
HAL Id: hal-00303105
https://hal.science/hal-00303105

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The validity of the kinetic collection equation revisited
L. Alfonso, G. B. Raga, D. Baumgardner

To cite this version:
L. Alfonso, G. B. Raga, D. Baumgardner. The validity of the kinetic collection equation revisited.
Atmospheric Chemistry and Physics Discussions, 2007, 7 (5), pp.13733-13771. �hal-00303105�

https://hal.science/hal-00303105
https://hal.archives-ouvertes.fr


ACPD

7, 13733–13771, 2007

The validity of the

kinetic collection

equation

L. Alfonso et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Atmos. Chem. Phys. Discuss., 7, 13733–13771, 2007

www.atmos-chem-phys-discuss.net/7/13733/2007/

© Author(s) 2007. This work is licensed

under a Creative Commons License.

Atmospheric
Chemistry

and Physics
Discussions

The validity of the kinetic collection

equation revisited

L. Alfonso
1
, G. B. Raga

2
, and D. Baumgardner

2

1
Universidad Autónoma de la Ciudad de México, México City, 09790 México
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Abstract

The kinetic collection equation (KCE) describes the evolution of the average droplet

spectrum due to successive events of collision and coalescence. Fluctuations and

non-zero correlations present in the stochastic coalescence process would imply that

the size distributions may not be correctly modelled by the KCE.5

In this study we expand the known analytical studies of the coalescence equation

with some numerical tools such as Monte Carlo simulations of the coalescence pro-

cess. The validity time of the KCE was estimated by calculating the maximum of the

ratio of the standard deviation for the largest droplet mass over all the realizations to

the averaged value. A good correspondence between the analytical and the numerical10

approaches was found for all the kernels studied. The expected values from analytical

solutions of the KCE, were compared with true expected values of the stochastic col-

lection equation (SCE) estimated with Gillespie’s Monte Carlo algorithm and analytical

solutions of the SCE, after and before the breakdown time.

The possible implications for cloud physics are discussed, in particular the possi-15

bility of application of these results to kernels modified by turbulence and electrical

processes.

1 Introduction

The kinetic collection equation (KCE) describes the temporal change of the mean num-

ber of particles of mass xi in a given volume of fluid through the process of coalescence20

and is written as

∂n(i , t)

∂t
=

1

2

i−1
∑

j=1

K (i − j, j )n(i − j )n(j ) − n(i )
∞
∑

j=1

K (i , j )n(j ) (1)

Here n(i , t) can be obtained for t>0 from a given initial spectrum n(i ,0). The coagula-

tion kernel K (i , j ) contains the probability of coalescence of two drops of masses xi ,
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xj.
The KCE gives the time rate of change of the average number of i droplets as the dif-

ference of two terms, the first term describes the average rate of production of droplets

of mass xi due to coalescence between pairs of drops whose masses add xi ,and the

second term describes the average rate of depletion of xi droplets due to their coales-5

cences with other droplets. As was pointed out by Gillespie (1975), the KCE is only

an approximate time-evolution equation for n (i , t) because the numbers of droplets of

different masses are statistically correlated, and the KCE equation contains no definite

information concerning the size of the fluctuations from the average, which would be

observed in independent realizations of the coalescence stochastic process. Further-10

more, for certain collection kernels, the KCE gives nonphysical solutions in which the

total mass of the system is not conserved (Drake, 1972; Aldous, 1997). For example,

the solution of the KCE using a kernel proportional to the product of the masses of the

colliding droplets, features unrealistic behavior such as failure to conserve mass, and

divergence of the second moments.15

The main goal of our work is to test a numerical criteria for the validity time of the KCE

(Inaba et al., 1999), with analytical results obtained for the KCE with kernels for which

analytical solutions existed. Because of that, we are not using a realistic collection

kernel determined from either laboratory measurements or theoretical flow modeling.

The idea is to test the numerical results with simple kernels in order to extend the20

results to real kernels in future works.

Drake (1972) carefully analyzed the solutions of the KCE for polynomial kernels of

the form A+B(xi+xj )+Cx ixj , and concluded that any polynomial containing an xixj
term is a poor approximation, based on the fact that the non-linear term leads to a time

when the second moment of the raindrop distribution becomes infinite, and liquid water25

content in no longer conserved.

The reason for these behaviors has been previously explained and results from the

fact that deterministic laws are valid only for infinite systems, e.g., systems with large

number of particles in large volumes. However, as droplets grow by coalescence, the
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number of them inevitably decreases, and, as a result, the KCE becomes invalid to

describe the process.

This problem is relevant to cloud physics, since the evolution of the large end of the

spectrum is crucial in the description of precipitation development. The KCE assumes

that the number of particles n (i , t) is a continuous variable. If the collection kernel5

increases steeply with the mass of the particles, then the collection rate at the high-

mass end of the spectrum is significant. A single drop can acquire a mass much larger

than the rest of the system and becomes separated from the smooth mass spectrum.

In such a situation, the statistical fluctuations at the high-mass end of the spectrum

must be taken into account.10

A numerical approach to the collection process that takes into account statistical

fluctuations is Monte Carlo (MC). Gillespie (1975) first developed an exact Monte Carlo

framework for simulating the stochastic coalescence process. Within this framework,

all assumptions included in the stochastic collection equation are avoided.

Another way to handle this problem is to study the probability P (n1, n2, ..., nk , ..., t)15

that the system has a drop spectrum n̄=(n1, n2, ..., nk , ...) at time t. The evolution

of the probability distribution P is described by the stochastic coalescence equation

(Bayewitz et al., 1974, Lushnikov, 1978; Tanaka and Nakazawa 1993; Inaba et al.,

1999; and more recently Wang et al., 2006). This equation has the form:

∂P (n̄)

∂t
=

N
∑

i=1

N
∑

j=i+1

K (i , j )(ni + 1)(nj + 1)P (..., ni + 1, ..., nj + 1, ..., ni+j − 1, ...; t)20

+

N
∑

i=1

1

2
K (i , i )(ni + 2)(ni + 1)P (..., ni + 2, ..., n2i − 1, ...; t)

−
N
∑

i=1

N
∑

j=i+1

K (i , j )ninjP (n̄; t) −
N
∑

i=1

1

2
K (i , i )ni (ni − 1)P (n̄; t) (2)
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The first two terms in the right-hand side of Eq. (2) show the probabilities of transition

from other states into the state n̄=(n1, n2, ..., nk , ...); the last two terms represent those

from the state n̄=(n1, n2, ..., nk , ...) to other states. The solution of Eq. (2) will produce

the complete probabilistic picture of the process and can be used to calculate the true

averages as suggested by Bayewitz et al., (1974) and Tanaka and Nakazawa (1994)5

as:

〈nk〉 =
∑

n̄

nkP (n̄; t) (3)

The KCE results from taking the first moments Eq. (3) and assuming that
〈

ninj

〉

= 〈ni 〉
〈

nj

〉

. Under these assumptions Eq. (2) reduces to the KCE. Equation (2)

is very difficult to solve, even numerically since the number of states increases ex-10

tremely fast with N0. Analytical solutions were obtained for three cases: sum kernel

B(xj+xj ), product C(xi×x j ) and constant kernel. Bayewitz et al. (1974) obtained an

evolution equation for the true mean of the total number of particles for the constant

kernel case. Tanaka and Nakazawa (1993) compared the size distributions calculated

from Eq. (2) for the three cases, with analytical solutions of the KCE and examined15

the conditions under which the kinetic collection equation is valid. The stochastic com-

pleteness of the KCE was also studied by Valioulis and List (1984).

Going further in this direction we will use the Monte Carlo approach in order to exam-

ine the conditions under which the kinetic collection equation is valid. Special attention

will be paid to the time evolution and fluctuations of droplet concentration in the large20

end of the size distribution, which is crucial in precipitation development. The main

result of the present paper will be the test of the numerical criteria suggested by Inaba

et al. (1999), to calculate the validity time for the KCE. This result is compared with an-

alytical results previously obtained by Drake (1972) and Tanaka and Nakazawa (1994).

We were lead to this conjecture on the basis of numerical simulations with the Monte25

Carlo algorithm presented in Sect. 2. In Sect. 3, approximating polynomials and ana-

lytical solution for the KCE and SCE are presented. Simulations and a comparison with

analytical solutions are described in Sect. 4. Finally, in Sect. 5 we discuss the results
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and possible applications to more general kernels of importance for cloud physics.

2 The Monte Carlo algorithm

In this study we use the stochastic algorithm developed by Gillespie (1976) for chem-

ical reactions. This algorithm was reformulated to simulate the kinetic behaviour of

aggregating systems by Laurenzi and Diamond (1999), by defining species as a type5

of aggregate with a specific size and composition. In our case, species represent

droplets of different sizes.

Within this framework, there is a unique index µ for each pair of droplets i , j that

may collide. For a system with N species
(

S1, S2, ... , SN

)

µ ∈
N(N+1)

2
.The set {µ}

defines the total collision space, and is equal to the total number of possible interac-10

tions. With this set the collision probability density function P (τ, µ) can be determined.

This quantity is defined by:

P (τ, µ)dτ≡ Probability that at time t the next collision in volume V will occur in the

infinitesimal interval
(

t+τ, t+τ+dτ
)

and will be a µ collision.

Gillespie derives this probability density function for a system of N species as15

P (τ, µ)dτ = aµ exp






−

N(N+1)

2
∑

j=1

ajτ






(4)

Hereµ ∈
N (N+1)

2
.The functions aµ are calculated according to

a(i , j ) = V −1K (i , j )ninjdt(≡P r {Probability that two unlike particles i and j with

populations (number of particles)ni and nj will collide within the inminent time interval
}

(5)
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a(i , i ) = V −1K (i , i )
ni (ni − 1)

2
dt ≡ P r {Probability that two particles

of the same species i with population (number of particles)ni collide

within the inminent time interval} (6)

The collision probability density function is the basis of the Monte Carlo algorithm.5

For calculating the evolution of the system, two random numbers τ and µ must be

generated. Equation (4) leads directly to the answers of the aforementioned questions.

First, what is the probability distribution for times. Summing P (τ, µ)dτ over all µ (all

possible collisions) results in

P1 (τ)dτ =

N(N+1)

2
∑

µ=1

P (τ, µ) =

N(N+1)

2
∑

µ=1

aµ exp






−

N(N+1)

2
∑

ν=1

aντ






= α exp (−ατ)dτ (7)10

with α =

N(N+1)

2
∑

ν=1

aν

The probability function for reactions can be obtained in a similar way, by integrating

the probability density function (pdf) P (τ, µ)dτ over all τ from 0 to ∞ results in

P2 (µ) =
aµ

α
(8)

Equation (7) shows that the probability of a collision in time follows an exponential dis-15

tribution. In order to obtain a random pair (τ, µ), according to the probability density

function P (τ, µ) we first generate a random number r1 distributed uniformly in the in-

terval (0,1), then, the inversion method to obtain random numbers is applied. In the

inversion method this random number is taken as the probability of a collision in the

time period τ according to P1 (τ). This probability is obtained by integrating P1 (τ) from20
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0 to τ:

r1 =

τ
∫

0

P 1 (z)dx =

τ
∫

0

α exp (−αz)dz = 1 − exp (−ατ) (9)

Considering that 1–r1=r
∗
1 is also a uniformly distributed random number in the interval

(0,1), then the time τ can be calculated from Eq. (9) in the form:

τ =
1

α
ln

(

1

r∗
1

)

(10)5

The collision number µ is calculated similarly. A random number r2 uniformly distributed

in the interval (0,1) is generated. Then the pdf P2 (ν) Eq. (8) must be integrated over

ν until the sum of the µ probability exceeds the random number r2. The inequality to

obtain the collision index µ has the form (Gillespie, 1976)

µ−1
∑

ν=1

aν < r2α ≤

µ
∑

ν=1

aν (11)10

The former results lead to the Gillespie’s direct algorithm:

1. Initialize (set initial numbers of species, set t=0, set stopping criteria).

2. Calculate the function aµ for all µ.

Choose τ according to the exponential distribution P1 (τ)=α exp (−ατ)dτ

1. Calculate µ according to the distribution P2 (µ)=
aµ
α .15

2. Change the numbers of species to reflect the execution of a collision.

3. If stopping criteria are not met, go to step 2.

13740

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/13733/2007/acpd-7-13733-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/13733/2007/acpd-7-13733-2007-discussion.html
http://www.egu.eu


ACPD

7, 13733–13771, 2007

The validity of the

kinetic collection

equation

L. Alfonso et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

3 Analytical solutions of the KCE and SCE using polynomial approximations

The collection kernel for hydrodynamic interactions for the continuous case has the

form:

K (x, y) = π [R(x) + r(y)]2 E (x, y) [V (x) − V (y)] , x ≥ y (12)

In Eq. (12), x and y are the masses of the colliding droplets, R(x) is the radius of the5

larger collector droplet, and r(y) is the radius of the smaller collected droplet, E (x, y)

is the collection efficiency and is given by the product of the collision efficiency and

coalescence efficiency. For general kernels of the form Eq. (12), the KCE has to be

solved numerically.

Analytical solutions of the continuous KCE have been obtained by Golovin (1963),10

Scott (1968), Drake (1972) and Drake and Wright (1972) for approximations of the

hydrodynamic kernel given by the polynomials:

f (x, y) = A (13a)

f (x, y) = A + B(x + y) (13b)

f (x, y) = Cxy (13c)15

f (x, y) = A + B(x + y) + Cxy (13d)

Long (1974) calculated the coefficients for the polynomials Eq. (13) approximating the

collection kernel Eq. (12) when the largest of the colliding drops is smaller than 50µm.

The results are displayed in Table 1. Other studies (e.g. Scott, 1968) used coefficients

up to an order of magnitude larger.20

Analytical size distributions of the KCE for the constant, sum and product kernels,

are displayed in Table 2, and Table 3 shows the results for total concentration. For

the stochastic collection equation (SCE), the true stochastic averages calculated from

analytical solutions (Eq. 3) for the sum and product kernel are shown in Table 4 (Tanaka

and Nakazawa, 1994).25
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We have tested the numerical code against the exact size distribution of the SCE

reported in Tanaka and Nakazawa (1994) for the sum kernel case (K(x,y)=B(x+y),

B=8.83×10
2

cm
3

s
−1

). The comparison was made at N0=100 and an excellent agree-

ment was founded (See Fig. 1).

4 Numerical estimation of the validity time for the KCE5

4.1 Validity of the KCE for kernels of the form Cxy

Long (1974) demonstrated that for small droplets (R≤50µm) as terms of higher degree

are included in a polynomial, the kernel K (x, y) in the continuous case is approximated

adequately. Nevertheless, many authors (Drake, 1972; Pruppacher and Klett, 1997)

have claimed that the terms xy give a “nonphysical” behaviour of the solutions, since10

solution does not conserve mass and there is a divergence of the second moment.

The first (M1) and second (M2) moments of the droplet distribution for the continuous

case are defined by

M2(t) =

∞
∫

0

x2n(x, t)dx (14a)

M1(t) =

∞
∫

0

xn(x, t)dx (14b)15

where n(x, t) is the droplet size distribution and x is the droplet mass. The evolution of

M2 with time for kernels containing terms of the form xy diverge as a consequence of

the fact that deterministic laws are valid only for systems with large number of particles

in large volumes. This assumption is adequate for most kinetic processes, but the

neglect of small population corrections in the KCE causes unrealistic behaviors as the20
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total population of particles become small. Laurenzi and Diamond (2003) studied the

case with a Cxy kernel with a Monte Carlo method and demonstrated that M2 shows a

rapid but finite increase and a rigorous conservation of mass.

Drake (1972) calculated the analytical solutions of the KCE for polynomials of the

form f (x, y)=Cxy . In this case the second moment evolution is given by5

M2(τ) =
M2(t0)

1 − CM2(t0)τ
(15)

Note that when

τ =
[

CM2(t0)
]−1

(16)

M2 is undefined. Then for t→τ a single macroparticle remains and M2(τ)→∞. The

time point t=τ when the deterministic KCE predicts a divergence of M2 and a decrease10

of M1 (first moment, liquid water content) is called the gel point.

We have calculated τ for an initial monodisperse distribution of 100 droplets of 14µm

in radius (droplet mass 1.1494×10
−8

g). The volume of the cloud was set equal to

1 cm
3
. Using the value of C from Table 1 (C=5.49×10

10
cm

3
s
−1

), then τ in Eq. (16) is

1378.7 s.15

For the same type of kernel (Cxy ), by using analytical methods, Tanaka and

Nakazawa (1994) concluded that the KCE described well the coalescence process

as long as the mass of the largest droplet was smaller than M
2/3
T

, where MT is the total

mass of the system.

When the coalescence growth is described by the KCE, the mass spectrum is con-20

tinuous, as shown by the near-equality of the mass of the largest and second largest

droplets. However, as the mass of the largest droplet grows, the number of droplets

inevitably decreases and the KCE becomes unable to describe the coalescence pro-

cess. This larger droplet acquires a mass much larger than the rest of the particles,

and becomes detached from the smooth spectrum (Lee, 2000).25
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We have calculated the ensemble mean of the largest and second largest droplets,

ML1 and ML2. The ensemble mean is given by the expression:

ML =
1

Nr

Nr
∑

i=1

M i
L

(17)

where Nr is the number of realizations of the Monte Carlo process, and M i
is the droplet

mass in the i−realization of the stochastic algorithm. The average time evolution of the5

largest and second largest droplets for this particular case is shown in Fig. 2.

Inaba et al. (1999), by using a statistical model, found that the stochastic property

of the system changes around the stage when the largest droplet mass is in the order

of M
2/3
T

. By using a statistical code for modeling planetary accretion, they calculated

the ratio of the standard deviation for the largest particle mass over all the realizations,10

to the averaged value evaluated from 1000 numerical simulations σL=STD(ML1)
/

ML1.

The standard deviation for the largest droplet mass is calculated for each time by using

the expression:

STD(ML1) =

√

√

√

√

√

1

Nr





Nr
∑

i=1

(

M i
L1

−ML1

)2



 (18)

where ML1 is the ensemble mean of the mass of the largest droplet over all the realiza-15

tions (given by Eq. 17), Nr is the number of realizations of the Monte Carlo algorithm

and M i
L1 is the largest droplet for each realization.

Inaba et al. (1999) found that σL was maximum in the vicinity of ML1

/

M
2/3

T
=1. This

reinforce the possibility of using this magnitude in order to calculate the validity time of

the KCE. In order to check when the largest droplet acquires a mass much larger than20

the rest of the droplets, and becomes detached from the continuous spectrum.

We have calculated the behavior of σL evaluated from 1000 realizations (Nr=1000)

of the Monte Carlo algorithm. The results are displayed in Fig. 3. The maximum of
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σL was obtained for τ=1315 s, very similar to the analytical estimation from Eq. (16)

(τ=1388). The ratio STD(ML1)
/

ML1 seems to be a very reliable way for estimating the

breakdown time of the KCE. Around this time (τ=1388), the growth of ML2 (second

largest droplet) stops while ML1 (largest droplet) continues to grow rapidly (See Fig. 2).

After that, ML2 decreases with time because large droplets first coalesce with ML1 and5

its mass approaches the total mass gradually.

The maximum of the statistic σL was obtained when the largest droplet was about 20

times larger (in volume) than the initial 14µm droplet. By evaluating this mass in the

condition ML1

/

M
2/3

T
a value of 0.86 was obtained, which is very close to 1 (Fig. 4.), in

agreement with the analytical findings of Tanaka and Nakazawa (1994).10

As pointed out by Inaba et al. (1999), the time of the maximum depends on the

functional form of the collisional kernel. For other type of kernels the maximum will be

obtained for different exponents of the total mass of the system MT (in the vicinity of

ML1

/

M
β

T
=1), here the parameter β has to be estimated.

4.1.1 Comparison of the solutions of the KCE and SCE for Cxy kernels – Results for15

total concentration

The degree of accuracy of the solution of the kinetic collection equation is measured

by the square relative error, defined by

SE (N) =

(

〈N〉 − N

N

)2

(19)

where 〈N〉 are the true stochastic averages calculated from the MC and N the aver-20

ages from the KCE. As can be observed in Fig. 5, the square relative error shows a

sharp increase after ML1

/

M
2/3
T

=1(τ∼1300 s). That means that the expected values

calculated according to the KCE will differ from the true averages calculated from the

Monte Carlo algorithm. After that time, the KCE breaks down.
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For earlier times (t<1300 s) and values ML1

/

M
2/3
T

≪1, the Monte Carlo technique

produces averages for total concentration that are almost equal to the solution of the

KCE.

4.1.2 Comparison of the solutions of the KCE and SCE for Cxy kernel – Results for

the size distribution5

The problem of the size distributions was studied by Bayewitz et al. (1974) for constant

kernel solutions of the kinetic and stochastic collection equations. They found that in

systems of small population, or in a system partitioned into small compartments, the re-

sults of the KCE and SCE may differ substantially, particularly in the long-term tail of the

distribution. The same situation was observed by Wang et al. (2006) while comparing10

the size distributions of the KCE and size distributions from the stochastically complete

equation. According to Tanaka and Nakazawa (1994), for product kernel, the solutions

of the KCE (Ni ) and the SCE (ni ) agree with each other if the condition xi

/

M
2/3

T
≪1 is

fulfilled. The corresponding condition for the sum kernel case is xi
/

MT≪1. Here MT

is the total mass of the system.15

In order to perform a high accuracy comparison of size distributions, a statistical

test like the Kolmogorov-Smirnov was found not suitable. The analytical solution of the

KCE and results of MC simulations were virtually indistinguishable from each other,

with Probability-values ranging from 0.8 to 1 at each time point.

The size distributions obtained from our MC calculations are presented in Figs. 6 and20

7, for two different times: t=1000 s and t=1600. This times correspond to values of

ML1

/

M
2/3
T

equal to 0.49 and 1.39 respectively. At earlier times, when ML1

/

M
2/3
T

=0.49,

the KCE size distributions match quite well the SCE size distributions. In contrast, after

1600 s (Fig. 7), the size distributions differ substantially for bin numbers larger than 7.

According to Tanaka and Nakazawa (1994) for sufficiently small mass xi , the solution25

ni of the stochastic collection equation agrees with that of the KCE equation even in
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the late stage.

As Fig. 8 shows, for the product kernel, the KCE and the SCE solutions start to

differ for i≥5. When t>1300 s, there is no agreement between the analytical and the

Monte Carlo solutions for bin numbers as small as 5, a fact that explained the marked

differences observed in Fig. 7. The disagreement increases as we move to the large5

end of the distribution and time advances.

4.2 Validity of the KCE for polynomials of the form B(x+y)

For K (x, y)=B(x+y), the analytical solution of the stochastic collection equation can be

calculated easily (see Table 4), and there is no need to use the Monte Carlo integration.

As seen in Fig. 10, both analytical solutions for the KCE and the SCE are in excellent10

agreement even for bin sizes as large as 10.

Then, the results displayed in Fig. 10 are in agreement with the less restrictive con-

dition for the sum kernel, that the KCE (ni ) and the SCE (<ni>) solutions agree with

each other if the condition xi
/

MT≪1 is fulfilled. According to Drake (1972), when

K (x, y)=B(x+y), M2(t) will exponentially increase with time but still be finite at any15

time. For Tanaka and Nakazawa (1994), the KCE is valid until a drop with mass com-

parable with MT appears, i.e., almost until the limit of complete aggregation, when a

single macroparticle remains.

We have analyzed this problem by calculating the statistics STD(ML1)
/

ML1. Sur-

prisingly, there is a maximum at τ=1320 s (Fig. 11), indicating that the liquid water20

content is no longer conserved after 1320 s. We have calculated the evolution of the

liquid water content by using the analytical solution of the KCE for monodisperse initial

conditions displayed in Table 2 according to:

M1(t) =
∞
∑

i=1

m(i )N(i , t) (20)

At the same time, we have calculated M1 by using Eq. (20) and the true averages25

〈N(i , t)〉 from the SCE (See Table 3). The results are shown in Fig. 12. After t∼1300 s
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the total mass calculated with the KCE, starts to decrease, while the total mass calcu-

lated with the true averages from the SCE is conserved all the time. This reflects the

fact that the stochastic approach can predict the behavior of the coalescence process

for all times.

The results from Fig. 11 contradict the generalized idea that the KCE with a sum5

kernel is valid for all times (Drake, 1972). Actually, after some time, the total mass is no

longer conserved. After 2000 s we have 82% of the initial mass. The total mass for the

product kernel is also plotted indicating that after 2000 s. the remaining mass is only

45% of the initial mass. The smaller reduction in total mass for the sum kernel explains

the better agreement between the size distributions (Fig. 10) for the sum kernel.10

4.3 Other approximating polynomials containing an xy term

For polynomials of the form A+B(x+y)+Cxy where A=B2/C,the KCE is valid until the

time (Drake, 1972):

τ =
[

CM2(t0) + BL
]−1

(21)

where L is the initial liquid water content of the droplets (M1(0)) . In evaluating τ15

the values of A,B and C calculated by Long(1974) and displayed in Table 1. The

liquid water content (first moment of the distribution) was equal to 1.149×10
−6

g cm
−3

(we consider a cloud initially containing 100 droplets of 14µm in diameter in 1 cm
3
).

The analytically predicted τ for this polynomial form of the kernel was 1134 while the

numerically evaluated value was 1260 s, and the ratioML1

/

M
2/3
T

=1.03. In Tanaka and20

Nakazawa (1994) the condition that the KCE is valid until ML1

/

M
2/3
T

is smaller than

unity was deduced for kernels of the form Cxy. Nevertheless, it seems to work quiet

well in general for kernels containing an xy term.

To further study this trend, τ was also estimated numerically for polynomials of

the form B(x+y)+Cxy . The coefficients that better approximate the kernel for small25
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droplets are (A=0, B=4.16×10
2
, C=2.24×10

10
). The analytical expression for τ is

given by (Drake (1972), Long (1974)):

τ = ln
[

1 + 2BL/CM2(t0)
]

/2BL (22)

where L is the initial liquid water content (M1(0)). For L=1.149×10
−6

g cm
−3

, from

expression Eq. (22) was obtained τ=1508.5 s. From the MC calculations, the maximum5

of STD(ML1)
/

ML1 was 0.504 reached at τ=1310 s and the ratio ML1

/

M
2/3
T

was found

equal to 0.96 (see Fig. 9a and 9b).

The above mentioned results support the fact that the criterium proposed by Tanaka

and Nakazawa (1994) for the product kernel in general works well for polynomial ker-

nels containing an xy term.10

5 Discussion and conclusions

In this study we have represented the kernels for the continuous case by a series of

polynomials and used a MC algorithm to obtain the solutions of the SCE. The solution

of the KCE for polynomials containing an xy term predicts an infinite value of M2 for

t=τ. For kernels of the form B(x+y), there is a no conservation of the total mass, but a15

less pronounce divergence that for the product kernel.

Since this problem is important in other branches of physical sciences, it is useful to

look at different approaches. For condensed matter physicists, the situation that arises

for kernels containing an xy term is a phase transition, typically called gelation in the

context of coalescence models. Then, when gelation occurs, the mass conservation is20

expected to break down in finite time i.e.: there exists a Tg, called gelation time such

that

M1(t) ≡ M1(0) for t<TgandM1(t)<M1(0) for t>Tg (23)

The physical interpretation is that after gelation, some mass is lost under the form

of a particle of infinite size, with mass M1(0)−M1(t), called gel part. The rest of the25
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particles are then called the sol part. For astronomers, the non conservation of the first

moment after Tg, is usually interpreted to mean that a runaway particle (planet) has

formed.

In reality, the KCE describes the continuous mass droplet spectrum (without the gel

part or the largest droplet) all the time. When a single droplet is detached from this5

spectrum then we have a continuous spectrum plus a massive droplet. To further

study this trend, we can analyze the time evolution of the liquid water content for a

polynomial of the form Cxy for monodisperse initial conditions (see Fig. 12). After

t∼1300, the liquid water content starts to decrease. As mentioned above, the neglect

of small population corrections causes unrealistic behavior as the total concentration10

of particles becomes small.

When the gel is formed the largest droplet is detached from the continuous spectrum,

the KCE describes only the continuous droplet spectrum (sol part). For example, for

t=1700 s, the largest droplet mass is in average 36.52 times larger than the initial

14µm droplet. Then its mass is equal to 4.197×10
−7

g. At this time, the total mass15

calculated from the KCE is 7.432×10
−7

g. On the other hand, the initial water content

for our simulations was M1(0)=1.1494×10
−6

g cm
−3

.

The physical interpretation is that after t=τ, some mass is lost under the form of a

particle of big size, with mass M1(0)−M1(t), the gel part which is not represented by

the KCE. The gel mass in this example is20

M1(0) −M1(1700) = 1.1494 × 10−6 g − 7.432 × 10−7 g = 4.1 × 10−7 g

which is almost equal to the mass of the largest droplet calculated with the MC algo-

rithm (4.197×10
−7

g).

The former analysis confirms the fact that for t>τ the KCE actually models the evo-

lution of the continuous size of the spectrum. As the largest droplet continue to grow25

by accretion of smaller droplets, the mass of the continuous spectrum will decrease,

together with the liquid water content predicted by the KCE. The values of the total

water content for the continuous spectrum and the largest droplet (gel part) for several
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times are shown and the total water content calculated as the sum of the continuous

spectrum total water content and the largest droplet mass are shown in Table 5.

Note that the missing mass (M1(0)−M1(t)) calculated from the KCE is equal (within a

90% accuracy) to the mass of the largest droplet detached from the continuous spec-

trum for t>τ, and estimated from the Monte Carlo algorithm according to expression5

Eq. (17). Then, for t>τ, the mass conservation can be formulated in the form

MTotal = MContinuous Spectrum(KCE) +MLargest Droplet (24)

This expression reflects the fact that the “missing mass” actually is transferred to the

largest droplet that becomes isolated for times larger than τ. The non conservation of

the initial mass when the largest droplet becomes separated from the continuous spec-10

trum n(i , t) predicted by the KCE, explain the differences between the KCE and SCE

size distributions after t>τ (Figs. 6, 7 and 8), and the underestimation of the concentra-

tion for bin sizes larger than 5. The underestimation in this case is a consequence of

non conservation of the liquid water content for the continuous spectrum, when mass

is constantly transferred to the largest droplet (gel part).15

Wang et al. (2006) also observed marked differences between size distributions pre-

dicted by the KCE and the SCE (Fig. 7 of Wang et al., 2006). In fact the mass predicted

by the KCE is smaller then the mass predicted by the SCE (True Stochastic Collection

Equation) for bin numbers smaller than 80.

The numerical criteria STD(ML1)
/

ML1 described in this work could be used for cal-20

culating τ in the general case, when there is no analytical solutions for the KCE or SCE.

One interesting question that arises is the validity of the KCE when turbulence or elec-

trical processes influence the collection process. In these situations, the Monte Carlo

algorithm and the already analyzed statistics STD(ML1)
/

ML1for the largest droplet will

be useful in the evaluation of the validity of calculations made with the KCE. The alter-25

native, is to use the Monte Carlo algorithm instead of the deterministic tool Eq. (1).

Another question is the possibility of existence of such large drops, since the col-

lisional and spontaneous breakup modes will tend to fragment them. In our particu-

lar situation the answer is positive, because the collisional and spontanoeus breakup
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mechanisms will act for larger sizes. For example, at τ=1315 s (calculated for a kernel

of the form Cxy ), the largest droplet (gel) has a radius of then 38µm. At t=2000 s the

radius of the largest droplet radius is 52µm.

From the theoretical point of view it will be interesting to check whether the phase

transition approach adopted by condensed matter physicists and astronomers could5

work in a cloud physics context. Long (1974) demonstrated that K (x, y) increases as

x2
for small droplets (R<50µm) and as x for larger ones. He concluded that for typical

continental and maritime clouds, the evolution of the raindrop distribution is closely

described if the kernel has the piecewise approximation:

9.44 × 109
(

x2
+ y2

)

or 1.10 × x2 ifR≤50µm (25)10

or by

5.78 × 103 (x + y) or 6.33 × 102x ifR>50µm (26)

In Eq. (25) and Eq. (26) x and y are the masses of the colliding drops, and R is the

radius of the larger droplet. By doing this, he avoided the inclusion of “non-physical”

xy terms, that predict to rapid growth for the large drops in a cloud. In other words, by15

choosing this piecewise approximation, the breakdown of the KCE will be avoided for

longer times, since the KCE solutions for kernels of the type B(x+y) are valid until the

largest droplet has a mass the limit of complete aggregation (i.e., for all times).

According to Eq. (12), the time interval for droplets to grow from 20µm to 100µm

in radius will be in the order of an hour (Pruppacher and Klett, 1997). Nevertheless,20

for smaller droplets, Cxy approximates quite well the collection kernel. Then, one

open question is the possibility of inclusion of xy terms in approximations of K (x, y)

when small scale turbulence or other processes are present, in order to predict a faster

growth of smaller droplets. From this point of view, precipitation formation could be

interpreted as a sol-gel transition. Several mechanisms have been proposed in the past25

(entrainment, presence of giant nuclei, supersaturation fluctuations and more recently,
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effects of air turbulence in concentration fluctuations and collision efficiencies), but a

conclusive answer is still absent.
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Table 1. Polynomials approximating the actual collection kernel K (x, y) (Long, 1974).

Approximating Polynomial P (x, y) Coefficients R ≤ 50µm (cm
3

s
−1

)

f (x, y) = A A=1.20×10
−4

f (x, y) = A + B(x + y) A=0

B=8.83×10
2

f (x, y) = Cxy C=5.49×10
10

f (x, y) = A + B(x + y) + Cxy

A = B2/C

A=4.41×10
−7

B=1.36×10
2

C=4.18×10
10

f (x, y) = A + B(x + y) + Cxy A=0

B=4.16×10
2

C=2.24×10
10
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Table 2. Analytical size distributions of the kinetic collection equation calculated with monodis-

perse initial conditions (Laurenzi and Diamond, 1999).

K (xi , xj ) N(i , t)

B(xi + xj ) N0(1 −φ)
(iφ)

i−1

Γ(i+1)
exp(−iφ) φ = 1 − exp(−BN0v0t)

C(xi × xj ) N0
(iT )

i−1

iΓ(i+1)
exp(−iT ) T = CN0v

2
0 t

A 4N0
(T )

i−1

(T+2)i+1 T = AN0t

Note: Parameters A, B and C are constants. N0 is the initial concentration and v0 is the initial

volume of droplets.
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Table 3. Analytical solutions of the kinetic collection equation for total concentration calculated

with monodisperse initial conditions (Scott, 1968).

K (xi , xj ) N(t)

B(xi + xj ) N(t) = N0(1 − τ) τ = 1 − exp(−BN0v0t)

C(xi × xj ) N(t) = N0

(

1 − 1
2
T
)

T = CN0v
2
0 t

A N(t) =
2N0

T+2
T = AN0t

Note: Parameters A, B and C are constants. N0 is the initial concentration and v0 is the initial

volume of droplets.
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Table 4. True stochastic averages calculated from analytical solutions of the stochastic collec-

tion equation with monodisperse initial conditions for the sum and product kernels (Tanaka and

Nakazawa, 1994).

K (xi , xj ) 〈n(i , t)〉

B(xi + xj ) C
N0

i

(

i
N0

)i−1 {

1 − i
N0

(

1 − eT
)}N0−i−1

×
(

1 − e−T
)i−1

e−T

T = BN0v0t

C(xi × xj ) C
N0

i
e−i (N0−i )T fi (T ) T = CN0v

2
0 t

Note: Parameters B and C are constants. N0 is the initial concentration and v0is the initial

volume of droplets. C
N0

k
is the binomial coefficient. Functions fk (T ) can be found by solving

successively the equation:
∂fk (t)

∂t
=

1
2

N
∑

i ,j=1

i jδi+j,kkCie
−i jtfi (t)fj (t) for monodisperse initial condi-

tions.
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Table 5. Total water content calculated as the sum of the smooth spectrum total water content

and largest droplet mass (gel part).

Time (s) M1(t) (g cm
−3

) MLargest Droplet M1(t)+MLargest Droplet M1(0)

(Smooth spectrum

mass, calculated

according to the

KCE)

Largest Droplet

mass (g cm
−3

) from

the MC (gel part)

(g cm
−3

) (Initial

liquid water

content) (g cm
−3

)

1600 8.41×10
−7

3.56×10
−7

1.19×10
−7

1.14×10
−7

1700 7.43×10
−7

4.197×10
−7

1.16×10
−7

1.14×10
−7

1800 6.56×10
−7

4.71×10
−7

1.12×10
−7

1.14×10
−7

1900 5.82×10
−7

5.32×10
−7

1.11×10
−7

1.14×10
−7
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Fig. 1. The number of particles, averaged over 1000 simulations and normalized to initial num-

ber of particles (N0=100), versus the analytical solution of the stochastic collection equation

(SCE) at t=700 s as a function of size.
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Fig. 2. Average time evolution for 1000 simulations versus time(N0=100) of the largest and

second largest droplets for the kernel Cxy (C=5.49×10
10

cm
3

s
−1

).
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Fig. 3. The ratio of the standard deviation to expectation value of the largest droplet

STD(ML1)
/

ML1 as a function of time.
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Fig. 4. The ratio of the standard deviation to expectation value of the largest droplet

STD(ML1)
/

ML1 as a function of ML1

/

M
2/3

T
.
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Figure 6.  Size distributions obtained from the KCE and the stochastic approach at 
Fig. 6. Size distributions obtained from the KCE and the stochastic approach at t=1000 s for

the product kernel.
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Figure 7.  Size distributions obtained from the KCE and the stochastic approach at 
Fig. 7. Size distributions obtained from the KCE and the stochastic approach at t=1600 s for

the product kernel.
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Figure 8. Time evolution (bin sizes 2,5,7 and 10) for a system modeled by the product 

Fig. 8. Time evolution (bin sizes 2,5,7 and 10) for a system modeled by the product kernel, as

a function of time. The solid lines are the analytical solution of the KCE.
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Fig. 10. Time evolution (bin sizes 2, 5, 7 and 10) for a system modeled by the sum kernel, as

a function of time. The solid lines are the analytical solution of the KCE, the symbols are the

analytical solutions of the SCE.
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Fig. 11. The ratio of the standard deviation to expectation value of the largest

droplet STD(ML1)
/

ML1 as a function of time for the approximating polynomial

K(x,y)=B(x+y),(B=8.82×10
2

cm
3

s
−1

).
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Fig. 12. Time evolution of the liquid water content (first moment of the distribution) for the sum

kernel (K(x,y)=B(x+y)), calculated from size distributions of the KCE and true averages from

the SCE; and for product kernel (K(x,y)=Cxy ), calculated from the analytical solution of the

KCE.
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