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Abstract

We measured levels of ambient volatile organic compounds (VOCs) at seven sites in
the Pearl River Delta (PRD) region of China during the Air Quality Monitoring Cam-
paign spanning 4 October to 3 November 2004. Two of the sites, Guangzhou (GZ)
and Xinken (XK), were intensive sites at which we collected multiple daily canister5

samples. The observations reported here provide a look at the VOC distribution, spe-
ciation, and photochemical implications in the PRD region. Alkanes constituted the
largest percentage (>40%) in mixing ratios of the quantified VOCs at six sites; the ex-
ception was one major industrial site that was dominated by aromatics (about 52%).
Highly elevated VOC levels occurred at GZ during two pollution episodes; however,10

the chemical composition of the VOCs did not exhibit noticeable changes during these
episodes, except that the fraction of aromatics was about 10% higher. We calculated
the OH loss rate to estimate the chemical reactivity of all VOCs. Of the anthropogenic
VOCs, alkenes played a predominant role in VOC reactivity at GZ, whereas the contri-
butions of reactive aromatics were more important at XK. Our preliminary analysis of15

the VOC correlations suggests that the ambient VOCs at GZ came directly from local
sources (i.e., automobiles); those at XK were influenced by both local emissions and
transportation of air mass from upwind areas.

1 Introduction

The Pearl River Delta (PRD) is located in Southern China, extends from the Hong20

Kong metropolitan area to the northwest, and encompasses 9 cities in the Guangdong
Province (Fig. 1). The PRD region has an area of about 41 698 km

2
and a population

of about 45.5 million. It has been the most economically dynamic region of mainland
China over the last two decades, with a per capita GDP of U.S.$ 6583 in 2004. The
average annual rate of GDP growth in the PRD from 2000 to 2004 was 13.6%, which is25

well above the national GDP growth rate (8.6%) (National Bureau of Statistics. 2004).
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Guangzhou (GZ), the capital of Guangdong Province, had the highest GDP value (US$
496 billion) in the PRD region in 2004. Dongguan (DG) is the city with the fastest growth
rate GDP (18.7% per year from 2002–2006); it is a major manufacturing base for a wide
range of products, including electronics, communication, paper, garments and textiles,
food, shoes, and plastic.5

Associated with the rapid economic development are the high levels of PM2.5 and
ozone that have been observed in the PRD region over the past decade (Wang et
al., 2003). Concentrations of ozone at GZ rose dramatically during the 1990s. For
example, daily average O3 concentrations exceeded the second level criterion (80 ppbv,
hourly) of the Chinese National Ambient Air Quality Standard (NAAQS) on at least 510

days in October 1995 (Zhang et al., 1998). Between October and December 2001,
the highest hourly O3 average reached 142 ppbv at Tai O, a site on the north–south
centerline of the Pearl Estuary (Wang et al., 2003). The daily concentrations of PM2.5

observed in downtown of GZ reached 111µg/m
3

in 2002, which is nearly twice the
level recommended by the US EPA (65µg/m

3
, daily) (Li et al., 2005). Such high levels15

of air pollutants present a serious public health issue.
NOx and volatile organic compounds (VOCs) are important precursors of ground-

level ozone. The VOC impact on ozone is closely related to the magnitude and the
species emitted from various sources. For instance, liquefied petroleum gas (LPG)
leakage played an important role in causing excessive ozone in Mexico City and in20

Santiago, Chile (Blake and Rowland 1995; Chen et al., 2001). The continuous high
levels of atmospheric O3 in summer in Houston, Texas were caused mainly by reactive
VOCs emitted by petrochemical industries (Ryerson et al., 2003; Jobson et al., 2004),
and vehicular emissions have contributed more than 50% of ambient VOCs in Beijing
city (Liu et al., 2005). Other studies have indicated the importance of biogenic sources25

of VOCs (Chameides et al., 1988; Shao et al., 2000; Warneke et al., 2004; de Gouw et
al., 2005).

In the PRD, VOC speciation and sources have been quite intensively studied. The
most representative work, which was conducted in 2000 (Chan et al., 2006), provided
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the first snapshot of VOC concentrations in industrial, industrial-urban, and industrial-
suburban areas and discussed the importance of industrial and vehicular emissions in
shaping the spatial variation of VOCs. The measurements at Tai O (Guo et al., 2006;
Wang et al., 2005), a remote site between the PRD region and Hong Kong, illustrated
how the characteristics of air masses varied with their point of origin, especially in terms5

of the differences in regional and local contributions to ambient VOCs at the site.
Due to the complexity of VOC variation and the rapid changes in VOC sources in

the PRD region, more simultaneous measurements of ambient VOCs with CO, NOx,
and O3 are needed. An understanding of local VOC source profiles will be helpful
in interpreting the sources of VOCs in ambient measurements. The PRD air quality10

monitoring campaign of 2004 represents the first regional study in China designed to
gain a better understanding of how ground-level ozone is formed and to determine the
sources of fine particles. The measurement of PRD VOCs was a joint effort by the
College of Environmental Sciences (CES) of Peking University (PKU); the Research
Center for Environmental Changes of Academia Sinica (RCEC), Taiwan; and the De-15

partment of Chemistry of National Central University, Taiwan. Herein we present the
data on VOC distribution and speciation obtained at seven PRD sites and we discuss
their potential photochemical impacts. We explored the contributions of various VOC
sources by analyzing correlations between VOC species as well as the co-variations
between VOC species and other gaseous pollutants.20

2 Field measurements

2.1 Sampling sites

We sampled VOCs at seven sites in the PRD during October and November, 2004
(Fig. 1). Two of them – Guangzhou (GZ) and Xinken (XK) – were intensive sites, at
which three daily whole air sample (WAS) canisters were collected from 4 October to 325

November 2004. We also measured air pollution tracers, including NO, NOy, O3, CO,
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and SO2, at the intensive sites. The GZ and XK sites were thought to be representative
of a major metropolitan emission site and a receptor site, respectively. We collected
VOC samples at the other five sites at the end of October. These five sites were
Conghua (CH), Huizhou (HZ), Foshan (FS), Zhongshan (ZS), and Dongguan (DG).

Guangzhou is situated at the coast of the South China Sea (21∼23
◦
N) and experi-5

ences a typical sub-tropical climate. The GZ site is located in the downtown are of the
city. We collected canister samples at the roof of a 17-floor building (about 55 m above
ground). Xinken lies in a less populated coastal area; it is a rural site located ∼50 km
to the southeast of the city center. Ambient air was drawn at the third floor platform of
a building (about 10 m above ground). CH is a rural site and HZ is a suburban one,10

and both are located upwind of the PRD region. We chose DG to examine industrial
emissions. FS and ZS, like GZ, are urban sites.

During the PRD air quality monitoring campaign of 2004, abundant sunshine, mild
temperature and breeze, and no precipitation characterized the weather. Under the
influence of a high-pressure system and stagnant conditions, the boundary layer height15

was generally within 1 km. At GZ, a northerly wind prevailed (mainly between NNW and
NNE) and weakened during the dayime. At XK, a northeasterly wind was dominant
(often between N and NE) in the morning, and a sea breeze (a SE or ESE air stream)
was observed in late afternoon.

2.2 Sampling methods20

We collected WAS in fused silica-lined stainless steel canisters (2 L, 3.2 L, or 6 L). An
ozone scrubber (Na2SO3 trap) was installed in the sample line to remove ozone, and
a passive capillary (calibrated in advance) was connected to the canister to keep the
sampling air flow rate constant.

Each day from 4 October to 3 November 2004, routine samples were collected for25

60 min at 05:30, 07:30, and 14:00 in GZ and at 07:30 and 14:00 in XK. The samples
to examine diurnal variation were taken every 2 h for 30 min from 06:00 to 22:00 at GZ
and XK on 9 October, 21 October, and 3 November, 2004. The samples at CH, HZ,
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FS, and ZS were drawn for 60 min at 08:00 and 17:00 on 20–22 October of 2004. Air
samples were collected for 60 min at 08:30 and 16:30 at DG on 3–4 November of 2004.

2.3 Quantification of VOC species

The analysis of the canister samples was conducted in a laboratory at PKU. Up to
134 species of VOCs were detectable using a cryogenic pre-concentrator (Entech In-5

strument 7100A, SimiValley, CA) and a gas chromatograph (Hewlett Packard, 6890)
equipped with two columns and two detectors (see detailed description in Liu et al.,
2005). The C2–C4 alkanes and alkenes were separated on a non-polar capillary col-
umn (HP-1, 50 m×0.32 mmID×1.05µm, J&W Scientific) and quantified with a flame
ionization detector (FID). The C5–C12 hydrocarbons were separated on a semi-polar10

column (DB-624, 60 m×0.32 mmID×1.8µm, J&W Scientific) and quantified uisng a
quadrupole mass spectrometer (MS, Hewlett Packard 5973), which was operated in
Selected Ion Mode (SIM) with a maximum of six ions being monitored for each time
window.

First, ambient air samples and internal standards were pumped into the pre-15

concentrator, which has 3-stage cryotraps (Module 1∼3). VOC compounds were ini-
tially trapped cryogenically on glass beads of Module 1 at −180

◦
C by liquid nitrogen;

then they were recovered by desorbing at 20
◦
C to leave most of the liquid H2O behind

in the first trap. The second cryotrap, which contains Tenax, was cooled to −30
◦
C,

which allows trapping of VOCs while letting CO2 pass through. From Module 2, VOCs20

were backflushed at 180
◦
C then focused again at −180

◦
C in the Module 3 trap. The

Module 3 trap then was rapidly heated to 60∼70
◦
C in 30 s. Helium was used as the

purge gas for the cryogenic pre-concentrator and the carrier gas for the GC. Column
HP-1 was initially held at −50

◦
C for 3 min, then was raised to 164

◦
C at a rate of 6

◦
C/min;

then to 200
◦
C at a rate of 14

◦
C/min, and finally was held for 0.5 min. Column DB-62425

was programmed to move from 30
◦
C to 180

◦
C at a rate of 6

◦
C/min and then was held

for 5 min at 180
◦
C.

Table 1 summarizes the full list of the 134 VOC species that were identified and
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quantified using a certificated standard of VOC mixture in ambient concentration (pro-
vided by the Environmental Technology Center, Canada). We performed calibrations
at five concentrations from 0.1 to 25 ppbv for each compound before sample analysis.
Correlation coefficients, which ranged from 0.996 to 1.000, showed that integral areas
of peaks were proportional to concentrations of target compounds. The definition of5

the method detection limit (MDL) for each compound is given in EPA TO-15, and the
MDL for all measured VOC species ranged from 0.009 to 0.057 ppbv. The response of
the instrument to VOCs was calibrated after every eight samples using standard runs
of a calibration gas with ambient concentrations.

2.4 Inte-comparison experiment10

To ensure the quality of the data, we conducted measurement comparison exercises for
both standard mixtures and ambient samples. Two planned experiments were involved:
1) analysis at PKU of a known standard gas (provided by D. R. Blake’s group from
the Department of Chemistry, University of California at Irvine (UCI)); and 2) a blind
intercomparison of WAS results measured separately by PKU and RCEC.15

Table 2 shows the measurements made at PKU for 55 NMHC species in standard
gas obtained from UCI; each point represents one species, and error bars were com-
puted from over seven replicate measurements. The correlation between measured
concentrations analyzed at the PKU lab and the reference values were good (R

2
=0.96),

and the averaged slope was 1.09±0.04. The measured concentrations of alkanes20

were very close to their reference values, and the relative standard deviation ranged
from 0.9% to 9.6%. The relative errors of n-butane, i-butane, n-pentane, 2-methyl pen-
tane, and 2-mehtyl hexane were below 5%; for >C7 alkanes the relative errors were
usually between 5.7% and 9.9%. The deviations of 1-butene/i-butene, trans-2-butene,
1-pentene, and 2-methyl-1-butene were 4.5%, 9.1%, 5.9%, and 9.5%, respectively. For25

isoprene and α-pinene, the deviations from the reference values were relatively larger,
reaching 10.7% and 13.4%, respectively. The averaged deviations of aromatics were
about 10%. Several scattered points, such as those of cyclopentene, that deviated
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from the 1:1 dashed line in Fig. 2, indicate the difference of the standards used at PKU
and RCEC lab to calibrate the NMHC species.

Both PKU and RCEC measured 50 VOC species from the same 16 ambient canisters
samples. Figure 3 shows the results for some of the NMHC compounds. For most of
the alkanes, the slopes of the linear regression for PKU versus RCEC measurements5

fell between 0.87 and 1.11, with R
2

values over 0.9. For reactive alkene and aromatics
compounds, including butenes, cis-2-pentene, 3-methyl-1-butene, benzene, toluene,
xylenes, and trimethylbenzene, the measured mixing ratios calculated by the two labs
also agreed well within the combined uncertainties for each system. However, the
average α-pinene concentration measured at PKU was about 30% lower than that10

from RCEC lab.

3 Results and discussion

3.1 Mixing ratios of VOC species at Guangzhou and Xinken

Figure 4 shows the averages of the total quantified PRD VOC mixing ratios and the
relative contributions from the major VOC groups. The highest total VOC mixing ratio15

was measured at DG (an industrial area), followed by the major urban site GZ. The
levels at XK, FS, and ZS were quite similar to each other. All three sites lie downwind of
industrial areas and/or major urban centers. The two lowest VOC values were recorded
in CH and HZ, which lie upwind of the major cities.

Figure 4 also shows that alkanes constituted the largest group of VOCs at six (CH,20

HZ, GZ, FS, ZS, and XK) of the seven sites, accounting for over 40% of the total. In
contrast, exceptionally high values of aromatics (about 52% of the total VOCs) charac-
terized DG, the industrial site. The DG aromatics likely resulted from emissions from
the plants associated with textiles, furniture manufacturing, shoemaking, printing, and
plastics. XK lies downwind of DG; consequently, it had the second highest faction of25

aromatics.
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Table 2 summarizes the average concentrations and variations of 54 VOCs at GZ
and XK, and Table 3 lists the 10 most abundant species observed at these two sites
compared with results from a previous studies in Hong Kong and other Chinese cities
(Barletta et al. 2005; Guo et al. 2006). In general, the PRD VOC mixing ratios fell within
the ranges reported for other Chinese cities. A pronounced similarity existed between5

XK site and Hong Kong’s Tai O site, a coastal site at the southern tip of the PRD region.
Large fractions aromatic compounds, especially toluene, were observed at both sites.
And XK and Tai O had similar levels of light alkanes as well. Both sites lie downwind
from industrial sources of the PRD region, which might explain the similarities.

In contrast, GZ had the highest concentration of propane, likely due to the10

widespread domestic and vehicular use of LPG. High levels of acetylene, toluene, ethy-
lene, and ethane at this site probably originated from several anthropogenic sources
such as vehicle exhaust, petrochemical industries, and industrial uses of solvents.
Vehicular emissions were clearly identifiable from the significant levels of isobutane,
isopentane, and benzene. Finally, CO levels at GZ were about 40% and 65% higher15

than those observed at XK and Tai O, respectively.

3.2 Time series of VOCs at Guangzhou and Xinken

Figure 5 displays the time series of NO, CO, O3, and VOCs together with meteorologi-
cal parameters observed at the GZ site. It clearly shows two major pollution episodes
characterized by significantly elevated NO and CO values. The first episode occurred20

during 11–13 October and the second one between 28 October and 1 November. The
highest hourly averages of VOCs were recorded during the morning hours of episode
one (i.e., 05:30 and 07:30 of 11 and 13 October), when wind speed was relatively
low (∼1.5 m/s) and wind direction had mostly switched from northeast or northwest to
south or southeast. Those VOC values are about 5∼7 times higher than the typical25

values. We also found some elevated VOC levels during the second pollution episode.
In contrast, other observed VOC enhancements (e.g., 17 and 24 October) were not as-
sociated with highly elevated NO and CO. This suggests that the observed high levels
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of VOCs may be attributed to different sources or processes. In the case of O3, there
were 14 days with hourly averages exceeding 80 ppbv, which is the second grade of
China’s NAAQS. However, a clear relationship between these high ozone days and
either VOC levels or NO and CO levels was not evident. This may reflect the fact that
ozone level is controlled by both advection and local photochemistry.5

The observations for XK are displayed as a time series in Fig. 6. The NO levels were
significantly lower at XK than at GZ. The XK CO levels, on average, also were lower.
In addition, the correlations between NO and CO enhancements at XK were much
weaker than those for GZ. Large VOC enhancement episodes, with levels more than a
factor of two greater than the typical values, occurred seven times between 7 October10

and 18 October. Total VOC level peaked at over 277 ppbv at XK on the morning of 12
October, but few corresponding changes occurred in NO and CO (Fig. 6a). The O3

levels observed in XK exceeded 80 ppbv on 23 days within the study period , and were
generally higher than those seen at GZ.

Figure 7 compares the episode days versus background (or normal) conditions at GZ15

and XK. The average of the relative contributions from alkanes, alkenes, and aromatics
remained quite constant or fluctuated within a narrow range at GZ and XK (Fig. 7a).
This suggests that the high VOC levels during the episode days are likely due to mete-
orological conditions favorable for accumulation of pollutants. Figure 7b illustrates that
during the pollution episodes at GZ, total VOC levels were about 2–4 times higher than20

those from non-episode days.

3.3 Diurnal variation at Guangzhou and Xinken

3.3.1 Guangzhou

Figure 8 illustrates the diurnal patterns of primary and secondary pollutants, using data
from 21 October at the GZ site as an example. The diurnal trend of total VOCs followed25

a pattern similar to that of the primary pollutants, such as CO and NO, but it differed
from that of O3. The NO levels were generally over 50% of the NOy concentrations,
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implying that the air mass was influenced by fresh emissions. Furthermore, the diurnal
variation of the NO, NOy, CO, and total VOCs generally followed the traffic pattern of
Guangzhou City. The morning and late afternoon peaks were correlated with rush hour
traffic. The evening peak (∼21:00) coincided with heavy traffic because of traditional
nighttime activities in the city. The boundary layer height is likely to be lower at this5

time than in the morning and afternoon, which would also contribute to the higher level
of pollutants.

3.3.2 Xinken

The diurnal patterns of VOC gases measured at XK were quite different from those at
GZ (Fig. 9). CO and VOC tracked each other on 9 October, whereas no consistent diur-10

nal variation for either CO or VOCs occurred on 21 October. Unlike at GZ, ambient NO
remained at much lower levels and constituted only a small fraction of NOy, suggesting
that the air mass was more chemically aged at XK. The ambient NO and NOy spikes
occurred around 10:00–11:00 a.m. on both 9 October and 21 October, causing distinct
decreases in O3 due to titration. As no corresponding enhancement in CO and VOCs15

occurred and SO2 displayed a similar trend as NOy, these plumes probably originated
from power plant emissions from upwind areas. The observations at XK suggest that
advection transport likely has a larger impact on local air quality than do the local traffic
sources.

Ozone had higher peak concentrations and much rapid variations at XK than those20

recorded in GZ. The higher ozone levels at XK were accompanied by lower levels of
VOCs and NO, indicating that the ozone did not result solely from local photochemistry.
Because XK lies downwind of an urban region, the mixing ratios of VOCs in the early
morning were higher than those from the same time period at GZ because of the
accumulation of VOCs at night as well as transport from upstream urban areas. This25

phenomenon appears to be more apparent during periods of northerly wind. The wind
vectors at XK display a diurnal pattern; frequently, the northerly wind shifted to the
south during the nighttime hours or in the early morning, and the land–sea breeze
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circulation had some effects on the convection and recirculation of air pollutants in the
region.

3.4 VOC reactivity at Guangzhou and Xinken

OH loss rate (LOH) is frequently used as a gauge to measure the initial peroxy radical
(RO2) formation rate, which might be the rate-limiting step in ozone formation in pol-5

luted air (Carter, 1994). While this approach does not account for the full atmospheric
chemistry of the compounds considered, it does provide a simple approach to evaluate
the relative contribution of individual VOCs to daytime photochemistry (Goldan et al.,

2004). LOH is calculated as the product of the OH reaction rate coefficient (k
OH
i

) and
the ambient mixing ratio ([VOC]i ) of a given compound:10

LOH = [VOC]i × kOH
i

We used Atkinson and Arey’s (2003) published k
OH
i

.
Table 4 lists the OH loss frequencies of the main VOC groups at GZ and XK. Of the

anthropogenic VOCs, reactive olefins dominated the reactivity at GZ. The alkenes at
GZ represented 28.9% of the overall mixing ratios of the measured VOCs and ranged15

from 24.7 to 305.5 ppbv, and they accounted for over 65% of the overall LOHs. In
contrast, the alkanes represented 47.1% of the overall mixing ratios but only a small
fraction (13%) of the overall LOHs. The contribution of aromatics to VOC reactivity was
∼20%, which was comparable with its percentage of the total mixing ratios.

At XK, the overall LOHs were lower than those at GZ, and the relative contributions20

from aromatics and alkenes to VOCs reactivity were similar. At lower mixing ratios of
total VOCs, the LOHs of alkenes exceeded those of aromatics, and with an increase of
the total mixing ratios, the contributions of aromatics were enhanced. For more polluted
air, the roles of aromatics were more important in photochemical processes.

Because alkenes and aromatics played a significant role in the reactivity of VOCs25

at GZ and XK, in the subsequent discussion we focus on the contributions of different
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species of alkenes and aromatics at the two sites. At GZ, all alkenes were classified
into groups by their carbon number (Fig. 10a). The most important contributors to the
LOHs was C4 alkenes (butenes), closely followed by propene and pentenes. Isoprene
was not the dominant species as expected; this can be explained by the low emissions
from plants in the urban center. In the case of clean air, the contribution of isoprene5

and monoterpenes was slightly increased. Hexenes and heptenes played a smaller
role in OH loss due to their low concentrations. Figure 10b shows the percentages of
aromatic groups at XK. Together with xylenes, toluene played a predominant role in the
reactivity of VOCs. Although trimethyl-benzenes had larger rate coefficients, they made
a minor contribution because of their low concentrations. The contribution of benzene,10

which was the most inert compound among the observed aromatics, decreased from
the clean air to the polluted air.

3.5 Identification of VOC sources at Guangzhou and Xinken

Determining the PRD VOC sources was a rather complex task because it involved
numerous sources in different cities. To assess the VOC sources for four major groups15

– alkanes, alkene, isoprene, and aromatics – we examined correlations among the
measured ambient VOC species and compared them with the known correlations from
primary emission sources.

Acetylene usually is associated with sources of incomplete combustion of fossil fuel,
including combustion of gasoline, diesel, and LPG in vehicles and domestic use of LPG20

for cooking (Blake and Rowland, 1995; Goldan et al., 2000). We used methyl tert-butyl
ether (MTBE), a gasoline additive used to enhance its octane rating and combustion
efficiency, as an indicator for exhaust of gasoline-powered vehicles (Blake and Row-
land, 1995; Chang et al., 2003). Figure 11 shows strong correlations of acetylene and
ethylene with MTBE at GZ. Thus, it is reasonable to conclude that gasoline-powered25

vehicles are mostly likely the major sources of acetylene and ethylene at GZ.
The ratios of ambient concentrations of two hydrocarbons with similar reactivity re-

main constant at the value equal to their relative emission rates from sources (Goldan
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et al., 2000; Jobson et al., 2004). As mentioned above, the C4–C5 alkenes were the
most reactive groups at GZ. Correlations between selected butene and pentene par-
ings with similar kOH values are shown in Fig. 12, compared to the results from Pearl
River Tunnel samples (Fu et al., 2005). The trans-2-butene and cis-2-butene in the
atmosphere at GZ displayed excellent correlation with the tunnel samples; the slope5

of the regression line of ambient data (1.067) is very close to that of the tunnel sam-
ples (1.074). The trans/cis-2-pentenes obtained at GZ and XK correlated to each other
very well, and again the regression line fit nicely with the The trans/cis-2-pentenes data
points measured from the tunnel experiment (Fig. 12b). The trans/cis-2-pentenes levels
obtained at XK were more scattered than that from GZ site at the lower concentrations10

of these two species, which were likely impacted by other sources. These findings
suggest that reactive 2-butenes and 2-pentenes at GZ and XK resulted primarily from
vehicle exhaust emissions.

The widespread use of LPG can be another significant source of VOCs. Propane
is one of the important components of LPG fuel. For LPG-powered vehicles, major15

emissions include light alkanes (i.e., propane, isobutene, and n-butane) as well as
some alkenes (e.g., butenes). The correlations of n-butane and isobutane with propane
were significant (Fig. 13) at GZ with slopes of 0.48 (correlation coefficient r=0.97) and
0.28 (correlation coefficient r=0.97), respectively. The values of these two slopes agree
well with those measured in Mexico City (0.458 and 0.210), where VOCs originate20

mainly from LPG leakage (Blake and Rowland, 1995). These correlations suggest that
gasoline-powered vehicles and LPG use are two important sources of light alkanes.

Acetylene and propane have similar photochemical lifetimes but come from different
sources: gasoline-powered vehicles and LPG use, respectively. The ratio of these two
compounds at a given site can be used to assess the relative importance of gasoline25

and LPG sources (Goldan et al., 2000; Zhang et al., 2004). The ratios of acetylene and
propane at different sites provide an overview on a regional scale of the relative impor-
tance of these two sources to ambient alkane species levels. Figure 14a shows the
plot of acetylene versus propane at six sites (GZ, XK, CH, HZ, FS, and ZS). The ratios
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measured at XK, FS, and ZS agreed well with those reported by Seila et al. (1989) for
39 urban locations in the U.S. (dashed line in Fig. 14). XK, FS, and ZS had a ratio of
acetylene to propane that characterizes an area mostly influenced by vehicle exhaust
emissions. The regression line of the GZ data diverged slightly from the dashed line,
and the slope of the acetylene versus propane (0.556) regression at GZ was smaller5

than that measured in the mobile source samples. These findings imply that LPG leak-
age contributed more to ambient VOCs at GZ than at the other sites, probably due to
the higher percentage of LPG used for residential energy and for public transportation
in Guangzhou City.

The major source of benzene is vehicular emissions, whereas toluene is associated10

with industrial emissions, solvent and fuel storage, and vehicle exhaust (Bravo et al.,
2002; Wang et al., 2002; Na et al., 2003). Toluene was the most abundant species of
VOCs observed in industrial areas of the PRD; it is emitted directly from shoemaking,
printing, leather manufacturing, furniture making, coating and chemical bonding agent
production, and other chemicals plants (He et al., 2002; Chan et al., 2006). In this study15

we used the toluene/benzene ratio as a tool to evaluate the relative importance of ve-
hicular and industrial emissions on a regional basis. Figure 14b shows the correlations
between toluene and benzene at GZ, XK, and DG compared with those measured from
tunnel samples in previous studies (Fu, 2005; Fu et al., 2005). The slopes of toluene
versus benzene at XK and DG were similar; in both locales shoemaking is a major in-20

dustry housed in widespread factories. The higher toluene levels at XK were impacted
by the additional input of industrial emissions from DG that were advected to XK from
DG. The GZ data fell between the linear regression lines of the tunnel and DG data,
suggesting that ambient toluene at GZ was affected by both automotive and industrial
sources.25

Isoprene is one of the most reactive hydrocarbon species and is used as a tracer for
biogenic emissions. Vehicular exhaust also is a source of isoprene in cities (Borbon et
al., 2001). We found a good correlation (r=0.91) between isoprene and 1,3-butadiene
in the Pearl River tunnel (Fig. 15). However, the mixing ratios of ambient isoprene did
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not correlate well with 1,3-butadiene measurement from the GZ site (r=0.51). There-
fore, we attribute ambient isoprene at GZ to biogenic sources.

4 Conclusions

Mixing ratios and chemical speciation of VOCs were measured intensively at GZ and
XK as well as at five more sites in the 2004 Air Quality Monitoring Campaign in the PRD.5

We quantified up to 134 VOCs species, and the total VOC levels varied from 10 ppbv
to over 200 ppbv. GZ had a very high level of propane, whereas Xinken, the suburban
site, had high mixing ratios of aromatics. The chemical compositions differed greatly
among the seven sites, reflecting the heterogeneous distribution of VOC sources in the
region.10

We used the OH loss frequency to assess the chemical reactivity of VOC species.
Reactive alkenes and aromatics influenced the VOC reactivity at GZ and XK, respec-
tively, whereas alkanes, which constituted the largest portion (>45%) of overall VOC
mixing ratios, comprised merely <15% of the overall OH loss rate. At GZ, butenes
showed the greatest relative contribution, closely followed by propene and pentanes;15

the heavier alkenes with low mixing ratios accounted for a small faction of total VOC
reactivity. At XK, toluene and C8 reactive aromatics made the largest contribution to
the OH loss rate.

Using correlations among VOC compounds, we evaluated the relative importance
of local emissions of VOCs at different sites. We attributed the ambient acetylene,20

ethylene, and other light alkenes at GZ to the local emissions from gasoline-powered
vehicles. The high level of propane originated mostly from vehicles that consumed LPG
fuel. Aromatic species at GZ were influenced by on-road vehicle emissions, industrial
solvent use, and fuel evaporation. Due to the limited data about the compositions of
LPG at GZ, we could not quantify the contribution of LPG exhaust and its leakage. The25

toluene/benzene ratio showed that VOCs were affected by emissions from solvent us-
age, fuel storage, and industrial emission. Before we draw a clear conclusion, however,

14722

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/14707/2007/acpd-7-14707-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/14707/2007/acpd-7-14707-2007-discussion.html
http://www.egu.eu


ACPD

7, 14707–14745, 2007

VOCs measurements

in Pearl River Delta

Y. Liu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

source profiles of paint, gasoline vapor, and industrial emissions should be investigated
carefully.

In comparison with the GZ site, the VOC sources that influence XK are more com-
plex: The local emissions (from ships, biomass burning, and power plants) are coupled
with transport of VOCs from cities (e.g., GuangZhou, DongGuan, and Hong Kong) de-5

pending on prevailing wind. For example, while the reactive butenes and pentenes at
XK were primarily from local emissions, the aromatics at XK did not originate solely
from local emission and likely were impacted by transport from the upwind industrial
area of DG. Thus, controlling ozone levels at XK should not be confined soley to man-
agement of local emissions. Detailed investigation at the site (e.g., analysis of the VOC10

variation with wind direction) will be necessary for more reliable source identification of
ambient VOCs.
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Table 1. VOC species quantified by the GC-MS/FID system.

Alkanes Alkenes Aromatics Halides

Ethane Ethylene Benzene Chloromethane
Porpane Propene Toluene Bromomethane
Isobutnae 1-Butene/Isobutene Ethylbenzene Chloroethane
n-Butane 1,3-Butadiene m/p-Xylene Bromoethane
2,2-Dimethylpropane trans-2-Butene o-Xylene 1,1-Dichloromethane
2-Methylbutane cis-2-Butene Styrene 1,1-Dichloroethane
Pentane 3-Methyl-1-butene Isopropylbenzene Chloroform
2,2-Dimethylbutane 1-Pentene n-Propylbenzene 1,1,1-Trichloroethane
2,3-Dimethylbutane 2-Methyl-1-butene 3-Ethyltoluene Carbontetrachloroide
2-Methylpentane trans-2-Pentene 4-Ethyltoluene 1,2-Dichloropropane
3-Methylpentane Isoprene 1,3,5-Trimethylbenzene Dibromomethane
n-Hexane cis-2-Pentene 2-Ethyltoluene Bromodichloromethane
2,2-Dimethylpentane 2-Methyl-2-butene tert-Butylbenzene 1,1,2-Trichloroethane
2,4-Dimethylpentane 4-Methyl-1-pentene 1,2,4-Trimethylbenzene Dibromochloromethane
Methylcyclopentane 3-Methyl-1-pentene iso-Butylbenzene 1,2-Dibromoethane
2-Methylhexane Cyclopentene sec-Butylbenzene 1,4-Dicrorobutane
Cyclohexane trans-4-Methyl-2-pentene p-Cymene 1,1,2,2-Tetrachloroethane
2,3-Dimethylpentane cis-4-Methyl-2-pentene 1,2,3-Trimethylbenzene 1,1-dichloroethylene
2,2-Dimethylhexane 2-Methyl-1-pentene 1,3-Diethylbenzene cis-1,2-dichloro-ethene
n-Heptane 2-Ethyl-1-butene 1,4-Diethylbenzene Trichloroethylene
2,5-Dimethylhexane trans-2-Hexene n-Butylbenzene tans-1,3-Dichloropropene
Methylcyclohexane trans-3-Methyl-2-pentene 1,2-Diethylbenzene Tetrachloroethylene
2,3,4-Trimethylpentane cis-2-Hexene Indan
2-Methylheptane cis-3-Methyl-2-pentene
4-Methylheptane 1-Methylcyclopentene Alkynes Chlorinated aromatics

3-Methylheptane Cyclohexene Acetylene Chlorobenzene
c-1,3-Dimethylcyclohexane 1-Heptene Propyne 1,3-Dichlorobenzene
t-1,4-Dimethylcyclohexane trans-2-Heptene 1-Butyne 1,4-Dichlorobenzene
Octane cis-2-Heptene Benzylchloride
t-1,2-Dimethylcyclohexane 1-Methylcyclohexene Freons 1,2-Dichlorobenzene
c-1,4/1,3-Dimethylcyclohexane 1-Octene Freon12
c-1,2-Dimethylcyclohexane trans-2-Octene Freon22 Others
n-Nonane 1-Nonene Freon114 Acetonitrile
3,6-Dimethyloctane a-Pinene Freon11 MTBE
n-Decane Camphene Freon113
Dodecane b-Pinene

Limonene
1-Undecene
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Table 2. The method detection limits (MDL; ppbv) and average mixing ratios of 54 NMVOCs
measured at Guangzhou (GZ) and Xinken (XK).

GZ GZ XK XK

Species MDL (ppbv) range average ± s.d. range average ± s.d.
Ethane 0.014 1.35–25.80 5.58±3.34 1.54–10.15 3.07±1.26
propane 0.010 3.16–57.24 10.35±8.53 0.99–15.14 3.51±2.90
Isobutane 0.016 0.70–17.09 2.93±2.57 0.21–6.26 1.26±1.23
n-Butane 0.035 1.19–28.30 5.07±4.42 0.38–13.51 2.71±2.79
2-Methylbutane 0.032 0.55–12.15 2.62±2.24 0.23–7.91 1.45±1.42
Pentane 0.011 0.21–4.67 1.19±1.07 0.09–5.98 1.10±1.25
2,2-Dimethylbutane 0.024 0.01–0.38 0.09±0.07 n.a.–0.38 0.07±0.07
2,3-Dimethylbutane 0.015 0.05–1.06 0.26±0.24 0.01–1.09 0.19±0.20
2-Methylpentane 0.019 0.18–4.44 1.03±0.94 0.07–5.46 0.83±0.92
3-Methylpentane 0.016 0.08–2.80 0.67±0.64 0.03–3.76 0.61±0.69
n-Hexane 0.024 0.11–3.45 0.84±0.80 0.04–5.83 0.89±1.03
Methylcyclopentane 0.011 0.06–2.00 0.53±0.49 0.01–2.72 0.39±0.47
2-Methylhexane 0.012 0.06–2.33 0.56±0.55 0.02–4.14 0.56±0.71
Cyclohexane 0.011 0.02–1.15 0.21±0.21 n.a.–1.32 0.20±0.24
2,3-Dimethylpentane 0.010 0.03–5.28 0.92±1.19 0.02–9.30 0.79±1.34
n-Heptane 0.009 0.07–2.53 0.63±0.61 0.02–4.04 0.57±0.71
Methylcyclohexane 0.013 0.04–1.89 0.38±0.34 n.a.–1.81 0.23±0.31
2-Methylheptane 0.015 0.02–0.72 0.15±0.14 n.a.–0.78 0.10±0.13
Octane 0.009 0.03–0.86 0.18±0.15 0.02–1.09 0.15±0.20
n-Nonane 0.017 0.01–0.44 0.12±0.08 0.01–0.73 0.10±0.11
n-Decane 0.009 0.02–0.43 0.10±0.09 n.a.–1.03 0.10±0.16
Ethene 0.027 1.95–28.35 6.55±4.82 0.64–13.11 2.68±2.19
Propene 0.018 0.45–17.88 3.02±2.84 0.14–5.49 0.87±0.86
1-Butene/Isobutene 0.020 0.25–4.44 1.33±0.91 0.06–1.80 0.44±0.41
1,3-Butadiene 0.024 0.03–0.81 0.20±0.17 n.a.–0.64 0.08±0.11
trans-2-Butene 0.009 0.02–1.89 0.40±0.36 n.a.–0.34 0.06±0.08
cis-2-Butene 0.018 0.02–1.87 0.38±0.33 n.a.–0.46 0.06±0.08
3-Methyl-1-butene 0.012 n.a.–0.38 0.09±0.07 n.a.–0.16 0.03±0.03
1-Pentene 0.029 0.04–0.73 0.18±0.14 n.a.–0.52 0.09±0.10
2-Methyl-1-butene 0.026 0.02–1.08 0.27±0.23 n.a.–0.85 0.10±0.14
trans-2-Pentene 0.009 0.01–1.12 0.24±0.23 n.a.–0.50 0.07±0.11
Isoprene 0.010 n.a.–0.67 0.22±0.17 n.a.–0.80 0.17±0.15
cis-2-Pentene 0.006 n.a.–0.58 0.12±0.12 n.a.–0.28 0.04±0.06
2-Methyl-2-butene 0.013 0.01–1.35 0.24±0.29 n.a.–0.47 0.07±0.11
4-Methyl-1-pentene 0.021 0.02–0.48 0.19±0.10 n.a.–0.90 0.18±0.15
a-Pinene 0.009 n.a.–1.23 0.18±0.18 n.a.–1.18 0.17±0.22
Benzene 0.014 0.66–11.35 2.39±1.99 0.52–6.26 1.42±0.98
Toluene 0.016 0.76–36.91 7.01±7.33 0.54–56.41 8.46±9.94
Ethylbenzene 0.021 0.14–5.20 1.16±1.22 0.04–13.36 1.62±2.08
m/p-Xylene 0.024 0.17–5.19 1.46±1.42 0.03–17.67 1.94±2.95
o-Xylene 0.023 0.07–1.98 0.52±0.50 0.02–5.87 0.71±1.02
Styrene 0.008 0.01–2.30 0.20±0.37 n.a.–2.35 0.22±0.41
isopropylbenzene 0.007 0.01–0.15 0.04±0.03 n.a.–0.27 0.04±0.05
n-Propylbenzene 0.009 0.01–0.27 0.06±0.06 n.a.–0.52 0.06±0.08
3-Ethyltoluene 0.015 0.02–0.84 0.16±0.16 n.a.–1.04 0.10±0.17
4-Ethyltoluene 0.014 0.01–0.30 0.07±0.06 n.a.–0.43 0.05±0.08
1,3,5-Trimethylbenzene 0.020 0.02–0.31 0.06±0.06 n.a.–0.46 0.05±0.10
2-Ethyltoluene 0.010 0.01–0.29 0.06±0.06 n.a.–0.52 0.05±0.09
1,2,4-Trimethylbenzene 0.029 0.02–1.06 0.24±0.22 n.a.–1.81 0.18±0.32
1,2,3-Trimethylbenzene 0.012 n.a.–0.32 0.06±0.06 n.a.–0.58 0.05±0.10
1,4-Diethylbenzene 0.005 n.a.–1.58 0.10±0.21 n.a.–0.67 0.08±0.15
Chloromethane 0.020 0.80–1.56 1.18±0.21 0.79–1.64 1.15±0.22
Acetonitrile 0.039 0.11–1.57 0.66±0.29 0.31–1.26 0.66±0.18
MTBE 0.013 0.18–5.41 0.96±0.94 n.a.–3.27 0.47±0.61
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Table 3. The 10 most abundant species and CO (ppbv) measured at Guangzhou and at Xinken.

Guangzhou, average Xinken, coastal/ average 43 Chinese range Tai O
b
, Hongkong, average

urban site suburban site cities
a

rural/coastal site

Propane 10.7±8.9 Toluene 8.3±9.9 Ethane 3.7–17.0 Toluene 5.6±7.1
Acetylene 7.3±5.2 Acetylene 4.1±2.5 Acetylene 2.9–58.3 Acetylene 2.8±2.0
Toluene 7.0±7.3 Propane 3.5±2.9 Ethylene 2.1–34.8 Ethane 2.1±1.0
Ethylene 6.8±5.1 Ethane 3.0±1.3 Propane 1.5–20.8 Propane 2.0 ±2.2
Ethane 5.6±3.3 n-butane 2.7±2.8 Benzene 0.7–10.4 Ethylene 1.7±1.7

n-Butane 5.2± 4.4 Ethylene 2.7±2.2 Toluene 0.4–11.2 n-Butane 21.6±2.1
Propene 3.2±3.0 m/p-Xylene 1.9±2.9 n-Butane 0.6–14.5 Methyl chloride 0.9±0.2
i-butane 2.9±2.6 Ethylbenzene 1.6±2.1 i-Butane 0.4–4.6 Ethylbenzene 0.9

i-Pentane 2.7±2.3 i-Pentane 1.5±1.4 i-Pentane 0.3–18.8 Benzene 0.9
Benzene 2.4±1.9 Benzene 1.4±1.0 p-Xylene 0.2–10.1 i-Pentane 0.8

CO 867±552 CO 597±388 CO 525±323

a
Barletta et al. (2005);

b
Guo et al. (2006)
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Table 4. The OH loss rate (s
−1

) of major VOC groups at Guangzhou and Xinken during the
campaign in 2004.

Sampling sites Alkanes Alkenes Aromatics Isoprene

Guangzhou 1.9±1.5 8.8±6.8 2.9±2.7 0.5±0.4
Xinken 1.2±1.3 3.2±3.4 3.2±4.5 0.4±0.4
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Fig. 1. Location of sites for the 2004 Air Quality Monitoring Campaign in the Pearl River Delta
(PRD). The star indicates intensive sites, and the dots indicate sites for regional distribution
sampling.
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Fig. 2. Correlation of the measured and reference concentrations of 55 NMHCs in standard
gas.
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(a) (b)

(c)

Fig. 3. Comparison of parallel WAS canisters between PKU and RCEC results for some (a)

alkanes, (b) alkenes, and (c) aromatics.
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Fig. 4. Regional distribution of mixing ratio (in volume percentage) and chemical composition
of VOCs at seven sites.
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Fig. 5. Time series of measured O3,CO, NO, total VOCs, temperature, relative humidity, wind
direction, and speed at Guangzhou during the campaign.
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direction, and speed at Xinken during the campaign.
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(a)

(b)

Fig. 7. (a) The average compositions and total concentration of VOCs at Guangzhou and
Xinken during the first polluted episode and during non-episode days, and (b) the average
composition and total concentration of VOCs at 05:30 and 07:30 at Guangzhou during the first
polluted episode and during non-episode days.
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Fig. 8. Diurnal variations of TVOCs, CO, NO, NOy, and O3 at Guangzhou on 21 October 2004.
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Fig. 9. Diurnal variations of TVOCs, CO, NO, NOy, and O3 at XK on (a) 9 October and (b) 21
October 2004.
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(a)                                    (b) 

Fig. 10. Relative contribution of measured alkenes to OH loss rate at Guangzhou and Xinken.
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Fig. 11. Correlations of acetylene and ethylene with MTBE at Guangzhou. The solid line is the
regression line of the dots, and the area within the dashed lines is the 95% confidence interval.
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(a) (b)

Fig. 12. Correlations between (a) trans-2-butene and cis-2-butene and (b) trans-2-pentene and
cis-2-pentene at Guangzhou (solid dots) and Xinken (open circles) compared with Pearl River
Tunnel samples (solid squares).
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Fig. 13. Correlations between propane and n-/iso-butane at Guangzhou. The solid line is the
regression line of the dots, and the area within the dashed lines is the 95% confidence interval.
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(a) (b)

Fig. 14. (a) The correlation between acetylene and propane for six sites (Guangzhou (GZ),
Xinken (XK), Conghua (CH), Huizhou (HZ), Foshen (FS), and Shongshan (ZS)), with a com-
parison with 39 cities studied in the US (shown as the dashed line); (b) The correlation between
toluene and benzene for GZ, XK, and Dongguan (DG), comparing ambient data to the Pearl
River Tunnel study (solid squares). The solid and dashed lines represent the regression lines
for the results from tunnel samples and ambient data at DG, respectively.
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Fig. 15. The correlation between ambient isoprene and 1,3-butadiene at Guangzhou, com-
pared with the results from the Pearl River Tunnel study.
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