

Ion-mediated nucleation as an important global source of tropospheric aerosols

F. Yu, Z. Wang, G. Luo, R. Turco

▶ To cite this version:

F. Yu, Z. Wang, G. Luo, R. Turco. Ion-mediated nucleation as an important global source of tropospheric aerosols. Atmospheric Chemistry and Physics Discussions, 2007, 7 (5), pp.13597-13626. hal-00303102

HAL Id: hal-00303102 https://hal.science/hal-00303102

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Atmos. Chem. Phys. Discuss., 7, 13597–13626, 2007 www.atmos-chem-phys-discuss.net/7/13597/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

ACPD

7, 13597–13626, 2007

Ion-mediated nucleation as source of tropospheric aerosols

F. Yu et al.

Title Page Introduction Abstract Conclusions References **Tables Figures** Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

FGU

Ion-mediated nucleation as an important global source of tropospheric aerosols

F. Yu^1 , Z. $Wang^2$, G. $Luo^{1,2}$, and R. $Turco^3$

¹Atmospheric Sciences Research Center, State University of New York, 251 Fuller Road, Albany, New York 12203, USA

²NZC/LAPC, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China

³Department of Atmospheric and Oceanic Sciences, University of California, 405 Hilgard Ave, Los Angeles, California 90095, USA

Received: 17 August 2007 - Accepted: 5 September 2007 - Published: 17 September 2007

Correspondence to: F. Yu (yfq@asrc.cestm.albany.edu)

Abstract

Aerosol nucleation events have been observed at a variety of locations worldwide, and may have significant climatic and health implications. While ions have long been suggested as favorable nucleation embryos, their significance as a global source of ⁵ particles has remained uncertain. Here, an ion-mediated nucleation (IMN) mechanism, which incorporates new thermodynamic data and physical algorithms, has been integrated into a global chemical transport model (GEOS-Chem) to study ion mediated particle formation in the global troposphere. The simulated annual mean results have been compared to a comprehensive set of data relevant to new particle formation ¹⁰ around the globe. We show that predicted annual spatial patterns of particle nucleation rates agree reasonably well with land-, ship-, and aircraft-based observations. Our simulations show that, globally, IMN in the boundary layer is largely confined to two broad latitude belts: one in the northern hemisphere (~20° N–70° N), and one in the southern

hemisphere (~30° S–90° S). In the middle latitude boundary layer over continentals,
the annual mean IMN rates are generally above 10⁴ cm⁻³ day⁻¹, with some hot spots reaching 10⁵ cm⁻³ day⁻¹. Zonally-averaged vertical distribution of IMN rates indicates that IMN is significant in the tropical upper troposphere, whole middle latitude troposphere, and over Antarctica. The ratio of particle number annual source strength due to IMN to those associated with primary particle emission suggests that IMN contribution
is important. Further research is needed to reduce modeling uncertainties and understand the contribution of nucleated particles to the abundance of cloud condensation

1 Introduction

nuclei.

Atmospheric particles perturb the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei (CCN) and thus changing cloud properties and influencing precipitation. The aerosol indirect radiative

ACPD 7, 13597-13626, 2007 Ion-mediated nucleation as source of tropospheric aerosols F. Yu et al. **Title Page** Abstract Introduction Conclusions References Tables **Figures** Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion


FGU

forcing is largely determined by the number abundance of particles that can act as cloud condensation nuclei (CCN) (e.g., Twomey, 1977; Albrecht 1989; Charlson et al., 1992). The magnitude of the aerosol indirect radiative forcing is poorly constrained in climate models, and this represents the dominate uncertainty in assessing climate
 ⁵ change (NRC, 2005; IPCC, 2007). To reduce the uncertainty in the calculation of aerosol radiative forcing and to improve our prognostic capability of Earth's climate, the key processes controlling the number size distributions of atmospheric aerosols have to be understood and properly incorporated in the large scale models. New particle formation frequently observed throughout the troposphere is an important source of atmospheric CCN and is one of key processes that need to be accurately represented

in future generations of climate models (Ghan and Schwartz, 2007).

In the past several years, there are a growing number of studies looking into the new particle formation in the global atmosphere. With an empirical formula (nucleation rate $J=2\times10^{-6}$ s⁻¹ [H₂SO₄], where [H₂SO₄] is sulfuric acid gas concentration in m^{-3}). Spreakly, at al. (2006) atudied the contribution of boundary layer puelled

- ¹⁵ cm⁻³), Spracklen et al. (2006) studied the contribution of boundary layer nucleation events to total particle concentrations on regional and global scales. Using monthly means SO₂ concentrations, parameterized OH diurnal cycle, daily mean temperature and relative humidity, Kazil et al. (2006) investigated the formation of sulfate aerosol in the marine troposphere (over oceans only) from neutral and charged nucleation of
- H₂SO₄ and H₂O, by running the box model of Lovejoy et al. (2004) on grids embedded into 4 isobaric surfaces of the troposphere (925, 700, 550, and 300 hPa). Lucas and Akimoto (2006) evaluated in a 3-D global chemical transport model binary (Vehkamäki et al., 2002), ternary (Napari et al., 2002), and ion-induced nucleation (Lovejoy et al., 2004; Modgil et al., 2005) schemes.
- Lucas and Akimoto (2006) found that the binary nucleation model of Vehkamäki et al. (2002) and ion-induced nucleation model of Lovejoy et al. (2004) predict new particle formation only in the colder upper troposphere, and their simulations also show that binary nucleation rates based on Vehkamäki et al. (2002) are generally several orders of magnitude higher than the ion-induced nucleation based on the parameter-

ization of Lovejoy et al. (2004)'s model. Recent studies indicate that the BHN model of Vehkamäki et al. (2002) may have overestimated the BHN rates by around three orders of magnitude (Hanson and Lovejoy, 2006; Yu, 2007). It is important to determine accurately the contribution of different nucleation mechanisms to the new particle production in the troposphere.

Based on an up-to-date kinetically consistent ion-mediated nucleation model (IMN) incorporating recently available thermodynamic data and schemes, Yu (2006a) showed that ions can lead to significant particle formation not only in the upper troposphere but also in the lower troposphere (including boundary layer). The involvement of ions in many boundary layer nucleation events has been recently confirmed by evolving charged cluster distributions and overcharging of freshly nucleated nanometer particles observed during nucleation events, although the relative importance of ion-mediated nucleation versus neutral nucleation under different atmospheric conditions needs to be further investigated (lida et al., 2006; Hirsikko et al., 2007; Laakso et al., 2007;

- Yu, 2006b). New nanometer-sized particles are overcharged in more than 90% of the clear nucleation event-days sampled during spring 2005 in Hyytiälä, Finland, during the BACCI/QUEST IV field campaign (Laakso et al., 2007). Laakso et al. (2007) claim, based on an analytical analysis, that their measurements indicate a relatively small contribution of ion nucleation. By contrast, Yu (2006b), applying a different analytical approach, concludes that the same observations may indicate the dominance of IMN.
- Based on detailed kinetic simulations, Yu and Turco (2007) demonstrate that IMN can consistently explain the observed overcharging reported in Laakso et al. (2007).

The objective of this paper is to study the significance of IMN mechanism as a global source of new particles and the spatial distribution of nucleation zone. ²⁵ To achieve the objective, we integrated the IMN mechanism into a global chemical transport model (GEOS-Chem) and the simulated results are compared with land-, ship-, and aircraft-based measurements related to particle formation. The model and data used in this study are briefly described in Sects. 2 and 3, respectively. Section 4 presents modeling results and comparisons with measurements.

ACPD 7, 13597-13626, 2007 Ion-mediated nucleation as source of tropospheric aerosols F. Yu et al. **Title Page** Introduction Abstract Conclusions References **Tables Figures** Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

2 GEOS-Chem model

To study particle nucleation in the global atmosphere, we include our IMN mechanism in the GEOS-Chem model which is a global 3-D model of atmospheric composition driven by assimilated meteorological observations from the Goddard Earth Observing 5 System (GEOS) of the NASA Global Modeling Assimilation Office (GMAO). Meteorological fields include surface properties, humidity, temperature, winds, cloud properties, heat flux and precipitation. The GEOS-3 data, including cloud fields, have 6-h temporal resolution (3-h resolution for surface fields and mixing depths), 1°×1° horizontal resolution, and 48 vertical sigma levels extending from the surface to approximately 10 0.01 hPa. The horizontal resolution can be degraded and vertical layers merged for computational efficiency. For the results presented in this paper, the GEOS-3 grid with $2^{\circ} \times 2.5^{\circ}$ horizontal resolution and 30 vertical levels was used. The first 15 levels in the model are centered at approximately 10, 50, 100, 200, 330, 530, 760, 1100, 1600, 2100, 2800, 3600, 4500, 5500, and 6500 m above surface. 15

The GEOS-Chem model includes a detailed simulation of tropospheric ozone-NOxhydrocarbon chemistry as well as of aerosols and their precursors (Park et al., 2004). In addition to sulfate and nitrate aerosols, the model also considers organic and elemental carbon aerosols (Park et al., 2003), dust (Fairlie et al., 2004), and sea salt aerosol

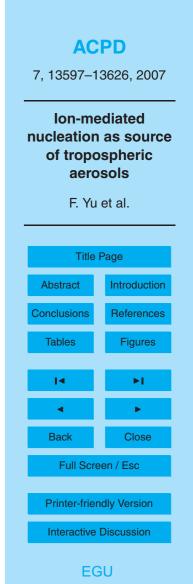
- (Alexander et al., 2005). Aero-sol and gas-phase simulations are coupled through sulfate and nitrate formation, heterogeneous chemistry (Evans and Jacob, 2005), aerosol effects on photolysis rates (Martin et al., 2003), and secondary organic aerosol formation. The ISORROPIA thermodynamic equilibrium model (Nenes et al., 1998) is used to calculate partitioning of total ammonia and nitric acid between the gas and aerosol
- 25 phases. A detailed description of the model (including the treatment of various emission sources, chemistry and aerosol schemes) can be found in the model webpage (http://www.as.harvard.edu/chemistry/trop/geos/index.html).

ACPD

7, 13597–13626, 2007

lon-mediated nucleation as source of tropospheric aerosols F. Yu et al. **Title Page** Introduction Abstract Conclusions References Tables **Figures** Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

The sulfur emission in GEOS-CHEM (Park et al., 2004) includes: 1) the fossil fuel and industrial emission (Benkovitz et al., 1996; Bey et al., 2001), 2) the gridded monthly aircraft and shipping emissions (Chin et al., 2000), 3) the biofuel emission based on the global biofuel CO emission from Yevich and Logan (2003), 4) the biomass burning emissions from Duncan et al. (2003), 5) the oceanic DMS emission calculated with an 5 empirical formula from Liss and Merlivat (1986), and 6) the volcano emission from the database of Andres and Kasgnoc (1998). In the original version of GEOS-CHEM (v7-03-06), the fossil fuel and industrial emission is obtained by scaling the gridded, seasonally resolved inventory from the Global Emissions Inventory Activity (GEIA) for 1985 (Benkovitz et al., 1996) with updated national emission inventories and fuel use data 10 (Bey et al., 2001). In this study, the SO₂ database from EDGAR 3.2, which fully considered the productions of energy, fossil fuel, biofuel, industrial processes, agriculture and waste handling (Olivier, 2001), is used to update the GEOS-CHEM anthropogenic sulfur emission data to year 2002. The global gridded scaling factor is derived according

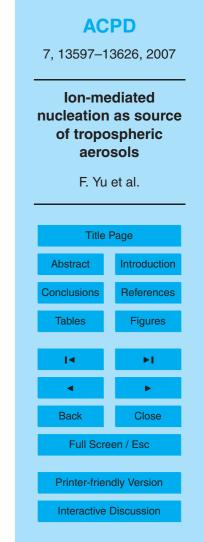

to the historical trend from 1990 to 2000. Due to the uncertainty of the emissions from sporadically erupting volcanoes, we only consider the continuously active volcanoes emission in this study. The emission from eruptive volcanoes is not considered in the study of Lucas and Akimoto (2006) as well.

3 Data relevant to atmospheric particle formation

20 3.1 Land based measurements

New particle formation has been observed extensively at many locations around the globe. Kulmala et al. (2004) provides a comprehensive review of measurements relevant to the formation of particles in ambient atmosphere. All of the cases with defined particle formation rates as listed in Kulmala et al. (2004) are used in this study for com-

parison. Table 1 gives additional sets of particle formation data published since 2004, which are also considered for comparison in this study.

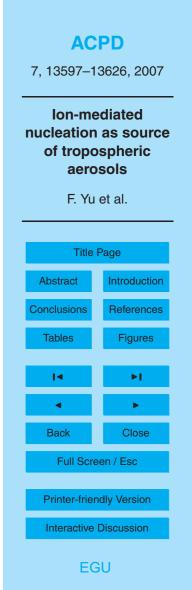

3.2 Ship based measurements

In a number of field campaigns, total concentrations of condensation nuclei (CN, diameter > ~12 nm) and ultrafine condensation nuclei (UCN, diameter > ~3 nm) in the surface layer of the ocean were continuously measured with CN counters during ship ⁵ cruises. The average particle formation rates at a given day can be estimated based on the change (increase) rates in the UCN and CN concentration difference (i.e., C_{UCN} - C_{CN}) typically during the morning hours.

Table A1 in Appendix A gives the ship-based particle formation rates we have derived from the measurements obtained during the following field campaigns: RITS94,
INDOEX99, ACE-Asia, ACE-2, ACE-1, NAURU99, NEAQS02, and NEAQS04. The original data were obtained from NOAA PMEL Atmospheric Chemistry Data Server (http://saga.pmel.noaa.gov/data/) where more information about the field campaigns can be found. In Table A1 we also include two additional sets of particle formation rates estimated from two published papers (Davison et al., 1996; Koponen et al., 2002).

15 3.3 Aircraft based measurements

Clarke and Kapustin (2002) published a survey of extensive aerosol data collected around the Pacific Basin during a number of field campaigns: Global Backscatter Experiment (GLOBE), First Aerosol Characterization Experiment (ACE-1), and Pacific Exploratory Mission (PEM)-Tropics A and B. The ultrafine condensation nuclei (UCN)
 counter was used to detect all particles larger than ~3–4 nm. The aircraft-based measurements considered in this study include the total UCN concentrations measured during GLOBE, ACE-1, and PEM-Tropics A and B (data obtained from Dr. Kapustin–about 146 600 10-second-average data points), as well as data from two more recent field missions: TRAnsport and Chemical Evolution over the Pacific (TRACE-P), and
 the Intercontinental Chemical Transport Experiment-Phase A (INTEX-A). TRACE-P and INTEX-A (about 100 000 10-second-average data points) significantly increased

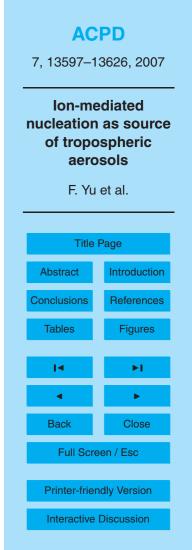

measurements were obtained from NASA's Global Tropospheric Experiment (GTE) database website.

4 Simulations and comparisons with observations

The nucleation module used in this study is composed of look-up tables of pseudosteady state nucleation rates under various conditions that are derived by running the detailed IMN model (Yu, 2006a). The ion-mediated nucleation rates (J_{IMN}) depend on sulfuric acid vapor concentration [H_2SO_4], relative humidity RH, and temperature T, ionization rate Q, and surface area of pre-existing particles S₀ (i.e., $J_{IMN} = f([H_2SO_4], RH, T, Q, S_0)$). At given values of [H_2SO_4], T, RH, Q, and S₀, J_{IMN} can be accurately decided using the look-up tables with an efficient multiple-variable interpolation scheme.

In the current version of GEOS-Chem (v7-03-06), H_2SO_4 vapor concentration $([H_2SO_4])$ is not explicitly resolved (all H_2SO_4 gas produced is moved to particulate phase instantaneously). We have modified the code and now $[H_2SO_4]$ is a prognostic variable. The change of $[H_2SO_4]$ is determined by $d[H_2SO_4]/dt = P - CS \times [H_2SO_4]$, where P is the production rate of $[H_2SO_4]$ from gas phase chemistry (mainly OH + SO₂) and CS is the condensation sink for H_2SO_4 gas associated with the condensation of H_2SO_4 vapor on pre-existing particles. CS and S₀ are calculated from the particle mass predicted in the GEOS-Chem and assumed particle sizes. The transport and deposition of H_2SO_4 vapor are also taken into account in the model. The global ionization

- rates due to cosmic rays are calculated based on the schemes given in Usoskin and Kovaltsov (2006) and the contribution of radioactive materials from soil to ionization rates is parameterized based on the profiles given in Reiter (1992). We run the GEOS-Chem coupled with nucleation module for one year from 1 July 2001 to 30 June 2002. The time step for transport is 15 min and for chemistry (and nucleation) is 30 min. Figure 1
- ²⁵ presents the simulated horizontal (averaged in seven lowest model layers representing the boundary layer) and vertical (zonal-averaged) spatial distributions of annual mean SO₂ concentration, condensation sink, and [H₂SO₄]. The calculations of CS, [H₂SO₄],


and hence nucleation rates are only limited to grid boxes within GEOS-Chem's annual mean tropopause.

Figures 1a and 1b shows that the high SO₂ concentration zones are generally confined to source regions. The annual mean SO₂ surface layer concentrations in large areas of eastern United States, Europe, eastern China, Indian, Mexico, and Chile are above 1 ppb with some hot spots above 3 ppb. Vertically, high SO₂ concentration (zonal average >0.1 ppb, note the difference in the scale of Fig. 1a and Fig. 1b) zone can reach up to around 700 hpa (sigma =~0.7) with the highest concentration limited to below 800 hpa in the northern hemisphere. The relatively low SO₂ concentration in middle and upper tropical (~20° S–30° N) troposphere is probably due to relatively

weak SO₂ sources and high scavenging rate associated with convection and precipitation. The relatively high SO₂ concentration over Antarctica is mainly associated with DMS emission near the Antarctic coast. The extension of high SO₂ zone from surface up to 300 hpa around latitude of 30° S is associated with mountain uplifting of anthropogenic SO₂emission in Chile and direct injection of SO₂ into middle troposphere from the continuously active volcano Lascar in Chile (2400 Mg-SO₂/day, 23.32° S, 67.44° W,

elevation 5.6 km).
It is clear from Figs. 1c and 1d that large areas of eastern and southern Asia, western Europe, eastern United States, southern America, and Africa have high CS associated
with anthropogenic emission, biomass burning, and dust emission. Vertically, the high CS zone centered around 30° N extends to ~600–700 hpa. In contrast to Artic region which is influenced by regional transport of particle pollutants, the CS around Antarctica is very low. In addition to sea salt emission, the CSs over oceans adjacent to continentals are significantly affected by transported particles. The concentration of H₂SO₄vapor (Figs. 1e, 1f) is determined by its production rate (mainly controlled by SO₂ and OH concentration) and loss rate (condensation sink). The highest [H₂SO₄]

regions are confined to areas of high SO_2 concentration, high annual irradiance flux, and low CS. In regions of higher SO_2 as well as higher CS, it appears that the increased production dominate and thus $[H_2SO_4]$ are generally higher. Vertically, $[H_2SO_4]$ gen-

erally decreases with altitude due to more rapidly decrease of SO_2 with altitude. The relatively high $[H_2SO_4]$ in tropical upper troposphere is due to the very lower CS calculated in the model.

Figure 2 shows the predicted annual mean nucleation rates averaged within the seven lowest model layers (~0–930 m) representing the atmospheric boundary layer. Also given for comparison are average particle formation rates derived from various surface-based measurements (refer to Sect. 3 for details). Observed nucleation events typically last for ~3h a day, and thus an observed average nucleation rate of 1 particle cm⁻³s⁻¹ is equivalent to roughly 10⁴ particles cm⁻³day⁻¹. We have used this
equivalence to cross-calibrate the color bars in the figure.

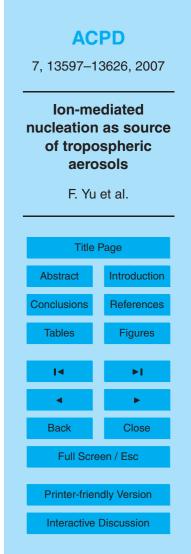
Our simulations show that, globally, nucleation in the boundary layer is largely confined to two broad latitude belts: one in the northern hemisphere ($\sim 20^{\circ}$ N–70 $^{\circ}$ N), and one in the southern hemisphere ($\sim 30^{\circ}$ S–90 $^{\circ}$ S). In the boundary layer, nucleation rates over continentals are generally much higher than those over oceans. In the middle late

- ¹⁵ itude boundary layer over continentals, the annual mean new particle production rates are generally above 10⁴ cm⁻³day⁻¹, with some hot spots reaching 10⁵ cm⁻³day⁻¹. Over middle latitude oceanic boundary layer, the annual mean new particle production rates are generally below 2500 cm⁻³day⁻¹. Most boundary layer nucleation events in the northern hemisphere (except over remote ocean areas, and Greenland) are as-
- ²⁰ sociated with anthropogenic SO₂ emissions; in the southern hemisphere, nucleation is triggered both by oceanic DMS and anthropogenic SO₂. Owing to higher temperatures, nucleation rates in the boundary layer at tropical latitudes (30° S–30° N, except some regions with high SO₂ source) are negligible even though H₂SO₄ gas concentrations are at medium level (see Fig. 1c). Particle formation over the Antarctica occurs
- ²⁵ mainly during the austral summer season. The simulations also indicate that nucleation induced by anthropogenic SO₂ emission contributes to particle abundances in the southern hemisphere. The high nucleation zone along the Chile coast in South American appears to be a significant source of new particle in the southern hemisphere. The relatively higher nucleation rate over Antarctica is due to lower CS, colder

ACPD 7, 13597-13626, 2007 **lon-mediated** nucleation as source of tropospheric aerosols F. Yu et al. **Title Page** Introduction Abstract Conclusions References Tables **Figures** Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

temperatures, and higher ionization rates. By contrast, nucleation rates in the Arctic region (\sim 70° N–90° N) are much lower due to relatively high concentrations of pre-existing particles associated with regional pollution (Arctic haze).

- Most of the land-based measurements were taken in Western Europe and North ⁵ America. Ship data, which span the major ocean basins, show negligible particle formation over tropical seas (~30° S–30° N). It should be noted that the model results represent annual mean nucleation rates (averaged over periods that may or may not include nucleation events) for each 2° ×2.5° grid cell, while the observations represent average "apparent" particle formation rates based on measured particle concentrations
- (mostly of sizes ~3 nm or larger) detected during nucleation events at specific locations. The fraction of freshly nucleated particles (~1.5 nm) that can grow to measurable size depends on the local growth rate and coagulation lifetime. While the comparison between simulations and observations shown in Fig. 2 is qualitative and limited, it is the first of the kind and Fig. 2 shows that, overall, the predicted spatial pattern of aerosol formation arrive with well with measurements. The comparison place reveals review.
- formation agrees quite well with measurements. The comparison also reveals regions with high predicted nucleation rates in middle-western United States, Canada, Middle East, Eastern Europe, Greenland, Asia, Chile, and Antarctica where nucleation measurements are sparse. Measurements in these regions would therefore be useful for improving our understanding of particle nucleation in the global atmosphere.
- The IMN rate is limited by the local ionization rate, roughly ~10 ion-pairs cm⁻³s⁻¹ in the continental surface layer, and ~2 ion-pairs cm⁻³s⁻¹ over oceans (and snow or ice). Most observed particle production rates (Kulmala et al., 2004, also see Table 1) fall below the background ionization-rate limit (~20 ions/cm³s over continental sites). Comparing the predictions and observations in Fig. 2, it appears that IMN can account for much of the observed particle formation near Earth's surface. An obvious exception is the extremely high rate of particle formation (well above 1000/cm³s and up to ~10⁵/cm³s) observed in the clean marine coastal environment at Mace Head (O'Dowd et al., 1998). It seems that these anomalously high nucleation rates are linked to the occurrence of low tides and may be associated with homogeneous nucleation of io-


ACPD 7, 13597-13626, 2007 **lon-mediated** nucleation as source of tropospheric aerosols F. Yu et al. Title Page Introduction Abstract Conclusions References Tables **Figures** Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

dine species (O'Dowd et al., 2002). Some measurements also yield particle formation rates that exceed the assumed IMN ionization limit. In this case, possible explanations include: (1) homogeneous nucleation mechanisms that involve other species, which remain to be identified; (2) nucleation in exhaust streams that are not fully diluted prior

- to sampling, where binary homogeneous nucleation can lead to very high levels of nanoparticles (Du and Yu, 2006); (3) enhanced particle formation at locations where the ambient ionization rate exceeds ~10 ion-pairs/cm³s-indeed, some measurements indicate that ionization rates near the surface can exceed 100 ion-pairs/cm³s due to the accumulation of radon gas in the nocturnal boundary layer (Dhanorkar and Kamra,
- ¹⁰ 1994); (4) the inferred high rates of particle formation based on ultrafine particle concentrations may be a result of rapid mixing of particles formed elsewhere (Stanier et al., 2004).

Figure 3a shows GOES-IMN simulated annual-mean zonally-averaged nucleation rates as a function of sigma (=pressure/surface pressure) and latitude. It is clear that ¹⁵ while nucleation rates are generally small in the lower tropical atmosphere, very high nucleation rates are predicted in middle and upper tropical air layers associated with very low temperature, high ionization rate, and lower condensation sink. High nucleation rates are also obvious in the whole mid-latitude troposphere (25° N–75° N) in the northern hemisphere although the nucleation rates decrease with altitude. Nucleation

- appears to be negligible in most northern part of the troposphere (~75° N and north). In the southern hemisphere, nucleation in the middle troposphere over Antarctica is significant and nucleation zone extends to ~60° S. Ito (1993) reported that bimodal size distribution with a trough at around 20 nm in diameter was observed at Syowa station (69° S, 39° 35'E) in almost all the days from August to December in 1978. Deshpande
- ²⁵ and Kamra (2004) observed very high concentrations (as high as 10⁴/cm³) of nucleation mode particles around 10 nm in diameter associated with subsidence of midtropospheric air at the Indian Antarctica station, Maitri (70°45′S, 11°44′E). It appears that these measurements support our simulations which indicate the existence of a nucleation zone over the Antarctica. The nucleation zone in the lower troposphere around

 30° S is primarily a result of anthropogenic SO₂ emissions (also see Fig. 1). The strong nucleation zone in the middle to upper troposphere around 30° S appears to be mainly associated with the continuously active volcano Lascar in Chile which injects 2400 Mg of SO₂ per day at an altitude of around 5.6 km.

- The total concentrations of particles larger than ~3 nm have been measured at various altitudes, latitudes, and longitudes with aircraft-based ultrafine condensation nuclei (UCN) counters. While it is difficult to derive in situ particle formation rates directly from these data owing to rapid changes in air mass, UCN concentrations nevertheless can be used as indicators of nucleation, since high UCN concentrations are generally as-
- sociated with large nucleation rates. Figure 3b summarizes the zonally-averaged latitudinal and vertical distributions of total UCN concentrations measured during a number of field campaigns covering a wide range of areas and seasons (see Sect. 3.3). The high UCN regions in the upper troposphere and northern mid-latitude troposphere, and lower UCN in tropical lower troposphere are consistent with corresponding high or low
- ¹⁵ nucleation rates in Fig. 3a (keeping in mind that the nucleation rates in Fig. 3a represent zonal and temporal averages, while the UCN concentrations in Fig. 3b represent measurements at selected locations and times). While the comparison between Fig. 3a and Fig. 3b should be considered qualitative, it is the first attempt to compare global nucleation zones with aircraft-based UCN measurements. Figure 3 indicates that the
- IMN mechanism appears to capture the vertical spatial patterns in the UCN distribution for the regions where sufficient data are available to discern larger-scale patterns. High concentrations of ultrafine particles were also observed during the upper systematic tropospheric transequatorial Africa flights (Heintzenberg et al., 2003). These data are not included in Fig. 3b but are generally consistent with Fig. 3. Aircraft-based measurements at higher latitudes in both hemispheres are currently lacking to verify our
- 25 surements at higher latitudes in both hemispheres are currently lacking to verify our model predictions.

The general agreement between simulations and observations demonstrated above strongly supports the important role of IMN in generating new particles in global troposphere. Figure 4 compares the annual mean IMN rates integrated over the low-

ACPD

7, 13597–13626, 2007

Ion-mediated nucleation as source of tropospheric aerosols

F. Yu et al.

est 3 km of atmosphere (e.g., the source strength due to IMN, SS_{IMN0-3}, #/cm²day) with the annual mean source of primary particles due to emissions (e.g., the source strength of primary emissions, SS_{primary}, #/cm²day) in terms of the ratio of SS_{IMN0-3} to SS_{primary}. The results in Fig. 4 clearly indicate that IMN is a significant source of particles throughout the lower troposphere. At high latitudes (~30° N–90° N, 30° S–90° S), the ratio exceeds 10 over oceans, and lies between ~10 and ~300 over land. In the tropics (30° S–30° N), SS_{IMN0-3}/SS_{primary} is generally between 0.1 and 10, although some spots have very high ratio and some others spots have very low ratio.

In discussing the relative contribution of secondary particle formation versus primary particle emission to climate active particles, we should keep in mind that the diameters of freshly nucleated particles are just a few nanometers, while those of primary particles are generally greater than 50 nm. The fraction of nucleated particles that grow to CCN sizes depends on the local growth rates (and, hence, the precursor vapor concentrations), and on the concentration of pre-existing particles. Pierce and Adams (2007)

- found that the probability of a nucleated particle generating a CCN varies from <0.1% to >90% in different regions of the atmosphere, and falls between 5% and 40% for a large fraction of nucleated particles in the boundary layer. Clearly, with these statistics in mind, IMN is very likely to be a significant source of particles that impact climate. It should be noted that the ratios shown in Fig. 4 do not include the contributions of the statistics.
- new particle formation in the middle and upper troposphere. Some of the particles nucleated in the middle and upper troposphere will contribute to the climate effective particles due to their relatively long lifetime (against scavenging by pre-existing particles), although the particle growth rates in these regions are typically small. The evolution of nucleated particles into CCN should be analyzed using a size-resolved aerosol microphysical model coupled to global code like GEOS-Chem.

ACPD 7, 13597-13626, 2007 **lon-mediated** nucleation as source of tropospheric aerosols F. Yu et al. Title Page Introduction Abstract Conclusions References Tables **Figures** Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion FGU

5 Summary and discussion

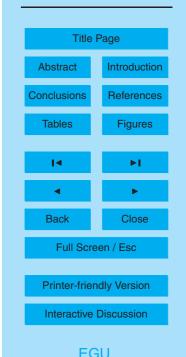
The magnitude of the aerosol indirect radiative forcing is poorly constrained in climate models, and this is the dominant uncertainty in assessing climate change. The aerosol indirect radiative forcing is largely determined by the number abundance of particles

that can act as cloud condensation nuclei (CCN). A clear understanding of the contribution of new particle formation and growth to CCN abundance, which is essential to properly assess the influences of aerosols on climate, depends on our ability to predict accurately the rates of new particle formation in large-scale models. Significant theoretical and experimental progresses have been made in last couple of years with regard to the role of ions in the formation of tropospheric particles.

In this study, we integrate a recently updated ion-mediated nucleation (IMN) mechanism into a global chemical transport model (GEOS-Chem) to investigate the significance of IMN mechanism as a global source of new particles and the spatial distribution of nucleation zone. We run the GEOS-Chem coupled with nucleation mechanism for

one year from 1 July 2001 to 30 June 2002, using GEOS-3 grid with 2°×2.5° horizontal resolution and 30 vertical levels. The time step for chemistry (and nucleation) is 30 min. Our simulations indicate that IMN can lead to significant new particle production.

Horizontally, a comparison of simulated annual mean particle formation rates in boundary layer with a comprehensive dataset of land- and ship- based nucleation


- ²⁰ measurements suggests that IMN mechanism may be able to account for many of the observed nucleation events. Vertically, the simulated high and low regions of annual-mean zonally-averaged nucleation rates appears to be consistent with high and low zones of UCN concentrations measured during a number of aircraft-based field campaigns. While the comparison between simulations and observations shown in this
- study is qualitative and limited, it is the first of the kind and, overall, the predicted spatial pattern of aerosol formation agrees quite well with measurements. The comparison also reveals regions with high predicted nucleation rates where nucleation measurements are sparse and thus identifies the regions where possible future nucleation

ACPD

7, 13597–13626, 2007

Ion-mediated nucleation as source of tropospheric aerosols

F. Yu et al.

measurements should be carried out to improve our understanding of particle nucleation in the global atmosphere.

Particle formation rates are sensitive to [H₂SO₄]. One of major uncertainties in our simulated results is associated with the accuracy of the calculated [H₂SO₄]. In addition to the uncertainty in the simulated SO₂ concentrations which depend on emission, transport, and loss processes, the uncertainty in the condensation sink (CS) estimated from the simulated mass and assumed size of particles of different types also influence the accuracy of [H₂SO₄]. In addition, the contribution of nucleation mode particles to CS is not considered in current model. To resolve the issue and to study the contribu-

tion of nucleation to CCN in different global environments, we will include size-resolved aerosol microphysics processes in GEOS-Chem in our future study.

Similar to other nucleation schemes that have been used in the global models to predict new particle formation, the IMN mechanism is subject to uncertainty as well. First, the thermodynamic data and physical algorithms used in the IMN model have limitation

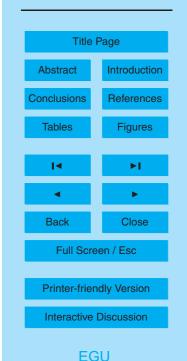
- ¹⁵ and uncertainties. Second, species other than H₂SO₄ and H₂O (such as NH₃, HNO₃, and organics) may affect the properties of small clusters and the nucleation rates in the real atmosphere. These uncertainties may imply that the IMN contribution to new particle formation in the troposphere could be either higher or lower than what we presented in this study. It should be noted that other nucleation mechanisms may also
- 20 contribute to tropospheric new particle formation. In addition to improve the nucleation mechanisms through theoretical development, laboratory and field studies, and quantum calculations for small clusters, further research is also needed on the contributions of different nucleation mechanisms to global source of new particles. More detailed and comprehensive comparisons of model predictions with relevant data obtained in vari-
- ²⁵ ous field campaigns will be helpful to assess the successfulness of various nucleation mechanisms in explaining the observed nucleation events and to identify the areas for further improvement in the existing theories.

ACPD 7, 13597-13626, 2007 **lon-mediated** nucleation as source of tropospheric aerosols F. Yu et al. **Title Page** Introduction Abstract Conclusions References Tables **Figures** 14 Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

Appendix A

Table A1 gives particle formation rates over oceanic surface derived from ship-based condensation nuclei (CN, diameter $> \sim 12$ nm) and ultrafine condensation nuclei (UCN, diameter $> \sim 3$ nm) measurements.

Acknowledgements. This study is supported by the NOAA/DOC under grant NA05OAR4310103 and NSF under grant 0618124. Z. Wang acknowledges the support of the CAS International Partnership Program for Creative Research Teams, the National 973 Project (2005CB422205) and NSFC (40533017). The GEOS-Chem model is managed by the Atmospheric Chemistry Modeling Group at Harvard University with support from the NASA Atmospheric Chemistry Modeling and Analysis Program. We thank V. N. Kapustin and A. Clark for providing the aircraft-based UCN data. TRACE-P and INTEX-A data are from NASA Global Tropospheric Experiment (GTE) database website. The original ship-based data were obtained from NOAA PMEL Atmospheric Chemistry Data Server.


References

- ¹⁵ Albrecht, B. A.: Aerosols, cloud microphysics and fractional cloudiness, Sciences, 245, 1227– 1230, 1989.
 - Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., Lee, C. C. W., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes, J. Geophys. Res., 110, D10307, doi:10.1029/2004JD005659, 2005.
- ²⁰ Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15(4), 955–966, 2001.
 - Andres, R. J. and Kasgnoc, A. D.: A time-averaged inventory of subaerial volcanic sulfur emissions, J. Geophys. Res., 103(D19), 25251–25262, doi:10.1029/98JD02091, 1998.
 Benkovitz, C. M., Scholtz, M. T., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E. C., Spiro, P.
- A., Logan, J. A., and Graedel, T. E.: Global gridded inventories of anthropogenic emissions of sulfur and nitrogen, J. Geophys. Res., 101(D22), 29 239–29 253, 1996.
 - Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B., Fiore, A. M., Li, Q., Liu, H., Mickley, L. J., and Schultz, M.: Global modeling of tropospheric chemistry with assimilated

7, 13597–13626, 2007

Ion-mediated nucleation as source of tropospheric aerosols

F. Yu et al.

meteorology: Model description and evaluation, J. Geophys. Res., 106(D19), 23073–23096, 2001.

Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A. Jr., Hansen, J. E., and Hofmann, D. J. : Climate forcing by anthropogenic aerosols, Science, 255, 423–430, 1992.

- ⁵ Chin, M., Rood, R. B., Lin, S.-J., Müller, J.-F., and Thompson, A. M.: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties, J. Geophys. Res., 105(D20), 24671–24687, 2000.
 - Clarke, A. D. and Kapustin, V. N.: A pacific aerosol survey. Part 1: A decade of data on particle production, transport, evolution, and mixing in the troposphere, J. Atmos. Sci., 59, 363–382, 2002.

10

- Davison, B., Nicholas Hewitt, C., O'Dowd, C. D., Lowe, J. A., Smith, M. H., Schwikowski, M., Baltensperger, U., and Harrison, R. M.: Dimethyl sulfide, methane sulfonic acid and physicochemical aerosol properties in Atlantic air from the United Kingdom to Halley Bay, J. Geophys. Res., 101(D17), 22855–22868, 1996.
- ¹⁵ Deshpande, C. G. and Kamra, A. K. : Physical properties of aerosols at Maitri, Antarctica, Proc. Indian Acad. Sci. (Earth Planet. Sci.), 113, 1–25, 2004.
 - Dhanorkar, S. and Kamra, A. K. : Diurnal variation of ionization rate close to ground, J. Geophys. Res., 99(D9), 18523–18526, 10.1029/94JD01335, 1994.

Du, H. and Yu, F.: Formation of volatile nanoparticles in engine exhaust: Contributions of the

- ²⁰ binary H₂SO₄H2O homogeneous nucleation, Atmos. Environ., 40, 7579–7588, 2006. Duncan, B. N., Martin, R. V., Staudt, A. C., R. Yevich, and Logan, J. A.: Interannual and seasonal variability of biomass burning emissions constrained by satellite observations, J. Geophys. Res., 108(D2), 4100, doi:10.1029/2002JD002378, 2003.
- Dunn, M. J., Jiménez, J.-L., Baumgardner, D., Castro, T., McMurry, P. H., and Smith, J. N.: Measurements of Mexico City nanoparticle size distributions: Observations of new particle
 - formation and growth, Geophys. Res. Lett., 31, L10102, doi:10.1029/2004GL019483, 2004. Evans, M. J. and Jacob, D. J.: Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric nitrogen oxides, ozone, and OH, Geophys. Res. Lett., 32, L09813, 2005.
- Fairlie, T. D., Jacob, D. J., and Park, R.: A simulation of the transpacific transport of mineral dust from Asia during spring 2001: Evaluation of results from GEOS-CHEM with ground-based, aircraft and satellite measurements, Eos Trans. AGU, 85(17), Jt. Assem. Suppl., Abstract A31B-07, 2004.

ACPD						
7, 13597–1	3626, 2007					
Ion-mediated nucleation as source of tropospheric aerosols F. Yu et al.						
Title	Page					
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
I	►I.					
•	•					
Back	Close					
Full Scre	Full Screen / Esc					
Printer-friendly Version						
Interactive	Discussion					

- Fan, J., Zhang, R., Collins, D., and Li, G. : Contribution of secondary condensable organics to new particle formation: A case study in Houston, Texas, Geophys. Res. Lett., 33, L15802, doi:10.1029/2006GL026295, 2006.
- Ghan, S. J. and Schwartz, S. E. : Aerosol properties and processes: A path from field and
- laboratory measurements to global climate models, Bull. Amer. Meteorol. Soc., 88, 1059-5 1083, 2007.
 - Gong, Y., Hang, S., and Fang, C., et al.: Analysis on concentration and source rate of precursor vapors participating in particle formation and growth at Xinken in Pearl River Delta of China, Adv. Atmos. Sci., in press, 2007.
- Hamed, A., Joutsensaari, J., Mikkonen, S., et al.: Nucleation and growth of new particles in Po 10 Valley, Itally, Atmos. Chem. Phys. Discuss., 6, 9603-9653, 2006, http://www.atmos-chem-phys-discuss.net/6/9603/2006/.

Hanson, D. R. & Lovejoy, E. R. : Measurement of the thermodynamics of the hydrated dimmer and trimer of sulfuric acid, J. Phys. Chem. A, 110, 9525–9528, doi:10.1021/jp062844w, 2006.

- 15
 - Heintzenberg, J., Hermann, M., and Theiss, D.: Out of Africa: High aerosol concentrations in the upper troposphere over Africa, Atmos. Chem. Phys., 3(4), 1191–1198, 2003.
 - Hirsikko, A., Bergman, T., Laakso, L., Dal Maso, M., Riipinen, I., Hõrrak, U., and Kulmala, M.: Identification and classification of the formation of intermediate ions measured in boreal
- forest, Atmos. Chem. Phys. 7, 201–210, 2007. 20
 - Hopke, P. H. and Utell, M. J.: Ambient Air Quality Monitoring of Ultrafine Particles in Rochester, New York - NYSERDA Report 05-04, 2005.
 - lida, K., Stolzenburg, M., McMurry, P., Dunn, M. J., Smith, J. N., Eisele, F., and Keady, P.: Contribution of ion-induced nucleation to new particle formation: Methodology and its appli-
- cation to atmospheric observations in Boulder, Colorado, J. Geophys. Res., 111, D23201, 25 doi:10.1029/2006JD007167.2006.
 - IPCC, Climate Change 2007: in: The Physical Scientific Basis, edited by: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marguis, K. B. Averyt, M. Tignor and H. L. Miller, Cambridge Univ. Press. New York. 2007.
- Ito. T.: Size distribution of Antarctic submicron aerosols, Tellus, Ser. B, 45, 145–159, 1993. 30 Jeong, C. H., Evans, G. J., Hopke, P. H., Chalupa, D., and Utell, M. J.: Influence of atmospheric dispersion and new particle formation events on ambient particle number concentration in Rochester, United States, and Toronto, Canada?, J. Air & Waste Manage. Assoc., 56, 431-

ACPD 7, 13597–13626, 2007 **lon-mediated** nucleation as source of tropospheric aerosols F. Yu et al. Title Page Introduction Abstract Conclusions References **Tables Figures** Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

FGU

443, 2006.

30

- Kazil, J., Lovejoy, E. R., Barth, M. C., and O'Brien, K.: Aerosol nucleation over oceans and the role of galactic cosmic rays, Atmos. Chem. Phys., 6, 4905–4924, 2006, http://www.atmos-chem-phys.net/6/4905/2006/.
- ⁵ Koponen, I. K., Virkkula, A., Hillamo, R., Kerminen, V.-M., and Kulmala, M.: Number size distributions and concentrations of marine aerosols: Observations during a cruise between the English Channel and the coast of Antarctica, J. Geophys. Res., 107 (D24), 4753, doi:10.1029/2002JD002533, 2002.

Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W.,

- and McMurry, P.: Formation and growth rates of ultrafine atmospheric particles: A review of observations, J. Aerosol Sci., 35, 143–176, 2004.
 - Laakso, L., Gagné, S., Petäjä, T., Hirsikko, A., Aalto, P. P., Kulmala, M., and Kerminen, V.-M.: Detecting charging state of ultra-fine particles: instrumental development and ambient measurements, Atmos. Chem. Phys. 7, 1333–1345, 2007.
- Laaksonen, A., Hamed, A., Joutsensaari, J., Hiltunen, L., Cavalli, F., Junkermann, W., Asmi, A., Fuzzi, S., and Facchini, M. C.: Cloud condensation nucleus production from nucleation events at a highly polluted region, Geophys. Res. Lett., 32, L06812, doi:10.1029/2004GL022092, 2005.

Lee, Y.-G., Choi1, C.-H., and Choi, B.-C.: Characterization of particle growth events at western

- 20 coastal site of Korea in 2005, in Proceedings of 7th International Aerosol Conference, p 1220–1221, 2006.
 - Lihavainen, H., Panwar, T. S., Komppula, M., et al.: Aerosol properties in background site in India, in Proceedings of 7th International Aerosol Conference, p 1226, 2006.

Liss, P. S. and Merlivat, L.: Air-sea gas exchange rates: Introduction and synthesis, in: The

- Role of Air-Sea Exchange in Geochemical Cycling, edited by: P. Buat-Me'nard, pp. 113– 127, D. Reidel, Norwell, Mass, 1986.
 - Lovejoy, E. R., Curtius, J., & Froyd K. D: Atmospheric ion-induced nucleation of sulfuric acid and water. J. Geophys. Res., 109, D08204, doi:10.1029/2003JD004460, 2004.

Lucas, D. D. & Akimoto, H. : Evaluating aerosol nucleation parameterizations in a global atmospheric model, Geophys. Res. Lett., 33, L10808, doi:10.1029/2006GL025672, 2006.

Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M., and Ginoux, P.: Global and regional decreases in tropospheric oxidants from photochemical effects of aerosols, J. Geophys. Res., 108, 4097, doi:10.1029/2002JD002622, 2003.

7, 13597–13626, 2007

Ion-mediated nucleation as source of tropospheric aerosols

F. Yu et al.

Title Page							
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
I	۶I						
•	•						
Back	Close						
Full Scre	en / Esc						
Printer-friendly Version							
Interactive I	Discussion						

EGU

Modgil, M. S., Kumar, S., Tripathi, S. N., and Lovejoy, E. R.: A parameterization of ion-induced nucleation of sulphuric acid and water for atmospheric conditions, J. Geophys. Res., 110, D19205, doi:10.1029/2004JD005475, 2005.

Mozurkewich, M., Chan, T.-W., Aklilu, Y.-A., and Verheggen, B.: Aerosol particle size distribu-

- tions in the lower Fraser Valley: evidence for particle nucleation and growth, Atmos. Chem. Phys., 4, 1047–1062, 2004, http://www.atmos-chem-phys.net/4/1047/2004/.
 - Napari, I., Noppel, M., Vehkamäki, H., and Kulmala, M.: Parametrization of ternary nucleation rates for H₂SO₄-NH₃-H₂O vapors, J. Geophys. Res., 107(D19), 4381, doi:10.1029/2002JD002132, 2002.
- ¹⁰ Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols, Aquat. Geochem., 4, 123–152, 1998.
 - NRC, Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties, National Academies Press, 2005.

O'Dowd, C. D., Geever, M., Hill, M. K., Smith, M. H., and Jennings, S. G.: New particle forma-

- tion: Nucleation rates and spatial scales in the clean marine coastal environment, Geophys. Res. Lett., 25(10), 1661–1664, doi:10.1029/98GL01005, 1998.
 - O'Dowd, C. D., Jimenez, J. L., Bahreini, R., et al.: Marine aerosol formation from biogenic iodine emissions, Nature, 417, 632–636, 2002.

Olivier, J. G. J., Berdowski, J. J. M., Peters, J. A. H. W., Bakker, J., Visschedijk en, A. J. H.,

- and Bloos J.-P. J.: Applications of EDGAR. Including a description of EDGAR 3.0: reference database with trend data for 1970–1995, RIVM, Bilthoven, RIVM report no. 773301 001/ NOP report no. 410200 051, 2001.
 - Park, R. J., Jacob, D. J., Field, B. D., Yantosca, R. M., and Chin, M.: Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for policy, J. Geophys. Res., 109, D15204, doi:10.1029/2003JD004473, 2004.
 - Park, R. J., Jacob, D. J., Chin, M., and Martin, R. V.: Sources of carbonaceous aerosols over the United States and implications for natural visibility, J. Geophys. Res., 108, 4355, doi:10.1029/2002JD003190, 2003.

25

Petäjä, T., Kerminen, V.-M., Dal Maso, M., et al.: Sub-micron atmospheric aerosols in the

- ³⁰ surroundings of Marseille and Athens: physical characterization and new particle formation, Atmos. Chem. Phys., 7, 2705–2720, 2007, http://www.atmos-chem-phys.net/7/2705/2007/.
 - Pierce, J. R., & Adams, P. J.: Efficiency of cloud condensation nuclei formation from ultrafine particles, Atmos. Chem. Phys., 7, 1367–1379, 2007, http://www.atmos-chem-

ACPD							
7, 13597–13626, 2007							
Ion-mediated nucleation as source of tropospheric aerosols F. Yu et al.							
Title Page							
Abstract Introduction							
Conclusions References							
Tables	Figures						
I	►I						
•	•						
Back	Close						
Full Scre	en / Esc						
Printer-friendly Version							
Interactive Discussion							

phys.net/7/1367/2007/.

5

15

20

- Reiter, R.: Phenomena in Atmospheric and Environmental Electricity, Elsevier, New York, 1992.
- Qian, S., Sakurai, H., and McMurry, P. H.: Characteristics of regional nucleation events in urban East St. Louis, Atmos. Environ., 41, 4119–4127, 2007.
- Spracklen, D. V., Carslaw, K. S., Kulmala, M., Kerminen, V.-M., Mann, G. W., and Sihto, S.-L.: The contribution of boundary layer nucleation events to total particle concentrations on regional and global scales, Atmos. Chem. Phys., 6, 12, pp.5631–5648, 2006.
- Stanier, C., Khlystov, A., and Pandis, S. N.: Nucleation events during the Pittsburgh Air Quality
- ¹⁰ Study: Description and relation to key meteorological, gas phase, and aerosol parameters, Aerosol Sci. Technol., 38, suppl. 1, 253–264, 2004.
 - Suni, T., Gorsel, E. V., Cleugh, H., et al.: Biogenic Aerosol Formation in a Native Australian Eucalypt Forest, in Proceedings of 7th International Aerosol Conference, p 1241, 2006.
 - Turco, R. P., Zhao, J. X., and F. Yu: A new source of tropospheric aerosols: Ion-ion recombination, Geophys. Res. Lett., 25, 635–638, 1998.
 - Twomey, S.: The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149–1152, 1977.
 - Usoskin I. G. and Kovaltsov, G. A. : Cosmic ray induced ionization in the atmosphere: Full modeling and practical applications, J. Geophys. Res., 111, D21206, doi:10.1029/2006JD007150, 2006.
 - Vehkamäki, H., Kulmala, M., Napari, I., Lehtinen, K. E. J., Timmreck, C., Noppel, M., and Laaksonen, A.: An improved parameterization for sulfuric acid–water nucleation rates for tropospheric and stratospheric conditions, J. Geophys. Res., 107 (D22), 4622, doi:10.1029/2002JD002184, 2002.
- Vehkamäki H., Dal Maso, M., Hussein, T, et al.: Atmospheric particle formation events at Värriö measurement station in Finnish Lapland 1998–2002, Atmos. Chem. Phys., 4, 2015–2023, 2004, http://www.atmos-chem-phys.net/4/2015/2004/.
 - Wehner, B., Bauer, S., Wu, Z., et al.: Formation and Growth of Ultrafine Particles in Beijing, China, in Proceedings of 7th International Aerosol Conference, p 1609–1610, 2006.
- Wu, Z., Hu, M., Liu, S., Wehner, B., Bauer, S., Ma ßling, A., Wiedensohler, A., Petäjä, T., Dal Maso, M., and Kulmala, M.: New particle formation in Beijing, China: Statistical analysis of a 1-year data set, J. Geophys. Res., 112, D09209, doi:10.1029/2006JD007406, 2007.

Yevich, R. and Logan, J. A. : An assessment of biofuel use and burning of agri-

ACPD

7, 13597–13626, 2007

Ion-mediated nucleation as source of tropospheric aerosols

F. Yu et al.

AbstractIntroductionConclusionsReferencesTablesFiguresI<►II<►IBackCloseFull Screer / Esc	Title Page							
Tables Figures I<	Abstract	Introduction						
I ◀ ►I ■ ►I ■ ► Back Close Full Screen / Esc	Conclusions	References						
▲ ▶ Back Close Full Screen / Esc	Tables	Figures						
Full Screen / Esc	14 ×1							
Full Screen / Esc	•	•						
	Back	Close						
Printer-friendly Version	Full Scr	een / Esc						
Thinker menuly version	Printer-friendly Version							
Interactive Discussion	Interactive	Discussion						

cultural waste in the developing world, Global Biogeochem. Cycles, 17(4), 1095, doi:10.1029/2002GB001952, 2003.

- Yu, F.: From molecular clusters to nanoparticles: Second-generation ion-mediated nucleation model, Atmos. Chem. Phys., 6, 5193–5211, 2006a.
- ⁵ Yu, F. and Turco, R. P. : Charged State of Freshly Nucleated Particles: Implications for Nucleation Mechanisms, in Proceeding of 17th International Conference on Nucleation & Atmospheric Aerosols, Galway, Ireland, 13–17 August 2007.
 - Yu, F.: Improved quasi-unary nucleation model for binary H₂SO₄-H₂O homogeneous nucleation, J. Chem. Phys., 127, 054301, 2007.
- Yu, F.: Interactive comment on "Identification and classification of the formation of intermediate ions measured in boreal forest" by A. Hirsikko et al., Atmos. Chem. Phys. Discuss., 6, S4727– S4734, 2006b.

Yum, S. S., Roberts, G., Kim, J. H., Song, K., and Kim, D.: Submicron aerosol size distributions and cloud condensation nuclei concentrations measured in JejuDo, Korea during the ABC-

15 EAREX 2005, in Proceedings of 7th International Aerosol Conference, p 1158, 2006.

ACPD								
7, 13597–1	7, 13597–13626, 2007							
Ion-mediated nucleation as source of tropospheric aerosols								
F. Yu	et al.							
Title	Page							
Abstract	Abstract Introduction							
Conclusions	References							
Tables	Figures							
14	۶I							
•	F							
Back	Close							
Full Scre	een / Esc							
Printer-frier	ndly Version							
Interactive	Discussion							

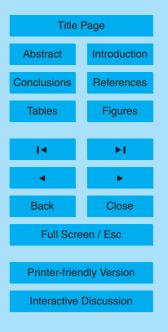

EGU

Table 1. Measurements of particle formation events in addition to those listed in the review paper by Kulmala et al. (2004). J3 and J10 refer to the "apparent" formation rates of 3 nm and 10 nm particles during the nucleation periods, respectively (in $\text{cm}^{-3}\text{s}^{-1}$) (refer to Turco et al., 1998, for a discussion of apparent nucleation rates).

	D	
-1		U

7, 13597–13626, 2007

Ion-mediated nucleation as source of tropospheric aerosols F. Yu et al.

Location	Time period	#	of	J3	J10	Growth rates (nm/hr)	references
Loodiion		events	01	00	010		
Rochester, USA (43°10'N, 77°36'W)	Dec 2001–Dec 2003	307			3	5–12	Jeong et al., 2004, 2006; Hopke and Utell, 2005;
Värriö, Finland (67°46'N, 29°35'E)	1998–2002	147			0.1	0.5–10	Vehkamäki et al., 2004
Sumas Mountain (49°03′N, 122°15′W)	13 Aug 2001-1 Sep 2001	5		5		5–10	Mozurkewich et al., 2004
Antarctica (70°45′S, 11°44′E)	10 Jan 1997–24 Feb 1997	14			0.1–0.8		Deshpande and Kamra, 2004
Pittsburgh, USA (40°26'N, 79°59'W)	July 2001–June 2002	107		1–10			Stanier et al., 2004
Po Valley, Italy (44°39'N, 11°37'E)	24 Mar 2002–24 Aug 2004	304		~ 7		0.3–22.2	Laaksonen et al., 2005; Hamed et al., 2007
New Deli, Indian (28°35′N, 77°12′E)	26 Oct 2002-09 Nov 2002	8		~ 7.3		11.6–18.1	Mönkkönen et al., 2005
Santa Ana, Mexico (19°11'N, 98°59'W)	10 Apr 2003–20 Apr 2003	2		~ 10		4.7	Dunn et al., 2004
CENICA, Mexico (19°21'N, 99°04'W)	2 May 2003–11 May 2003	3		~ 4			Dunn et al., 2004
Tumbarumba, Australia (35°40'S, 148°15'E)	2005	~ 100		0.15		1–6.5	Suni et al., 2006
Mukteswar, Himalaya Mt. (29°31'N, 79°39'E)	23 March 2006–7 June 2006	23		0.4			Lihavainen et al., 2006
Anmyeon, S. Korea (36°22′N, 126°19′E)	Jan 2005–Dec 2005	24		1.5			Lee et al., 2006
Beijing, China (39°55′N, 116°25′E)	Mar 2004–Feb 2005	~ 170		~ 1.5		0.1–13.5	Wehner et al., 2006; Wu et al., 2007.
Gosan, S. Korea (33°17'N, 126°10'E)	11 Mar 2005–08 Apr 2005	~ 6		~ 1.5			Yum et al., 2006
Houston, USA (29°54′N, 95°20′W)	22 Aug 2004–29 Aug 2004	~ 8		~ 2			Fan et al., 2006
	1 Jul 2002–19 Jul 2002	4		3–5.3		2–8	Petäjä et al., 2007
Athens, Greece (38°9′N, 23°45′E)	11 Jun 2003–26 Jun 2003	7		1.3–6.5		1.2–9.9	Petäjä et al., 2007
	1 Apr 2001–31 May 2003	155		8–14		4.7	Qian et al., 2007
(38 36 N, 90 09 W) Pear River Delta, China (22°36'N, 113°36'E)	3 Oct 2004–5 Nov 2004	4		4–6		6.8–13.8	Gong et al., 2007

EGU

13621

-	0	
E	G	U

Latitude	Longitude	J _{obs}								
(degree)	(degree)	(#/cm ³ s)								
(1) RITS9	4		(2) INDC	EX99		(3) ACE	(3) ACE-ASIA			
49.98	-128.20	1.5E-02	27.37	-60.62	7.6E-04	34.03	-174.90	2.7E-03		
51.49	-131.20	4.6E-02	24.48	-56.26	9.5E-04	31.76	178.00	3.1E-03		
54.90	-139.80	1.6E-02	21.99	-52.59	1.9E-03	31.33	173.50	2.0E-04		
50.46	-140.00	1.5E-04	18.99	-48.23	3.7E-03	32.39	168.10	4.5E-03		
44.84	-140.00	0.0E+00	15.94	-43.90	2.5E-03	32.95	165.30	4.3E-03		
39.99	-140.00	0.0E+00	13.72	-40.78	2.6E-03	34.20	162.80	0.0E+00		
36.31	-140.00	2.8E-03	10.79	-36.73	1.6E-03	33.00	158.10	0.0E+00		
32.24	-140.00	5.6E-03	7.66	-32.46	8.1E-03	32.74	155.20	1.6E-03		
28.27	-140.00	3.4E-03	1.93	-25.01	0.0E+00	33.00	143.90	1.0E-01		
22.95	-140.00	6.6E-05	-0.64	-22.07	0.0E+00	33.01	141.50	0.0E+00		
17.62	-140.00	0.0E+00	-3.86	-18.39	0.0E+00	33.20	139.90	8.3E-02		
12.14	-140.00	7.6E-05	-7.55	-14.13	1.6E-03	32.82	136.70	2.2E-02		
5.42	-140.00	4.9E-05	-10.36	-10.89	0.0E+00	31.96	133.50	2.9E-02		
-0.07	-140.00	4.5E-04	-13.90	-6.74	5.5E-03	30.72	131.50	1.4E-01		
-3.97	-140.00	0.0E+00	-17.53	-2.44	8.1E-05	31.70	127.70	5.5E-02		
-4.95	-140.20	2.6E-04	-23.82	5.25	6.1E-03	33.45	128.60	6.2E-02		
-4.85	-140.40	9.2E-04	-25.98	7.98	6.9E-04	35.47	131.80	0.0E+00		
-4.75	-140.50	7.8E-04	-28.97	11.80	6.0E-03	38.06	133.60	3.8E-02		
-4.62	-140.90	1.1E-03	-31.47	15.13	9.1E-03	38.97	134.50	1.7E-02		
-12.93	-141.70	1.7E-03	-34.22	18.07	0.0E+00	37.92	131.00	5.8E-03		
-14.99	-145.60	0.0E+00	-34.53	22.64	1.0E-02	37.53	130.00	0.0E+00		
-19.14	-149.50	2.5E-03	-33.58	27.55	1.2E-02	35.01	130.00	1.9E+00		
-23.49	-149.10	2.0E-03	-32.30	30.71	0.0E+00	35.74	132.50	2.8E+00		
-28.24	-148.40	1.9E-03	-30.32	35.53	0.0E+00	33.84	129.50	0.0E+00		
-31.45	-145.40	1.5E-03	-28.23	40.52	4.1E-03	32.52	128.40	3.0E-01		
-35.39	-145.10	9.6E-03	-26.15	45.39	5.8E-04	31.36	126.40	2.6E-02		
-38.88	-144.80	0.0E+00	-24.42	49.38	4.8E-04	33.01	128.00	8.1E-02		
-46.02	-143.00	5.5E-02	-19.45	57.59	9.9E-04	31.22	131.40	1.9E-01		
-49.61	-141.70	0.0E+00	-15.34	58.43	3.7E-04	33.13	135.40	6.3E-01		
-55.01	-139.30	6.1E-03	-11.07	59.27	1.2E-03	(4)ACE				
-61.27	-135.60	9.0E-03	-7.50	60.59	2.0E-04	36.94	-9.40	0.0E+00		
-67.28	-130.30	1.7E-02	-3.12	65.12	2.7E-03	35.67	-10.78	5.9E-03		
-67.02	-122.90	4.7E-03	15.71	69.81	2.3E-02	35.44	-8.97	7.1E-02		
-69.00	-113.00	1.0E-02	17.44	68.43	1.2E-02	35.92	-9.00	9.9E-02		
-68.56	104.90	0.0E+00	16.55	67.00	0.0E+00	38.22	-12.58	2.0E-03		
-68.95	-94.26	5.0E-04	10.76	67.00	1.3E-03	40.40	-14.01	0.0E+00		
-67.27	-79.36	8.1E-03	7.08	71.43	1.5E-03	37.27	-14.86	0.0E+00		
-66.81	-72.76	0.0E+00	4.98	73.48	4.4E-03	37.00	-8.91	8.2E-02		
-64.78	-64.08	4.7E-03	1.59	75.00	7.4E-03	37.16	-9.05	8.0E-02		
-64.71	-63.10	2.9E-02	-2.76	75.00	0.0E+00	37.16	-9.05	0.0E+00		
-58.01	-63.88	3.9E-02	4.10	73.76	1.9E-02	38.85	-10.67	0.0E+00		
-53.34	-67.03	2.4E-01	3.08	77.74	0.0E+00	39.12	-11.65	0.0E+00		

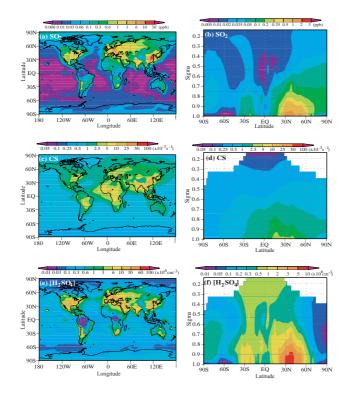
Table A1. Ship-based particle formation rates (J_{obs}) derived from measurements obtained during 10 ship cruise campaigns. The data in this table are plotted in Fig. 2 of the main text.

ACPD

7, 13597–13626, 2007

lon-mediated nucleation as source of tropospheric aerosols F. Yu et al. **Title Page** Abstract Introduction Conclusions References Tables Figures .∎. ► ◄ Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion


Latitude	Longitude	J _{obs}									
(degree)	(degree)	(#/cm ³ s)									
(4) ACE2			-40.81	144.20	2.5E-01	36.97	-76.44	9.5E-02	43.00	11.92	1.0E-03
36.30	-9.86	3.2E-01	-44.28	141.10	0.0E+00	(8) NEA	QSO4		-39.53	12.76	1.0E-04
36.77	-9.84	3.5E-02	-45.14	141.20	0.0E+00	42.42	-70.65	2.0E+00	-35.32	13.88	1.0E-04
34.21	-10.50	0.0E+00	-47.47	147.00	8.7E-03	42.51	-70.56	2.3E-01	-32.84	16.44	1.0E-04
33.40	-14.40	0.0E+00	-44.96	144.90	2.1E-02	43.72	-66.20	2.9E-01	-30.61	18.15	1.0E-04
30.74	-14.15	0.0E+00	(6) NAU	RU99		43.00	-66.80	7.6E-02	-27.90	15.28	1.0E-04
30.54	-11.10	8.0E-03	-10.82	135.30	5.8E-03	42.46	-70.35	4.6E-01	-24.93	12.12	1.0E-04
33.15	-9.70	1.0E-01	-10.78	140.00	0.0E+00	42.36	-71.03	3.7E+00	-21.23	8.39	1.0E-04
35.57	-8.26	5.8E-02	-9.59	145.50	2.6E-03	42.78	-70.71	2.3E+00	-17.78	4.94	1.0E-04
37.17	-9.35	2.7E-02	-10.42	152.50	4.5E-03	42.41	-70.74	2.0E-01	-14.07	1.78	1.0E-04
39.22	-11.29	4.7E-02	-1.91	164.40	0.0E+00	42.38	-70.86	4.0E-01	-9.88	-2.52	1.0E-04
39.75	-10.87	1.0E-01	-1.92	164.40	0.0E+00	42.74	-70.70	7.1E-01	-5.19	-7.12	1.0E-04
37.91	-9.78	5.8E-02	-1.92	164.40	2.6E-03	42.74	-70.73	6.2E-01	-1.24	-10.85	1.0E-04
36.71	-8.94	3.1E-02	-1.92	164.40	3.7E-03	43.17	-69.26	1.5E-01	2.71	-14.30	1.0E-04
36.35	-9.36	0.0E+00	-0.52	166.70	7.1E-03	44.32	-67.10	2.5E-02	6.66	-17.46	1.0E-04
38.46	-11.78	0.0E+00	-0.52	166.90	3.6E-02	44.00	-66.59	1.2E-01	11.36	-18.91	1.0E-04
(5) ACE1			-0.55	166.90	5.2E-02	43.16	-70.47	1.3E-01	15.00	-18.93	4.1E-02
40.44	-135.70	0.0E+00	-0.50	166.90	4.5E-03	42.45	-70.82	6.6E-01	18.56	-18.90	6.0E-02
36.17	-141.00	5.2E-03	-0.56	167.00	0.0E+00	42.80	-70.51	1.4E-02	21.26	-18.39	1.0E-02
31.99	-145.80	0.0E+00	-0.57	167.00	0.0E+00	42.80	-70.63	5.9E-02	25.47	-16.98	1.0E-04
27.85	-150.40	0.0E+00	(7) NEA	QSO2		42.97	-70.51	0.0E+00	29.92	-15.28	1.0E-04
23.80	-154.80	3.8E-04	34.45	-76.11	9.6E-03	42.67	-69.77	3.8E-01	36.12	-12.74	5.7E-01
19.19	-157.00	5.0E-02	38.84	-72.78	4.7E-03	42.82	-70.74	7.7E-02	41.32	-9.91	6.4E-01
19.12	-159.10	0.0E+00	40.49	-73.87	1.2E+00	43.32	-70.17	2.8E-01	45.53	-7.07	5.0E-01
12.34	-160.00	1.0E-03	40.44	-73.80	5.9E-01	43.09	-70.44	3.9E-01	48.01	-3.94	4.0E-01
7.39	-160.00	3.1E-03	40.82	-68.92	3.2E-02	43.52	-70.07	9.9E-01		vidson et	
2.49	-160.00	1.2E-04	42.46	-70.79	8.1E-01	43.65	-69.90	2.3E-01	-68.00	0.00	3.2E+00
-3.68	-160.00	7.1E-04	43.02	-70.33	5.8E-02	44.39	-67.62	4.7E-01	-69.00	-4.00	3.2E+00
-8.34	-160.00	3.1E-04	43.01	-70.66	6.5E-01	43.64	-69.41	4.2E-01	-70.00	-8.00	3.2E+00
-14.14	-160.00	1.0E-03	42.94	-70.72	2.3E-01	43.62	-70.12	1.4E-01	-71.00	-12.00	3.2E+00
-20.51	-160.00	5.4E-02	42.83	-70.71	8.3E-01	42.55	-68.38	2.3E-02	-72.00	-16.00	3.2E+00
-25.33	-160.00	1.2E-0	42.75	-70.59	4.2E-01	42.43	-70.50	4.6E+00	-73.00	-20.00	3.2E+00
-30.76	-161.60	2.2E-02	43.46	-70.21	1.3E-01	42.37	-71.05	1.6E+00			
-32.11	-164.30	7.7E-04	43.40	-69.37	0.0E+00	42.63	-69.61	0.0E+00			
-34.58	-169.50	0.0E+00	43.02	-70.67	8.1E-01		-70.77	4.4E-01			
-37.61	-176.60	1.1E-02	42.32	-70.73	9.7E-01	· · ·	onen et al	,			
-35.53	178.80	0.0E+00	42.40	-70.77	6.4E-01	-69.50	4.06	1.0E-01			
-35.15	177.10	1.5E-01	42.97	-70.65	2.4E-01	-66.49	3.47	7.4E-02			
-34.40	172.10	0.0E+00	42.79	-70.59	9.3E-02	-63.30	3.78	4.0E-02			
-42.04	150.80	3.0E-02	43.02	-70.68	1.8E-01	-59.59	4.00	1.0E-02			
-50.29	155.90	9.8E-03	43.01	-70.67	8.2E-02	-55.14	4.83	5.5E-02			
-47.75	145.40	0.0E+00	42.79	-70.54	1.2E-01	-51.92	6.25	4.6E-02			
-49.99	138.30	0.0E+00	43.02	-70.64	1.7E-01	-49.69	8.52	3.4E-02			
-42.88	140.80	5.7E-02	39.06	-72.99	1.1E-01	-47.21	11.08	1.8E-02			
-41.08	143.30	2.6E-02	36.82	-75.84	5.1E-02	-44.98	11.64	8.0E-03			
										-	


ACPD

7, 13597–13626, 2007

Ion-mediated nucleation as source of tropospheric aerosols

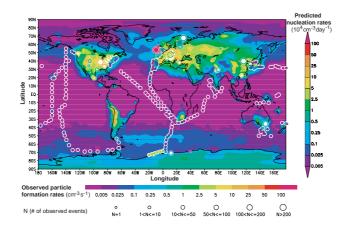
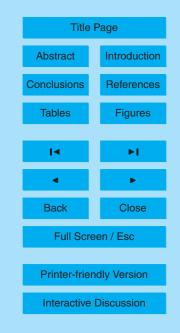
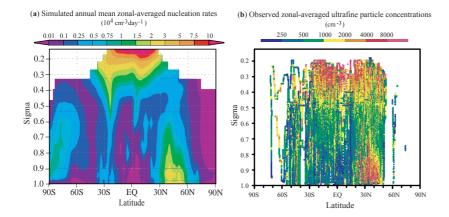

F. Yu et al.

Fig. 1. Horizontal (**a**, **c**, **e**: average over first seven model layers above Earth's surface) and vertical (**b**, **d**, **f**: sigma=pressure/surface pressure) distributions of annual mean values of SO_2 mixing ratio, condensation sink (CS), and $[H_2SO_4]$. We run the GEOS-Chem coupled with nucleation model for one year from 1 July 2001 to 30 June 2002. The time step for transport is 15 min and for chemistry (and nucleation) is 30 min. The calculations of CS, $[H_2SO_4]$, and hence nucleation rates are only limited to grid boxes below GEOS-Chem's annual mean tropopause.



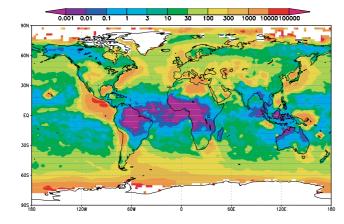

Fig. 2. Simulated global distribution of annual mean nucleation rates averaged within the boundary layer (0–930 m) (refer to the color bar on the right). Corresponding measured particle formation rates from ship observations are shown as color-filled circles (refer to the lower color bar, which gives the average local nucleation rate, typically over a window of several hours). Measurements over land are indicated by unfilled circles, where circle size defines the number of nucleation events reported (refer to the scale at the bottom of the figure), while color gives the average nucleation rate over the event ensemble. Land-based nucleation data prior to 2004 are taken from Kulmala et al. (2004); after 2004, publications listed in Table 1 are used. Ship-based nucleation rates are derived from the recorded time-series of ultrafine particle concentrations at sizes between ~3 nm and ~12 nm (Appendix Table A1). Assuming that typical nucleation events last for 3 h, an observed nucleation rate of 1 particle cm⁻³s⁻¹ is equivalent to roughly 10⁴ particles cm⁻³day⁻¹; this equivalence has been used to cross-calibrate the color bars in the figure.

ACPD

7, 13597–13626, 2007

Ion-mediated nucleation as source of tropospheric aerosols F. Yu et al.

ACPD


7, 13597–13626, 2007

Ion-mediated nucleation as source of tropospheric aerosols

F. Yu et al.

Fig. 3. (a) Meridional structure of predicted annual-mean zonally-averaged nucleation rates calculated using GEOS-Chem coupled to an ion-mediated nucleation sub-model. (b) Zonally-averaged latitudinal and vertical distributions of total ultrafine condensation nuclei (UCN) concentrations measured in situ (Sect. 3.3). In panel (3b), to avoid overlap owing to the large number of data points, the pressure-latitude cross section is divided into a $5 \text{ mb} \times 0.5^{\circ}$ grid, wherein all data, at all longitudes, are averaged. The average value for each grid point is represented as a color-coded circle. The observed UCN concentrations have also been normalized to standard conditions (1 atm, 298 K).

Fig. 4. The ratio of annual mean IMN rates integrated within the lowest 3 km of atmosphere (e.g., the source strength due to IMN, SS_{IMN0-3} , #/cm²day) to the annual mean rate of emission of primary particles (e.g., source strength due to primary aerosol emission, $SS_{primary}$, #/cm²day). The primary aerosols considered in GEOS-Chem, and their corresponding assumed (fixed) sizes (radius), are: dust (4 sizes: 0.7, 1.5, 2.5, 4 μ m), sea salt (3 sizes: 0.732, 5.67 μ m, and an ultrafine sea salt mode with a radius of 40 nm), black carbon aerosol (39 nm), and organic carbon particles (70 nm).

ACPD

7, 13597–13626, 2007

Ion-mediated nucleation as source of tropospheric aerosols

F. Yu et al.

Title Page	
Abstract	Introduction
Conclusions	References
Tables	Figures
14	۲
•	F
Back	Close
Full Screen / Esc	
Printer-friendly Version	
Interactive Discussion	