MBL. The core of the data analysis forms the single plume study which bridges the

gap between emission and well-aged plumes. The presentation of results follows this5

overall structure.

3 Results

3.1 Test rig studies

Table 2 summarises the average physical and chemical properties of an aerosol emit-

ted from the indicated four-stroke serial engine running on 85–110% load. Number10

concentrations in the raw exhaust gas are 1.26±0.51×10
15

sm
−3

. Applying a ther-

modenuder removes 2/3 of the particles, leaving behind 4.63±1.0×10
14

non-volatile

particles per sm
−3

. The total aerosol is characterised by a strong mode centred at

Dp=0.015µm and a second but slightly weaker mode centred around Dp=0.05µm. No

particles are observed with diameters >0.25µm. Typical size distributions are shown15

in Fig. 3 for the investigated load conditions. The observed bi-modal structure of the

size distribution is present for load conditions >75% while the mode of small particles

starts to vanish at lower load conditions. Hence, the combustion particle mode centred

at Dp=0.05µm depends only weakly on the engine load, while the mode of smaller

particles is heavily influenced.20

The average fractional chemical composition in % of total mass at 85–110% load is

2.7% EC, 21.4% OM, 4.2% ash, 39.8% sulphate, and 31.9% sulphate-bound water. In

the course of a similar test experiment but with a different engine and different fuel in

2003, we found an increase of the sulphate fraction from 41 wt% at 50% load to 47wt-

% at 100% load, while the EC mass fraction decreased (Petzold et al., 2004). Thus,25

the development of a small particle mode in the size range Dp<0.3µm is associated
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with an increase of the sulphate mass fraction, indicating that the small particles are

composed predominantly of sulphuric acid water clusters while the larger combustion

particle mode contains most of the non-volatile matter as EC, OM and ash. A similar

behaviour was found during the 2006 test, which will be reported elsewhere with more

detail.5

Comparisons with existing data yield an agreement of the main combustion particle

mode found at Dp=0.04–0.06µm for four-stroke engines (Lyyränen et al., 1999) and at

Dp=0.04–0.05µm for two-stroke engines (Kasper et al., 2007). More detailed compar-

isons with respect to the volatile particle mode at Dp≤0.02µm are difficult since neither

details on the modal structure of the exhaust aerosol nor absolute number concentra-10

tions or chemical composition data are given for four-stroke engines. For two-stroke

engines, however, a bi-modal structure is observed as well (Kasper et al., 2007). To-

tal particle numbers of 1–8×10
15

kWh
−1

at 100% load are of the same order as our

observations.

Although the engines studied in the test rig experiments (four-stroke) and during the15

ship plume measurements (two-stroke) are different, the data summarised in Table 2

are used as reference for fresh exhaust conditions. This approach is justified since for

the main combustion mode, no significant differences were found between two-stroke

and four-stroke marine diesel engines.

3.2 The corridor flight20

Moving from marine diesel engine exhaust studies to ship plumes embedded in the

MBL, those exhaust plumes are easily identified as peaks in particle number concen-

tration and in CO2, as is demonstrated in Fig. 4. In MBL air outside of plumes, av-

erage particle number concentrations are 690±30 cm
−3

for AITK mode particles and

150±10 cm
−3

for ACC mode particles. The non-volatile fraction of the total aerosol is25

82±3% for AITK mode particles and 100% for ACC mode particles. No particle nucle-

ation is observed. In Fig. 4, three well separated plumes can be identified in the CO2

signal. Excess CO2 can be determined with good accuracy by subtracting the average
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background value around the peak from the peak value itself. A conservative estimate

of the average uncertainty of CO2 is 0.4 ppm (Schlager et al., 2007).

The plumes plotted in Fig. 4 are characterised by peak ∆CO2=0.45–0.55 ppm. Par-

allel to an increase in CO2, increases in AITK mode particle number concentration and

equivalent BC mass concentration are observed. The AITK mode number concentra-5

tion is almost doubled from the background value to 1000–1500 cm
−3

. Simultaneously,

the non-volatile fraction of AITK mode particles decreases from the background value

of 82% to 72±5% inside the aged plumes due to externally mixed volatile particles in

the exhaust plumes. All signals are synchronous in time.

For aged plume conditions, the observations from the corridor flight are taken as10

average values describing well-aged ship plumes. More detailed analyses including

plume ageing processes are not possible since ∆CO2 is associated with a large rela-

tive error of more than 50% which does not permit a determination of plume age from

the increase in CO2 relative to the marine background air. Furthermore, the quantita-

tive analysis of BCe peaks is not possible since peaks are almost always associated15

with unphysical negative values in BCe because the instrument is operating below the

detection limit outside of ship plumes. As is discussed in the next section, the situation

is different for strong plume encounters when the PSAP signal is well above its detec-

tion limit. However, the engine exhaust studies from HERCULES and the aged plume

data from the corridor flight set the frame for the analysis and interpretation of the data20

from the single plume study which is described in the following section.

3.3 The single plume study

During the Single Plume Study on 30 July 2004, the plume of a large container vessel

operated by MAERSK shipping company was investigated. Vessel data and key prop-

erties of the burnt fuel are compiled in Table 3. The vessel was operating on heavy25

fuel oil (HFO) with a sulphur content of 2.45%-mass, which is close to the sulphur fuel

content of the emission testing. The plume study was arranged in close collaboration

with the owner and the captain of the vessel. The flight track of the aircraft in the ex-
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haust plume of the vessel was designed such that the 3-D structure of the evolving

plume was covered from close to the source downwind to as far as possible. In Fig. 5

the flight track is shown together with plume encounters. Symbol colours represent

the black carbon mass concentration in the plume. During the entire study the crew

reported engine operation data and meteorological data of the MBL as recorded by5

the on-board instruments. Table 4 summarises data on the position of the vessel, MBL

meteorological data, cruising speed, engine load, and fuel flow.

The weather conditions during the single plume study were characterised by a

high pressure system between Ireland and Great Britain with a surface pressure

of about 1020 hPa, surface temperatures of 292 K and moderate horizontal wind10

speeds increasing from 2 m s
−1

at the beginning of the study to 11 m s
−1

at study

end. The wind direction changed from north-eastern winds near the surface up to

approx. 200 m a.s.l. to southerly winds at higher altitudes. During the single plume

study, the MBL was well mixed as is indicated by the vanishing vertical gradient of

the potential temperature θ and of the particle number density inside the MBL, see15

Fig. 6 for details. Combining vertical profiles of particle number concentrations, po-

tential temperature, relative humidity, and horizontal wind speed, all quantities show a

strong change with altitude around 550 to 650 m a.s.l. which is therefore assumed to

represent the top of the MBL.

Engine operation data and fuel properties were used by the manufacturer of the en-20

gine for calculating the average emissions of the vessel, which are compiled in Table 5.

The CO2 emission factor of 3.107 kg CO2 (kg fuel)
−1

fits well into the range of values of

3.135–3.176 kg CO2 (kg fuel)
−1

reported in the literature (e.g., Sinha et al., 2003). This

CO2 emission factor is required for the calculation of emission factors from concentra-

tion measurements according to Eq. (3). The emission factors for NOx and SO2 and25

observed differences between calculated and measured values are discussed in detail

by Schlager et al. (2007).

Plume encounters observed during the Single Plume Study are shown in Fig. 7 as

time series of various properties. The strength of the plume event was rated accord-
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ing to ∆CO2. In the far field of the plume ∆CO2<10 ppm, while close to the source,

∆CO2 even exceeded 100 ppm. Near to the source, the BC mass concentration in-

creased to 10 µg sm
−3

, while the Condensation Particle Counters (Model 3760A, TSI

Inc., USA) did not respond to the increasing number of exhaust particles. Figure 8

illustrates this behaviour: while ∆CO2 and BCe simultaneously increase by a factor of5

three during approach to the source, particle number concentrations remain at a value

of about 2×10
4

scm
−3

which corresponds to the upper detection limit of this type of

condensation particle counter due to particle coincidence in the instrument. Particle

number density data were therefore accessible only for plume ages beyond 10
3

s when

the plume was sufficiently diluted.10

Plume dispersion

Plume peak data on the basis of 95-percetile values with respect to the analysed plume

sequence were used to calculate plume dilution and emission factors of the respective

particulate matter properties. In the case of near field plume encounters (t<10
3

s),

accessible data were ∆CO2 and ∆BCe, while in the case of far field plume encounters15

(t>10
3

s), accessible data were ∆CO2 and ∆N. According to von Glasow et al. (2003)

and to Eq. (2), the decay of a chemically inert species like ∆CO2 in a dissolving plume is

described by two exponents α and β which refer to the horizontal and vertical spread-

ing of the plume, respectively, with the plume age t being the independent variable.

The plume age was determined by backward trajectory analyses from the time shift20

between emission by the vessel and probing of the plume by the Falcon. Input data

were the positions of the vessel and of the aircraft as a function of time, and the horizon-

tal wind fields as measured by the Falcon meteorological instrumentation. Using this

method, the plume age can be determined within an uncertainty of 10–20% (Schlager

et al., 2007). Following this analysis, plumes were probed at ages between 60 s and25

1650 s. Using ECMWF wind field data of lower spatial and temporal resolution instead

of directly measured wind fields yields larger plume ages. Both plume ages are highly
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correlated with r
2
=0.961 for 10 analysed plume encounters and a regression line of

tECMWF=1.272 (±0.0426) tmeasured . In the course of this study, the plume ages from

the directly measured wind fields were used.

According to Eqs. (1) and (2), a plot of ∆CO2 as a function of plume age t should

provide two different regimes: the young plume age where expansion occurs in both5

horizontal and vertical direction since the plume height is less than the MBL height,

and the more aged plume, where expansion occurs only in the horizontal direction,

since the plume height already reached the top of the MBL. These two regimes are

indeed observed as can be taken from Fig. 9. Fitting of the respective lines deliv-

ers α=0.74–0.76 and β=0.70–0.80 from the slopes of the near field sequences (solid10

line: m=α+β), and of the far filed sequences (dashed line: m=α). Respective best

guess values by von Glasow et al. (2003) for a set of analysed plumes are α=0.75 and

β=0.60.

The obtained parameter α for the horizontal dispersion agrees remarkably well with

the literature data, while the parameter β for the vertical dispersion strongly depends15

on the stability of the MBL. The transitin from plume expansion in both the horizontal

and the vertical direction to expansion in the horizontal direction only is observed at a

plume age of approx. 1000 s. After this age, the plume should extend over the entire

MBL. Ship tracks can form earliest at this stage since by then the emitted particles have

reached the clouds at top of the MBL. In the current single plume study, the MBL was20

well mixed, resulting in a larger β value than given in the literature. Nevertheless, the

observations justify the application of a Gaussian-type model for the parameterisation

of ship plume dispersion for our specific case. In a turbulent MBL, the situation might

be different.

Emission factors25

As described in Sect. 2.3, the determination of an emission factor for a given species

requires a constant ratio of exhaust species concentration EX(t) vs. ∆CO2 (t) during
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plume expansion. Then Eq. (3) can be applied. Figure 10 shows the results of linear

regression analyses for equivalent black carbon ∆BCe as a function of ∆CO2 for near

field conditions with ∆BCe well above the detection limit of the instrument, and for non-

volatile particles ∆NNV as a function of ∆CO2 from far field data with ∆NNV below the

coincidence level of the CPC. For both aerosol properties, a statistically significant lin-5

ear relationship is found indicating a ratio to ∆CO2 independent of plume age. Tables 6

and 7 summarise the analysis of this functional dependence for all plume encounters.

Averaging over all plume encounters yields emission factors of 174.2±42.5 mg BCe

(kg fuel)
−1

for equivalent BC, 13.6±2.4×10
15

(kg fuel)
−1

by number for total particles

and 8.8±1.0×10
15

(kg fuel)
−1

by number for non-volatile particles. The respective emis-10

sion factor for accumulation mode particles is 2.3±0.7×10
15

(kg fuel)
−1

. Thus, about

65% by number of emitted particles contain a non-volatile core, while less than 20% by

number are larger than 0.1 µm in diameter. For the total aerosol which also includes

volatile nucleation and Aitken mode particles, the emission factor is more variable since

for higher ∆CO2 values there is no longer a linear dependency obtained. Note the high15

number concentration ∆ND>13 nm for high ∆CO2 values, as indicated by the arrow in

the mid panel of Fig. 10 which refers to CPC counter overflow in the young plume.

The obtained emission factors for the total aerosol are at the lower end of the range of

reported values of 1.2–6.2×10
16

(kg fuel)
−1

. The accumulation mode particle emission

factor fits well into the reported range of 1–5×10
15

(kg fuel)
−1

(Sinha et al., 2003). The20

BCe emission factor is in very close agreement with the reported value of 180±20 mg

BC (kg fuel)
−1

(Sinha et al., 2003). For non-volatile particles, no observational data are

available for comparison. In summary, the determined emission factors for equivalent

black carbon mass and for particle number of several aerosol fractions either fall within

the range of reported values or add new information to the topic.25
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Size distribution

Particle number and BC mass emission indices are required for the calculation of par-

ticulate matter emitted from global shipping. Potential climate impacts on the Earth’s

radiation budget are linked primarily to particle size by means of activation of exhaust

particles to cloud condensation nuclei in ship tracks (Hobbs et al., 2000; Dusek et al.,5

2006). In our studies, the entire particle size distribution was accessed by a combina-

tion of CPC, DMA, and optical particle spectrometers. Except the DMA, all instruments

operated at a time resolution <5 s which is required for ship plume studies. During the

closest plume encounters at the end of the plume study (see Fig. 7), however, a series

of peaks was sampled which permitted the analysis of the DMA mobility spectrum at10

least in the size range with Dp>0.03µm. At smaller sizes the instrument suffered from

sampling statistics at such short sequences. The obtained snapshot of the particle size

distribution in a very young ship plume (t<300 s) is plotted in Fig. 11. The exhaust par-

ticle mode inside the ship plume exceeded the background aerosol in the size range

up to 0.2µm. For particles larger than this range no deviation from the background15

aerosol was found. This observation matches the findings reported from the MAST

experiment (Frick and Hoppel, 2000; Hobbs et al., 2000).

Because of the short duration of single plume encounters, the size distribution anal-

ysis requires a different approach. Using three CPC partially equipped with diffusion

screen separators (Feldpausch et al., 2005) and the PCASP, a bi-modal log-normal20

size distribution can be fitted to the measured data according to the following scheme

which is a simplified version of Fiebig’s data inversion algorithm (Fiebig et al., 2005):

(i.) The bi-modal log-normal size distribution is expressed as

dN

d logDp

(Dp ) =

∑2

i=1

Ni
√

2π log(GSDi )
exp

[

−
1

2

(log(Dp) − log(CMDi ))
2

log(GSDi )
2

]

(4)

with the modal parameters number concentration Ni , count median diameter CMD, and25

geometric standard deviation GSD.
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(ii.) Each CPC is operated with a specific cut-off characteristic which is represented

as the normalised transfer function TrCPCi (Dp) (Feldpausch et al., 2006). Integrating

the normalised transfer function of CPC #i times the size distribution dN/dlogDp over

the particle diameter interval [0, ∞] yields the total number of particles detected by the

instrument:5

∫ Dp = ∞

Dp = 0

TrCPCi (Dp)
dN

d logDp

(Dp ) d logDp = Ni (5)

A similar equation holds for each PCASP channel #j (Fiebig et al., 2005), i.e.

∫ Dp = ∞

Dp = 0

TrPCASPj (Dp)
dN

d logDp

(Dp ) d logDp = Nj (6)

(iii.) Using three CPC configurations and PCASP channels #1–#5 grouped as [#1, #2]

and [#3, #4, #5] defines a set of 5 equations which have to be solved simultaneously10

by the fitted size distribution dN/dlogDp .

Figure 12 shows the result for plume encounters at 700 s, 900 s and 1600 s plume

age. The dashed line represents the marine aerosol outside of ship plumes. Modal

parameters of the size distributions are compiled in Table 8. As is discussed in de-

tail by Hobbs et al. (2000) the cloud residue mode contains the fraction of the marine15

aerosol which becomes activated for the formation of marine clouds. The combustion

mode particles are observed in the same size range as the marine cloud residues. Fur-

thermore, detailed studies on the CCN activation of combustion particles have demon-

strated the strong impact of a sulphate coating on the CCN activation of carbonaceous

particles on an observational basis (Petzold et al., 2005). The average size of combus-20

tion particles from ship engines combined with the large fraction of sulphate in aerosol

mass underpins the key role of the combustion mode particles in ship track formation.
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4 Discussion

As was discussed in Sect. 2.3, a ratio of EX(t)/∆CO2 (t) independent of plume age t

indicates a chemically inert exhaust component EX which is diluted during plume ex-

pansion by processes similar to ∆CO2 emitted from the engine. In Fig. 13, character-

istic aerosol properties of nucleation mode, Aitken mode and non-volatile Aitken mode5

particles are plotted as function of plume age. In the top panel, the ratio of total aerosol

number density ND>4 nm vs. Aitken mode aerosol number density ND>13 nm reflects the

abundance of nucleation mode particles in the total aerosol. The ratio of 1.0 indicates

the absence of nucleation mode particles since ND>4 nm=ND>13 nm . Inside the plume

for plume ages t<1000 s the ratio is slightly larger than 1.0, but still decreasing with10

age. The value of 1.0 is reached at about t=1000 s. Nucleation mode particles which

have formed in the expanding and cooling plume from emitted gaseous precursors

have thus been vanished after about 1000 s, presumably by coagulation with Aitken

and accumulation mode particles. The abundance of nucleation mode particles in raw

emission however is unknown since the measured particle number densities exceeded15

the upper detection limit of the instruments. We only can state that this ratio is beyond

the value of 10.

The processing of Aitken mode particles follows different paths for the total aerosol

including secondary volatile particles on one hand and the non-volatile combustion

particles on the other hand. Referring to Sect. 3.1, we know from the emission studies20

that volatile and non-volatile particles can be related to different size ranges with modal

diameters of <0.02µm for the total Aitken mode and ∼
=0.05µm for the combustion par-

ticles mode, respectively. The single plume study now yields that the excess Aitken

mode number density per ∆CO2 decreases in the plume with increasing plume age,

which indicates ongoing particle loss from the Aitken mode during plume expansion,25

see the mid panel of Fig. 13. In contrast, this is not the case for the number density of

non-volatile particles, as is shown in the bottom panel of Fig. 13. Relating the respec-

tive ratios for fresh emissions to the plume observations, the number of Aitken mode
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particles per CO2 is reduced by a factor of three from fresh exhaust to plume, while the

number of non-volatile particles is reduced by an approximate factor of 1.5. Respective

data are compiled in Table 6.

Coagulation loss of volatile particles during plume expansion may be inferred also

from the analysis of the fraction of non-volatile particles of the total Aitken mode during5

plume expansion. For emission conditions, the fraction of non-volatile particles of the

total exhaust aerosol is 0.34, see Table 2 for details. In a young ship plume with

plume ages of 10
3
–10

4
s, the average fraction with respect to all plume encounters

is 0.65±0.10 (Tables 6). In the ship corridor study, an average fraction of 0.72±0.05

was found for plumes older than 10
4

s. Finally, the respective fraction for the marine10

boundary layer aerosol outside of ship plumes is 0.82±0.03. The set of values clearly

shows a decrease of volatile particles compared to non-volatile particles during aerosol

processing.

Combining these observations with the close agreement of the BC mass emission

indices from emission testing and from the plume study, the number density of the non-15

volatile aerosol which is dominated by larger (CMD∼
=0.08µm) non-volatile, carbona-

ceous combustion particles and the BC mass can indeed be viewed as aerosol prop-

erties conserved during plume expansion and dilution. The total Aitken mode aerosol

number density which is by far dominated by small (CMD=0.015µm) secondary volatile

particles is subject to strong particle coagulation, resulting in a decreasing number den-20

sity during plume ageing. Since the ratio ND>13 nm/∆CO2 still decreases at plume ages

>1000 s, the coagulation process is still ongoing. Concluding, “true” particle number

emission indices for marine diesel engines operating on cruising ship can only be re-

ported for the non-volatile faction of the exhaust aerosol. The total Aitken mode aerosol

has to be treated by an effective emission indices approach which has to take coagu-25

lation loss of volatile particles into account.

Although cloud condensation nuclei (CCN) were not measured during this exper-

iment, the exhaust particle fraction relevant for potential climate effects of shipping

can be reduced to the larger combustion particle mode which falls into the size range
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of potential cloud condensation nuclei (CCN). Following Shinha et al. (2003) and

Hobbs et al. (2000), the ratio of CCN to CN varies from 18–19%. Applying this ra-

tio to the plume averaged emission index for non-volatile particles of the exhaust

aerosol (EINV=8.8±1.0×10
15

(kg fuel)
−1

) would yield an average CCN emission in-

dex of 1.66×10
15

(kg fuel)
−1

. The respective average emission factor for accumulation5

mode particles (Dp>0.1µm) is 2.3±0.7×10
15

(kg fuel)
−1

which indicates that all accu-

mulation mode particles will be activated for cloud drop formation. From direct CCN

measurements, Shinha et al. (2003) reported values of 0.76–1.1×10
15

(kg fuel)
−1

.

The decay of the particulate matter-related signal of ship emissions during plume

expansion and dilution provides an upper estimate for the average plume life time.10

In Fig. 14, the ratio of excess particles from ship emissions to marine boundary

layer Aitken mode particles is plotted as a function of plume age. Experimental data

were achieved from the plume encounters while the Gaussian plume model provided

the dilution function which is represented as dotted line. Model input data reflect-

ing the conditions for 30 July 2004 were α=0.74, β=0.70, ∆N(t=0)=2.5×10
8

cm
−3

,15

and NMBL=900 cm
−3

. Assuming a conservative range of threshold values of

∆NPLUME, min=[0.5–0.75]×NMBL which a ship plume must exceed for being identified

as plume encounter, a plume life time of 7–10×10
4

s can be estimated from the Gaus-

sian dilution function. During this time, a ship plume may be identified by the particle

signal enhancement above the marine background aerosol. Turbulent mixing in the20

MBL will of course reduce the life time significantly. The presented upper estimate

refers only to diffusive broadening of the plume.

5 Conclusions

In a combined study on particle emissions from marine diesel engines and their trans-

formation in the dissolving ship plume, the main characteristics of particulate matter25

emitted from shipping were investigated. Test bed studies using a serial marine diesel

engine provided microphysical and chemical properties of freshly emitted particles.
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These data served as input information for the investigation of dissolving ship plumes

during airborne measurements in the English Channel and in a single ship plume gen-

erated by a specific source vessel. A Gaussian plume dispersion model introduced

by von Glasow et al. (2003) in combination with the observations from emission stud-

ies and plume studies yields a consistent picture of particle transformation processes5

from emission from a ship engine to atmospheric processing in the marine boundary

layer during plume expansion. The results were used for the determination of emission

indices of particulate matter from ships and for the estimation of life times of ship ex-

haust particles in the marine boundary layer. Obtained values for black carbon mass

and particle number agree well with data reported in the literature. Ship plume lifetimes10

of <10
5

s were estimated from the ship plume signals and the plume dispersion model.

For the first time, emission indices for the non-volatile particle fraction are reported

which form the most relevant particle fraction in terms of aerosol – cloud interaction

during ship track formation.
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Table 1. Instrumentation operated on board the research aircraft Falcon during ICARTT-ITOP
2004.

Property Instrumentation

Aerosol properties

Number concentration; size distribution
of ultrafine particles

Condensation Particle Counters (CPC) operated
at lower cut-off diameters Dmin=0.004, 0.015, and
approx. 0.08µm (CPC & Diffusion Screen Sepa-
rator DS)

Size distributions

Aitken mode Differential Mobility Analyzer (DMA):
0.01<D<0.2µm

Dry state, accumulation mode Passive Cavity Aerosol Spectrometer Probe
PCASP-100X: 0.1µm<D<3.0µm

Ambient state, accumulation + coarse
mode

Forward Scattering Spectrometer Probe
FSSP 300: 0.3µm<D<20µm

Volume fraction of volatile/refractory par-
ticles

Thermodenuder (T=20
◦
C/250

◦
C) connected to

Condensation Particle Counters (CPC) operated
at lower cut-off diameters Dmin=0.004, 0.015, and
0.08µm (CPC & Diffusion Screen Separator DS)

Aerosol optical properties

Volume absorption coeff.,λ=0.55µm Particle Soot Absorption Photometer PSAP
Trace gases

NO/NOy Chemiluminescence detector

CO VUV fluorescence
O3 Ion Trap Chemical Ionisation MS
CO2 IR absorption
H2O Tunable Diode Laser Spectrometer
SO2 Ion Trap Chemical Ionisation MS
Atmospheric parameters

T, p, RH (BL, FT), 3D-wind velocity Falcon standard instrumentation
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Table 2. Properties of aerosol emitted from a serial MAN B&W four-stroke marine Diesel
engine operating on heavy fuel oil with 2.21wt% sulphur and 0.03 wt% ash; aerosol properties
are given as raw exhaust average values at standard conditions (273.14 K, 1013.25 hPa) for
engine load conditions between 85% and 110%. The average CO2 mixing ratio in the exhaust
was 58 000±5650 ppm.

Particle property Symbol, unit Value

Total particle number (Dp>0.01µm) NTOTAL , 10
15

sm
−3

1.26±0.51

Non-volatile particle number (Dp>0.013µm) NNV , 10
14

sm
−3

4.63±1.0
Number fraction of non-volatile particles NNV /NTOTAL , % 34±3

Total aerosol volume
#

V , 10
−7

m
3

sm
−3

1.52±0.45

Total particle mass (calculated from V and ρ) PM, mg sm
−3

233±17

Total particle mass (chemical components) PM, mg sm
−3

243±16
Chemical composition in % of PM
EC; OM; ash; sulphate; water 2.7; 21.4; 4.2; 39.8; 31.9
PM fraction of non-volatile compounds
(EC + OM + ash)/PM PMNV /PM, % 29±2

Particle density (chemical composition) ρ, kg m
−3

1230±2

Emission factors

Total particles by number EITOTAL, (kg fuel)
−1

34.3±12.6×10
15

EITOTAL,kWh
−1

7.27±2.71×10
15

Non-volatile particles by number EINV , (kg fuel)
−1

12.6±2.3×10
15

EINV , kWh
−1

2.68±0.51×10
15

Elemental carbon EIEC, mg (kg fuel)
−1

179±18

EIEC, mg kWh
−1

38±4

#
Calculated from size distributions assuming spherical particle shape.
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Table 3. Data of the investigated MAERSK container vessel.

Size 90560 RT (registered tonnage)

Type Container
Capacity 6418 TEU (twenty feet equivalent unit)
Engine MAN B&W two-stroke marine diesel engine
Fuel type Heavy fuel oil
Sulphur content 2.45 wt%
Ash content 0.03 wt%
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Table 4. Operation conditions of the MAERSK vessel, and MBL properties during the ship
plume study on 30 July 2004.

UTC Position Cruise Wind MBL Main Engine Aux. Engine
Latitude Longitude Dircruise vcruise Dirwind vwind p T Power Power Fuel flow Power Fuel flow

deg kn (m s
−1

) deg m s
−1

hPa
◦
C kW % max kg h

−1
kW kg h

−1

15:30 48
◦

36.8 N 06
◦

00.7 W 217 23.7 (12.18) 0 2 1021.6 19.9 46960 85 9016 2440 618.17
16:00 48

◦
26.5 N 06

◦
09.9 W 205 23.7 (12.18) 350 3 1021.0 19.9 46960 85 9016 2360 597.20

16:30 48
◦

15.5 N 06
◦

16.3 W 201 23.4 (12.03) 335 5 1020.5 18.6 46960 85 9016 2330 590.31
17:00 48

◦
04.6 N 06

◦
22.8 W 201 23.5 (12.08) 350 8 1020.6 18.9 46960 85 9016 2430 615.64

17:30 47
◦

53.0 N 06
◦

30.5 W 208 23.8 (12.47) 340 11 1020.4 19.0 46960 85 9016 2380 602.97
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Table 5. Composition of the MAERSK vessel gaseous emissions as calculated from fuel type

and main engine operation conditions: engine power 46 960 kW, engine fuel flow 9016 kg h
−1

,

mass flow of exhaust 457 000 kg h
−1

.

Gaseous species vol% EI, kg (kg fuel)
−1

CO2 4.036 3.107
H2O 4.243 1.41
SO2 0.043 0.051
NOx 0.140 0.112
Plume Observations

CO
∗
2 3.135–3.20

NO
#
x 0.096–0.109

SO
#
2 0.040–0.046

∗
Hobbs et al. (2000), Sinha et al. (2003)

#
Schlager et al. (2007)
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Table 6. Particle number emission factors, NTOTAL: total aerosol measured by a Condensation
Particle Counter with lower cutoff diameter of 10 nm; NNV : non-volatile aerosol measured by a
Condensation Particle Counter connected to a Thermodneuder (T=250

◦
C).

UTC ∆CO2 ∆NTOTAL ∆NNV ∆NACC EITOTAL EINV EIACC EITOTAL EINV EIACC

dec. time ppm 10
10

sm
−3

10
10

sm
−3

10
10

sm
−3

10
15

(kg CO2)
−1

10
15

(kg fuel)
−1

16.98167 4.488 n.a. 1.80 0.84 n.a. 2.36 0.95 n.a. 7.342 2.95
16.75083 2.63 2.13 1.47 0.56 4.77 3.29 1.08 c14.82 c10.23 3.36
17.07389 2.51 2.38 1.24 0.36 5.58 2.90 0.73 17.33 9.02 2.27

17.02 2.13 1.45 0.99 0.23 4.03 2.76 0.55 12.51 8.57 1.72
17.13611 2.80 1.80 1.25 0.46 3.80 2.64 0.83 11.82 8.20 2.57
17.08222 2.12 1.82 1.19 0.13 5.06 3.30 0.31 15.73 10.26 0.97
17.26528 1.83 1.16 0.86 0.31 3.74 2.79 0.86 11.63 8.67 2.68
16.81444 2.08 1.27 0.88 0.29 3.60 2.50 0.71 11.22 7.76 2.20
Plume av. 4.37±0.76 2.82±0.34 0.75±0.24 13.6±2.4 8.8±1.0 2.3 ± 0.7
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Table 7. Emission factors for equivalent BC mass; data were calculated from absorption coeffi-

cient (σap) measurements according to BCe = σap/bap with bap=8 m
2

g
−1

), standard deviations
are: sd (∆CO2)=0.4 ppm, rel. sd (BCe)=0.25.

UTC ∆CO2 BCe BCe/CO2 EIBC EIBC
dec. time ppm µg sm

−3
µg (sm

3
ppm)

−1
mg BCe (kgCO2)

−1
mg BCe (kgfuel)

−1

17.55667 112.7 11.73 0.083 49 153
17.41472 68.5 8.65 0.101 60 185
17.55528 56.2 5.98 0.085 50 156
17.55556 55.1 5.69 0.083 49 151
16.93806 35.8 3.61 0.081 48 148
17.41639 24.5 1.75 0.057 34 105
17.5525 21.6 3.45 0.128 75 234
17.41694 20.7 3.51 0.136 80 249
17.55361 20.1 2.54 0.101 60 186
16.72083 15.1 1.79 0.095 56 174

Plume average 0.095±0.023 56±14 174±43
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Table 8. Aerosol size properties for marine diesel engine exhaust particles in ship plumes;
particle diameters refer to dry conditions.

UTC ∆CO N
+)

TOTAL
N

#)

NUC
CMD GSD N

#)

ACC
CMD GSD

ppm scm
−3

scm
−3

µm scm
−3

µm

Cloud residues 0.0 0.160 1.5
16.75083 #2 2.632 21 300 8000 0.014 1.45 15 000 0.105 1.53
17.07389 #7 2.514 23 800 10 500 0.014 1.45 13 500 0.090 1.52

17.26528 #10 1.825 11 500 2800 0.014 1.45 9000 0.100 1.5

+)
value measured by N4 CPC

#)
values obtained from log-normal fitting
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Fig. 1. Instrumental set-up during the test rig studies.
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Fig. 2. Falcon flight tracks for the ship corridor survey flight on 23 July 2004 and the single
plume study on 30 July 2004. Bars indicate aged ship plumes in the English Channel, young
ship plume encounters were met along the indicated sailing route of the MAERSK vessel.
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Fig. 3. HERCULES test bed measurements of aerosol size distributions by a Differential Mo-
bility Analyser. Size distributions refer to the indicated load conditions of a serial MAN 7L58/64
engine operating on heavy fuel oil.

15143

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/15105/2007/acpd-7-15105-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/15105/2007/acpd-7-15105-2007-discussion.html
http://www.egu.eu


ACPD

7, 15105–15154, 2007

Emission and

transformation of

particles from

shipping

A. Petzold et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

0.50

0.75

1.00

371

372

373

14.220 14.230 14.240 14.250
0.0

0.5

1.0

1.5

AITKEN mode

 

 

N
 ,

  
1
0

 3
  s

c
m

 -
3

UTC ,  dec time

 

N
 N

V
 /

 N
 T

O
T

A
L

-1.0

0.0

1.0

2.0

 

 

B
C

 e
 ,

  
µg

 s
m

 -
3

 

AITKEN mode

 

C
O

2
 ,

  
p
p
m
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shaded area indicates unphysical negative BCe values < limit of detection), non-volatile fraction
of the Aitken mode aerosol, and number concentration of the Aitken mode during three distinct
plume encounters.
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Fig. 5. Tracks of the source ship and the research aircraft Falcon during the Single Plume
Study; symbol colours represent equivalent Black Carbon mass concentrations in the plume.
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Fig. 12. Particle size distributions at various plume ages shown together with a typical size
distribution in the clean marine background air.

15152

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/15105/2007/acpd-7-15105-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/15105/2007/acpd-7-15105-2007-discussion.html
http://www.egu.eu


ACPD

7, 15105–15154, 2007

Emission and

transformation of

particles from

shipping

A. Petzold et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

EM: 25 x10
 9
 sm

 -3
 ppm

 -1

0.75

1.00

1.25

1.50

1.75
 τ < 10

 3
 s

 τ > 10
 3
 s

 corridor

N
 D

 >
 4

 n
m
 /

 N
 D

 >
 1

3
 n

m
 

 

 

0.0

2.0

4.0

6.0

8.0

10.0

NUC

AITK

 

 

∆N
 D

 >
 1

3
 n

m
  /

 ∆
C

O
 2

1
0

 9
 s

m
 -

3
 p

p
m

 -
1

10
2

10
3

10
4

0.0

2.0

4.0

6.0

8.0

10.0

EM: 8.7x10
 9
 sm

 -3
 ppm

 -1

 ∆
N

 N
V

  
/ 

∆C
O

 2

1
0

 9
 s

m
 -

3
 p

p
m

 -
1

NV

t ,  s

Fig. 13. Evolution of fraction of nucleation mode aerosol (ND>4 nm/ND>13 nm; top panel), of
Aitken mode aerosol (∆ND>13 nm/∆CO2; mid panel), and of non-volatile Aitken mode aerosol
(∆Nnonvol/∆CO2; bottom panel) during plume expansion and dispersion: symbols indicate the
plume age regime, respective values for emission conditions (EM) are added to each panel.
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Fig. 14. Ship plume particle signature in terms of excess non-volatile particles in the plume
per marine BL particles as a function of plume age t; the maximum detectable plume age of

7×10
4

s corresponds to the plume age for which the plume signal becomes indistinguishable
from a varying MBL aerosol.
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