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Abstract

Aerosol nucleation events have been observed at a variety of locations worldwide,

and may have significant climatic and health implications. While ions have long been

suggested as favorable nucleation embryos, their significance as a global source of

particles has remained uncertain. Here, an ion-mediated nucleation (IMN) mecha-5

nism, which incorporates new thermodynamic data and physical algorithms, has been

integrated into a global chemical transport model (GEOS-Chem) to study ion medi-

ated particle formation in the global troposphere. The simulated annual mean results

have been compared to a comprehensive set of data relevant to new particle formation

around the globe. We show that predicted annual spatial patterns of particle nucleation10

rates agree reasonably well with land-, ship-, and aircraft-based observations. Our sim-

ulations show that, globally, IMN in the boundary layer is largely confined to two broad

latitude belts: one in the northern hemisphere (∼20
◦

N–70
◦

N), and one in the southern

hemisphere (∼30
◦

S–90
◦

S). In the middle latitude boundary layer over continentals,

the annual mean IMN rates are generally above 10
4
cm

−3
day

−1
, with some hot spots15

reaching 10
5
cm

−3
day

−1
. Zonally-averaged vertical distribution of IMN rates indicates

that IMN is significant in the tropical upper troposphere, whole middle latitude tropo-

sphere, and over Antarctica. The ratio of particle number annual source strength due to

IMN to those associated with primary particle emission suggests that IMN contribution

is important. Further research is needed to reduce modeling uncertainties and under-20

stand the contribution of nucleated particles to the abundance of cloud condensation

nuclei.

1 Introduction

Atmospheric particles perturb the Earth’s energy budget directly by scattering and ab-

sorbing radiation and indirectly by acting as cloud condensation nuclei (CCN) and thus25

changing cloud properties and influencing precipitation. The aerosol indirect radiative
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forcing is largely determined by the number abundance of particles that can act as

cloud condensation nuclei (CCN) (e.g., Twomey, 1977; Albrecht 1989; Charlson et al.,

1992). The magnitude of the aerosol indirect radiative forcing is poorly constrained

in climate models, and this represents the dominate uncertainty in assessing climate

change (NRC, 2005; IPCC, 2007). To reduce the uncertainty in the calculation of5

aerosol radiative forcing and to improve our prognostic capability of Earth’s climate, the

key processes controlling the number size distributions of atmospheric aerosols have

to be understood and properly incorporated in the large scale models. New particle

formation frequently observed throughout the troposphere is an important source of

atmospheric CCN and is one of key processes that need to be accurately represented10

in future generations of climate models (Ghan and Schwartz, 2007).

In the past several years, there are a growing number of studies looking into the

new particle formation in the global atmosphere. With an empirical formula (nucle-

ation rate J=2×10
−6

s
−1

[H2SO4], where [H2SO4] is sulfuric acid gas concentration in

cm
−3

), Spracklen et al. (2006) studied the contribution of boundary layer nucleation15

events to total particle concentrations on regional and global scales. Using monthly

means SO2 concentrations, parameterized OH diurnal cycle, daily mean temperature

and relative humidity, Kazil et al. (2006) investigated the formation of sulfate aerosol

in the marine troposphere (over oceans only) from neutral and charged nucleation of

H2SO4 and H2O, by running the box model of Lovejoy et al. (2004) on grids embedded20

into 4 isobaric surfaces of the troposphere (925, 700, 550, and 300 hPa). Lucas and

Akimoto (2006) evaluated in a 3-D global chemical transport model binary (Vehkamäki

et al., 2002), ternary (Napari et al., 2002), and ion-induced nucleation (Lovejoy et al.,

2004; Modgil et al., 2005) schemes.

Lucas and Akimoto (2006) found that the binary nucleation model of Vehkamäki et25

al. (2002) and ion-induced nucleation model of Lovejoy et al. (2004) predict new par-

ticle formation only in the colder upper troposphere, and their simulations also show

that binary nucleation rates based on Vehkamäki et al. (2002) are generally several

orders of magnitude higher than the ion-induced nucleation based on the parameter-
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ization of Lovejoy et al. (2004)’s model. Recent studies indicate that the BHN model

of Vehkamäki et al. (2002) may have overestimated the BHN rates by around three

orders of magnitude (Hanson and Lovejoy, 2006; Yu, 2007). It is important to deter-

mine accurately the contribution of different nucleation mechanisms to the new particle

production in the troposphere.5

Based on an up-to-date kinetically consistent ion-mediated nucleation model (IMN)

incorporating recently available thermodynamic data and schemes, Yu (2006a) showed

that ions can lead to significant particle formation not only in the upper troposphere

but also in the lower troposphere (including boundary layer). The involvement of ions

in many boundary layer nucleation events has been recently confirmed by evolving10

charged cluster distributions and overcharging of freshly nucleated nanometer particles

observed during nucleation events, although the relative importance of ion-mediated

nucleation versus neutral nucleation under different atmospheric conditions needs to

be further investigated (Iida et al., 2006; Hirsikko et al., 2007; Laakso et al., 2007;

Yu, 2006b). New nanometer-sized particles are overcharged in more than 90% of the15

clear nucleation event-days sampled during spring 2005 in Hyytiälä, Finland, during

the BACCI/QUEST IV field campaign (Laakso et al., 2007). Laakso et al. (2007) claim,

based on an analytical analysis, that their measurements indicate a relatively small

contribution of ion nucleation. By contrast, Yu (2006b), applying a different analytical

approach, concludes that the same observations may indicate the dominance of IMN.20

Based on detailed kinetic simulations, Yu and Turco (2007) demonstrate that IMN can

consistently explain the observed overcharging reported in Laakso et al. (2007).

The objective of this paper is to study the significance of IMN mechanism as

a global source of new particles and the spatial distribution of nucleation zone.

To achieve the objective, we integrated the IMN mechanism into a global chem-25

ical transport model (GEOS-Chem) and the simulated results are compared with

land-, ship-, and aircraft-based measurements related to particle formation. The

model and data used in this study are briefly described in Sects. 2 and 3, respec-

tively. Section 4 presents modeling results and comparisons with measurements.
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Summary and discussion are given in Sect. 5.

2 GEOS-Chem model

To study particle nucleation in the global atmosphere, we include our IMN mechanism

in the GEOS–Chem model which is a global 3-D model of atmospheric composition

driven by assimilated meteorological observations from the Goddard Earth Observing5

System (GEOS) of the NASA Global Modeling Assimilation Office (GMAO). Meteoro-

logical fields include surface properties, humidity, temperature, winds, cloud properties,

heat flux and precipitation. The GEOS-3 data, including cloud fields, have 6-h tempo-

ral resolution (3-h resolution for surface fields and mixing depths), 1
◦

×1
◦

horizontal

resolution, and 48 vertical sigma levels extending from the surface to approximately10

0.01 hPa. The horizontal resolution can be degraded and vertical layers merged for

computational efficiency. For the results presented in this paper, the GEOS-3 grid with

2
◦

×2.5
◦

horizontal resolution and 30 vertical levels was used. The first 15 levels in the

model are centered at approximately 10, 50, 100, 200, 330, 530, 760, 1100, 1600,

2100, 2800, 3600, 4500, 5500, and 6500 m above surface.15

The GEOS-Chem model includes a detailed simulation of tropospheric ozone-NOx-

hydrocarbon chemistry as well as of aerosols and their precursors (Park et al., 2004). In

addition to sulfate and nitrate aerosols, the model also considers organic and elemen-

tal carbon aerosols (Park et al., 2003), dust (Fairlie et al., 2004), and sea salt aerosol

(Alexander et al., 2005). Aero-sol and gas-phase simulations are coupled through sul-20

fate and nitrate formation, heterogeneous chemistry (Evans and Jacob, 2005), aerosol

effects on photolysis rates (Martin et al., 2003), and secondary organic aerosol forma-

tion. The ISORROPIA thermodynamic equilibrium model (Nenes et al., 1998) is used

to calculate partitioning of total ammonia and nitric acid between the gas and aerosol

phases. A detailed description of the model (including the treatment of various emis-25

sion sources, chemistry and aerosol schemes) can be found in the model webpage

(http://www.as.harvard.edu/chemistry/trop/geos/index.html).
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The sulfur emission in GEOS-CHEM (Park et al., 2004) includes: 1) the fossil fuel

and industrial emission (Benkovitz et al., 1996; Bey et al., 2001), 2) the gridded monthly

aircraft and shipping emissions (Chin et al., 2000), 3) the biofuel emission based on

the global biofuel CO emission from Yevich and Logan (2003), 4) the biomass burning

emissions from Duncan et al. (2003), 5) the oceanic DMS emission calculated with an5

empirical formula from Liss and Merlivat (1986), and 6) the volcano emission from the

database of Andres and Kasgnoc (1998). In the original version of GEOS-CHEM (v7-

03-06), the fossil fuel and industrial emission is obtained by scaling the gridded, sea-

sonally resolved inventory from the Global Emissions Inventory Activity (GEIA) for 1985

(Benkovitz et al., 1996) with updated national emission inventories and fuel use data10

(Bey et al., 2001). In this study, the SO2 database from EDGAR 3.2, which fully consid-

ered the productions of energy, fossil fuel, biofuel, industrial processes, agriculture and

waste handling (Olivier, 2001), is used to update the GEOS-CHEM anthropogenic sul-

fur emission data to year 2002. The global gridded scaling factor is derived according

to the historical trend from 1990 to 2000. Due to the uncertainty of the emissions from15

sporadically erupting volcanoes, we only consider the continuously active volcanoes

emission in this study. The emission from eruptive volcanoes is not considered in the

study of Lucas and Akimoto (2006) as well.

3 Data relevant to atmospheric particle formation

3.1 Land based measurements20

New particle formation has been observed extensively at many locations around the

globe. Kulmala et al. (2004) provides a comprehensive review of measurements rele-

vant to the formation of particles in ambient atmosphere. All of the cases with defined

particle formation rates as listed in Kulmala et al. (2004) are used in this study for com-

parison. Table 1 gives additional sets of particle formation data published since 2004,25

which are also considered for comparison in this study.
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3.2 Ship based measurements

In a number of field campaigns, total concentrations of condensation nuclei (CN, di-

ameter > ∼12 nm) and ultrafine condensation nuclei (UCN, diameter > ∼3 nm) in the

surface layer of the ocean were continuously measured with CN counters during ship

cruises. The average particle formation rates at a given day can be estimated based5

on the change (increase) rates in the UCN and CN concentration difference (i.e., CUCN-

CCN) typically during the morning hours.

Table A1 in Appendix A gives the ship-based particle formation rates we have de-

rived from the measurements obtained during the following field campaigns: RITS94,

INDOEX99, ACE-Asia, ACE-2, ACE-1, NAURU99, NEAQS02, and NEAQS04. The10

original data were obtained from NOAA PMEL Atmospheric Chemistry Data Server

(http://saga.pmel.noaa.gov/data/) where more information about the field campaigns

can be found. In Table A1 we also include two additional sets of particle formation rates

estimated from two published papers (Davison et al., 1996; Koponen et al., 2002).

3.3 Aircraft based measurements15

Clarke and Kapustin (2002) published a survey of extensive aerosol data collected

around the Pacific Basin during a number of field campaigns: Global Backscatter Ex-

periment (GLOBE), First Aerosol Characterization Experiment (ACE-1), and Pacific

Exploratory Mission (PEM)-Tropics A and B. The ultrafine condensation nuclei (UCN)

counter was used to detect all particles larger than ∼3–4 nm. The aircraft-based mea-20

surements considered in this study include the total UCN concentrations measured

during GLOBE, ACE-1, and PEM-Tropics A and B (data obtained from Dr. Kapustin–

about 146 600 10-second-average data points), as well as data from two more recent

field missions: TRAnsport and Chemical Evolution over the Pacific (TRACE-P), and

the Intercontinental Chemical Transport Experiment-Phase A (INTEX-A). TRACE-P25

and INTEX-A (about 100 000 10-second-average data points) significantly increased

the number of observations for the Northern Hemisphere. TRACE-P and INTEX-A
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measurements were obtained from NASA’s Global Tropospheric Experiment (GTE)

database website.

4 Simulations and comparisons with observations

The nucleation module used in this study is composed of look-up tables of pseudo-

steady state nucleation rates under various conditions that are derived by running the5

detailed IMN model (Yu, 2006a). The ion-mediated nucleation rates (JIMN) depend on

sulfuric acid vapor concentration [H2SO4], relative humidity RH, and temperature T, ion-

ization rate Q, and surface area of pre-existing particles S0 (i.e., JIMN = f ([H2SO4], RH,

T, Q, S0)). At given values of [H2SO4], T, RH, Q, and S0,JIMN can be accurately decided

using the look-up tables with an efficient multiple-variable interpolation scheme.10

In the current version of GEOS-Chem (v7-03-06), H2SO4 vapor concentration

([H2SO4]) is not explicitly resolved (all H2SO4 gas produced is moved to particulate

phase instantaneously). We have modified the code and now [H2SO4] is a prognostic

variable. The change of [H2SO4] is determined by d[H2SO4]/dt = P – CS x [H2SO4],

where P is the production rate of [H2SO4] from gas phase chemistry (mainly OH + SO2)15

and CS is the condensation sink for H2SO4 gas associated with the condensation of

H2SO4 vapor on pre-existing particles. CS and S0 are calculated from the particle

mass predicted in the GEOS-Chem and assumed particle sizes. The transport and de-

position of H2SO4vapor are also taken into account in the model. The global ionization

rates due to cosmic rays are calculated based on the schemes given in Usoskin and Ko-20

valtsov (2006) and the contribution of radioactive materials from soil to ionization rates

is parameterized based on the profiles given in Reiter (1992). We run the GEOS-Chem

coupled with nucleation module for one year from 1 July 2001 to 30 June 2002. The

time step for transport is 15 min and for chemistry (and nucleation) is 30 min. Figure 1

presents the simulated horizontal (averaged in seven lowest model layers representing25

the boundary layer) and vertical (zonal-averaged) spatial distributions of annual mean

SO2 concentration, condensation sink, and [H2SO4]. The calculations of CS, [H2SO4],
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and hence nucleation rates are only limited to grid boxes within GEOS-Chem’s annual

mean tropopause.

Figures 1a and 1b shows that the high SO2 concentration zones are generally con-

fined to source regions. The annual mean SO2 surface layer concentrations in large

areas of eastern United States, Europe, eastern China, Indian, Mexico, and Chile5

are above 1 ppb with some hot spots above 3 ppb. Vertically, high SO2 concentration

(zonal average >0.1 ppb, note the difference in the scale of Fig. 1a and Fig. 1b) zone

can reach up to around 700 hpa (sigma =∼0.7) with the highest concentration limited

to below 800 hpa in the northern hemisphere. The relatively low SO2 concentration

in middle and upper tropical (∼20
◦

S–30
◦

N) troposphere is probably due to relatively10

weak SO2 sources and high scavenging rate associated with convection and precipi-

tation. The relatively high SO2 concentration over Antarctica is mainly associated with

DMS emission near the Antarctic coast. The extension of high SO2 zone from surface

up to 300 hpa around latitude of 30
◦

S is associated with mountain uplifting of anthro-

pogenic SO2emission in Chile and direct injection of SO2 into middle troposphere from15

the continuously active volcano Lascar in Chile (2400 Mg-SO2/day, 23.32
◦

S, 67.44
◦

W,

elevation 5.6 km).

It is clear from Figs. 1c and 1d that large areas of eastern and southern Asia, western

Europe, eastern United States, southern America, and Africa have high CS associated

with anthropogenic emission, biomass burning, and dust emission. Vertically, the high20

CS zone centered around 30
◦

N extends to ∼600–700 hpa. In contrast to Artic region

which is influenced by regional transport of particle pollutants, the CS around Antarc-

tica is very low. In addition to sea salt emission, the CSs over oceans adjacent to

continentals are significantly affected by transported particles. The concentration of

H2SO4vapor (Figs. 1e, 1f) is determined by its production rate (mainly controlled by25

SO2 and OH concentration) and loss rate (condensation sink). The highest [H2SO4]

regions are confined to areas of high SO2 concentration, high annual irradiance flux,

and low CS. In regions of higher SO2 as well as higher CS, it appears that the increased

production dominate and thus [H2SO4] are generally higher. Vertically, [H2SO4] gen-
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erally decreases with altitude due to more rapidly decrease of SO2 with altitude. The

relatively high [H2SO4] in tropical upper troposphere is due to the very lower CS calcu-

lated in the model.

Figure 2 shows the predicted annual mean nucleation rates averaged within the

seven lowest model layers (∼0–930 m) representing the atmospheric boundary layer.5

Also given for comparison are average particle formation rates derived from various

surface-based measurements (refer to Sect. 3 for details). Observed nucleation events

typically last for ∼3 h a day, and thus an observed average nucleation rate of 1 par-

ticle cm
−3

s
−1

is equivalent to roughly 10
4

particles cm
−3

day
−1

. We have used this

equivalence to cross-calibrate the color bars in the figure.10

Our simulations show that, globally, nucleation in the boundary layer is largely con-

fined to two broad latitude belts: one in the northern hemisphere (∼20
◦

N–70
◦

N), and

one in the southern hemisphere (∼ 30
◦

S–90
◦

S). In the boundary layer, nucleation rates

over continentals are generally much higher than those over oceans. In the middle lat-

itude boundary layer over continentals, the annual mean new particle production rates15

are generally above 10
4

cm
−3

day
−1

, with some hot spots reaching 10
5

cm
−3

day
−1

.

Over middle latitude oceanic boundary layer, the annual mean new particle produc-

tion rates are generally below 2500 cm
−3

day
−1

. Most boundary layer nucleation events

in the northern hemisphere (except over remote ocean areas, and Greenland) are as-

sociated with anthropogenic SO2 emissions; in the southern hemisphere, nucleation20

is triggered both by oceanic DMS and anthropogenic SO2. Owing to higher tempera-

tures, nucleation rates in the boundary layer at tropical latitudes (30
◦

S–30
◦

N, except

some regions with high SO2 source) are negligible even though H2SO4 gas concentra-

tions are at medium level (see Fig. 1c). Particle formation over the Antarctica occurs

mainly during the austral summer season. The simulations also indicate that nucle-25

ation induced by anthropogenic SO2 emission contributes to particle abundances in

the southern hemisphere. The high nucleation zone along the Chile coast in South

American appears to be a significant source of new particle in the southern hemi-

sphere. The relatively higher nucleation rate over Antarctica is due to lower CS, colder
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temperatures, and higher ionization rates. By contrast, nucleation rates in the Arctic re-

gion (∼70
◦

N–90
◦

N) are much lower due to relatively high concentrations of pre-existing

particles associated with regional pollution (Arctic haze).

Most of the land-based measurements were taken in Western Europe and North

America. Ship data, which span the major ocean basins, show negligible particle for-5

mation over tropical seas (∼30
◦

S–30
◦

N). It should be noted that the model results

represent annual mean nucleation rates (averaged over periods that may or may not

include nucleation events) for each 2
◦

×2.5
◦

grid cell, while the observations represent

average “apparent” particle formation rates based on measured particle concentrations

(mostly of sizes ∼3 nm or larger) detected during nucleation events at specific locations.10

The fraction of freshly nucleated particles (∼1.5 nm) that can grow to measurable size

depends on the local growth rate and coagulation lifetime. While the comparison be-

tween simulations and observations shown in Fig. 2 is qualitative and limited, it is the

first of the kind and Fig. 2 shows that, overall, the predicted spatial pattern of aerosol

formation agrees quite well with measurements. The comparison also reveals regions15

with high predicted nucleation rates in middle-western United States, Canada, Middle

East, Eastern Europe, Greenland, Asia, Chile, and Antarctica where nucleation mea-

surements are sparse. Measurements in these regions would therefore be useful for

improving our understanding of particle nucleation in the global atmosphere.

The IMN rate is limited by the local ionization rate, roughly ∼10 ion-pairs cm
−3

s
−1

20

in the continental surface layer, and ∼2 ion-pairs cm
−3

s
−1

over oceans (and snow or

ice). Most observed particle production rates (Kulmala et al., 2004, also see Table 1)

fall below the background ionization-rate limit (∼20 ions/cm
3
s over continental sites).

Comparing the predictions and observations in Fig. 2, it appears that IMN can account

for much of the observed particle formation near Earth’s surface. An obvious excep-25

tion is the extremely high rate of particle formation (well above 1000/cm
3
s and up to

∼10
5
/cm

3
s) observed in the clean marine coastal environment at Mace Head (O’Dowd

et al., 1998). It seems that these anomalously high nucleation rates are linked to the

occurrence of low tides and may be associated with homogeneous nucleation of io-

13607

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/13597/2007/acpd-7-13597-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/13597/2007/acpd-7-13597-2007-discussion.html
http://www.egu.eu


ACPD

7, 13597–13626, 2007

Ion-mediated

nucleation as source

of tropospheric

aerosols

F. Yu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

dine species (O’Dowd et al., 2002). Some measurements also yield particle formation

rates that exceed the assumed IMN ionization limit. In this case, possible explanations

include: (1) homogeneous nucleation mechanisms that involve other species, which

remain to be identified; (2) nucleation in exhaust streams that are not fully diluted prior

to sampling, where binary homogeneous nucleation can lead to very high levels of5

nanoparticles (Du and Yu, 2006); (3) enhanced particle formation at locations where

the ambient ionization rate exceeds ∼10 ion-pairs/cm
3
s–indeed, some measurements

indicate that ionization rates near the surface can exceed 100 ion-pairs/cm
3
s due to

the accumulation of radon gas in the nocturnal boundary layer (Dhanorkar and Kamra,

1994); (4) the inferred high rates of particle formation based on ultrafine particle con-10

centrations may be a result of rapid mixing of particles formed elsewhere (Stanier et

al., 2004).

Figure 3a shows GOES-IMN simulated annual-mean zonally-averaged nucleation

rates as a function of sigma (=pressure/surface pressure) and latitude. It is clear that

while nucleation rates are generally small in the lower tropical atmosphere, very high15

nucleation rates are predicted in middle and upper tropical air layers associated with

very low temperature, high ionization rate, and lower condensation sink. High nucle-

ation rates are also obvious in the whole mid-latitude troposphere (25
◦

N–75
◦

N) in the

northern hemisphere although the nucleation rates decrease with altitude. Nucleation

appears to be negligible in most northern part of the troposphere (∼75
◦

N and north). In20

the southern hemisphere, nucleation in the middle troposphere over Antarctica is sig-

nificant and nucleation zone extends to ∼60
◦

S. Ito (1993) reported that bimodal size

distribution with a trough at around 20 nm in diameter was observed at Syowa station

(69
◦

S, 39
◦

35’E) in almost all the days from August to December in 1978. Deshpande

and Kamra (2004) observed very high concentrations (as high as 10
4
/cm

3
) of nucle-25

ation mode particles around 10 nm in diameter associated with subsidence of midtro-

pospheric air at the Indian Antarctica station, Maitri (70
◦

45
′

S, 11
◦

44
′

E). It appears that

these measurements support our simulations which indicate the existence of a nucle-

ation zone over the Antarctica. The nucleation zone in the lower troposphere around
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30
◦

S is primarily a result of anthropogenic SO2 emissions (also see Fig. 1). The strong

nucleation zone in the middle to upper troposphere around 30
◦

S appears to be mainly

associated with the continuously active volcano Lascar in Chile which injects 2400 Mg

of SO2 per day at an altitude of around 5.6 km.

The total concentrations of particles larger than ∼3 nm have been measured at vari-5

ous altitudes, latitudes, and longitudes with aircraft-based ultrafine condensation nuclei

(UCN) counters. While it is difficult to derive in situ particle formation rates directly from

these data owing to rapid changes in air mass, UCN concentrations nevertheless can

be used as indicators of nucleation, since high UCN concentrations are generally as-

sociated with large nucleation rates. Figure 3b summarizes the zonally-averaged latitu-10

dinal and vertical distributions of total UCN concentrations measured during a number

of field campaigns covering a wide range of areas and seasons (see Sect. 3.3). The

high UCN regions in the upper troposphere and northern mid-latitude troposphere, and

lower UCN in tropical lower troposphere are consistent with corresponding high or low

nucleation rates in Fig. 3a (keeping in mind that the nucleation rates in Fig. 3a repre-15

sent zonal and temporal averages, while the UCN concentrations in Fig. 3b represent

measurements at selected locations and times). While the comparison between Fig. 3a

and Fig. 3b should be considered qualitative, it is the first attempt to compare global

nucleation zones with aircraft-based UCN measurements. Figure 3 indicates that the

IMN mechanism appears to capture the vertical spatial patterns in the UCN distribu-20

tion for the regions where sufficient data are available to discern larger-scale patterns.

High concentrations of ultrafine particles were also observed during the upper system-

atic tropospheric transequatorial Africa flights (Heintzenberg et al., 2003). These data

are not included in Fig. 3b but are generally consistent with Fig. 3. Aircraft-based mea-

surements at higher latitudes in both hemispheres are currently lacking to verify our25

model predictions.

The general agreement between simulations and observations demonstrated above

strongly supports the important role of IMN in generating new particles in global tro-

posphere. Figure 4 compares the annual mean IMN rates integrated over the low-
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est 3 km of atmosphere (e.g., the source strength due to IMN, SSIMN0−3, #/cm
2
day)

with the annual mean source of primary particles due to emissions (e.g., the source

strength of primary emissions, SSprimary, #/cm
2
day) in terms of the ratio of SSIMN0−3

to SSprimary. The results in Fig. 4 clearly indicate that IMN is a significant source of

particles throughout the lower troposphere. At high latitudes (∼30
◦

N–90
◦

N, 30
◦

S–5

90
◦

S), the ratio exceeds 10 over oceans, and lies between ∼10 and ∼300 over land. In

the tropics (30
◦

S–30
◦

N), SSIMN0−3/SSprimary is generally between 0.1 and 10, although

some spots have very high ratio and some others spots have very low ratio.

In discussing the relative contribution of secondary particle formation versus primary

particle emission to climate active particles, we should keep in mind that the diameters10

of freshly nucleated particles are just a few nanometers, while those of primary parti-

cles are generally greater than 50 nm. The fraction of nucleated particles that grow to

CCN sizes depends on the local growth rates (and, hence, the precursor vapor concen-

trations), and on the concentration of pre-existing particles. Pierce and Adams (2007)

found that the probability of a nucleated particle generating a CCN varies from <0.1%15

to >90% in different regions of the atmosphere, and falls between 5% and 40% for a

large fraction of nucleated particles in the boundary layer. Clearly, with these statistics

in mind, IMN is very likely to be a significant source of particles that impact climate.

It should be noted that the ratios shown in Fig. 4 do not include the contributions of

new particle formation in the middle and upper troposphere. Some of the particles20

nucleated in the middle and upper troposphere will contribute to the climate effective

particles due to their relatively long lifetime (against scavenging by pre-existing par-

ticles), although the particle growth rates in these regions are typically small. The

evolution of nucleated particles into CCN should be analyzed using a size-resolved

aerosol microphysical model coupled to global code like GEOS-Chem.25
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5 Summary and discussion

The magnitude of the aerosol indirect radiative forcing is poorly constrained in climate

models, and this is the dominant uncertainty in assessing climate change. The aerosol

indirect radiative forcing is largely determined by the number abundance of particles

that can act as cloud condensation nuclei (CCN). A clear understanding of the contri-5

bution of new particle formation and growth to CCN abundance, which is essential to

properly assess the influences of aerosols on climate, depends on our ability to pre-

dict accurately the rates of new particle formation in large-scale models. Significant

theoretical and experimental progresses have been made in last couple of years with

regard to the role of ions in the formation of tropospheric particles.10

In this study, we integrate a recently updated ion-mediated nucleation (IMN) mech-

anism into a global chemical transport model (GEOS-Chem) to investigate the signifi-

cance of IMN mechanism as a global source of new particles and the spatial distribution

of nucleation zone. We run the GEOS-Chem coupled with nucleation mechanism for

one year from 1 July 2001 to 30 June 2002, using GEOS-3 grid with 2
◦

×2.5
◦

horizontal15

resolution and 30 vertical levels. The time step for chemistry (and nucleation) is 30 min.

Our simulations indicate that IMN can lead to significant new particle production.

Horizontally, a comparison of simulated annual mean particle formation rates in

boundary layer with a comprehensive dataset of land- and ship- based nucleation

measurements suggests that IMN mechanism may be able to account for many of the20

observed nucleation events. Vertically, the simulated high and low regions of annual-

mean zonally-averaged nucleation rates appears to be consistent with high and low

zones of UCN concentrations measured during a number of aircraft-based field cam-

paigns. While the comparison between simulations and observations shown in this

study is qualitative and limited, it is the first of the kind and, overall, the predicted spa-25

tial pattern of aerosol formation agrees quite well with measurements. The compari-

son also reveals regions with high predicted nucleation rates where nucleation mea-

surements are sparse and thus identifies the regions where possible future nucleation
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measurements should be carried out to improve our understanding of particle nucle-

ation in the global atmosphere.

Particle formation rates are sensitive to [H2SO4]. One of major uncertainties in our

simulated results is associated with the accuracy of the calculated [H2SO4]. In addi-

tion to the uncertainty in the simulated SO2 concentrations which depend on emission,5

transport, and loss processes, the uncertainty in the condensation sink (CS) estimated

from the simulated mass and assumed size of particles of different types also influence

the accuracy of [H2SO4]. In addition, the contribution of nucleation mode particles to

CS is not considered in current model. To resolve the issue and to study the contribu-

tion of nucleation to CCN in different global environments, we will include size-resolved10

aerosol microphysics processes in GEOS-Chem in our future study.

Similar to other nucleation schemes that have been used in the global models to pre-

dict new particle formation, the IMN mechanism is subject to uncertainty as well. First,

the thermodynamic data and physical algorithms used in the IMN model have limitation

and uncertainties. Second, species other than H2SO4 and H2O (such as NH3, HNO3,15

and organics) may affect the properties of small clusters and the nucleation rates in

the real atmosphere. These uncertainties may imply that the IMN contribution to new

particle formation in the troposphere could be either higher or lower than what we pre-

sented in this study. It should be noted that other nucleation mechanisms may also

contribute to tropospheric new particle formation. In addition to improve the nucleation20

mechanisms through theoretical development, laboratory and field studies, and quan-

tum calculations for small clusters, further research is also needed on the contributions

of different nucleation mechanisms to global source of new particles. More detailed and

comprehensive comparisons of model predictions with relevant data obtained in vari-

ous field campaigns will be helpful to assess the successfulness of various nucleation25

mechanisms in explaining the observed nucleation events and to identify the areas for

further improvement in the existing theories.
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Appendix A

Table A1 gives particle formation rates over oceanic surface derived from ship-based

condensation nuclei (CN, diameter >∼12 nm) and ultrafine condensation nuclei (UCN,

diameter >∼3 nm) measurements.

Acknowledgements. This study is supported by the NOAA/DOC under grant5

NA05OAR4310103 and NSF under grant 0618124. Z. Wang acknowledges the support

of the CAS International Partnership Program for Creative Research Teams, the National

973 Project (2005CB422205) and NSFC (40533017). The GEOS-Chem model is managed

by the Atmospheric Chemistry Modeling Group at Harvard University with support from the

NASA Atmospheric Chemistry Modeling and Analysis Program. We thank V. N. Kapustin and10

A. Clark for providing the aircraft-based UCN data. TRACE-P and INTEX-A data are from

NASA Global Tropospheric Experiment (GTE) database website. The original ship-based data

were obtained from NOAA PMEL Atmospheric Chemistry Data Server.

References

Albrecht, B. A.: Aerosols, cloud microphysics and fractional cloudiness, Sciences, 245, 1227–15

1230, 1989.

Alexander, B., Park, R. J., Jacob, D. J., Li, Q. B., Yantosca, R. M., Savarino, J., Lee, C. C.

W., and Thiemens, M. H.: Sulfate formation in sea-salt aerosols: Constraints from oxygen

isotopes, J. Geophys. Res., 110, D10307, doi:10.1029/2004JD005659, 2005.

Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning,20

Global Biogeochem. Cycles, 15(4), 955–966, 2001.

Andres, R. J. and Kasgnoc, A. D.: A time-averaged inventory of subaerial volcanic sulfur emis-

sions, J. Geophys. Res., 103(D19), 25 251–25 262, doi:10.1029/98JD02091, 1998.

Benkovitz, C. M., Scholtz, M. T., Pacyna, J., Tarrason, L., Dignon, J., Voldner, E. C., Spiro, P.

A., Logan, J. A., and Graedel, T. E.: Global gridded inventories of anthropogenic emissions25

of sulfur and nitrogen, J. Geophys. Res., 101(D22), 29 239–29 253, 1996.

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B., Fiore, A. M., Li, Q., Liu, H.,

Mickley, L. J., and Schultz, M.: Global modeling of tropospheric chemistry with assimilated

13613

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/13597/2007/acpd-7-13597-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/13597/2007/acpd-7-13597-2007-discussion.html
http://www.egu.eu


ACPD

7, 13597–13626, 2007

Ion-mediated

nucleation as source

of tropospheric

aerosols

F. Yu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

meteorology: Model description and evaluation, J. Geophys. Res., 106(D19), 23 073–23 096,

2001.

Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D.,Coakley, J. A. Jr., Hansen, J. E., and

Hofmann, D. J. : Climate forcing by anthropogenic aerosols, Science, 255, 423–430, 1992.

Chin, M., Rood, R. B., Lin, S.-J., Müller, J.-F., and Thompson, A. M.: Atmospheric sulfur cycle5

simulated in the global model GOCART: Model description and global properties, J. Geo-

phys. Res., 105(D20), 24 671–24 687, 2000.

Clarke, A. D. and Kapustin, V. N.: A pacific aerosol survey. Part 1: A decade of data on particle

production, transport, evolution, and mixing in the troposphere, J. Atmos. Sci., 59, 363–382,

2002.10

Davison, B., Nicholas Hewitt, C., O’Dowd, C. D., Lowe, J. A., Smith, M. H., Schwikowski,

M., Baltensperger, U., and Harrison, R. M.: Dimethyl sulfide, methane sulfonic acid and

physicochemical aerosol properties in Atlantic air from the United Kingdom to Halley Bay, J.

Geophys. Res., 101(D17), 22 855–22 868, 1996.

Deshpande, C. G. and Kamra, A. K. : Physical properties of aerosols at Maitri, Antarctica, Proc.15

Indian Acad. Sci. (Earth Planet. Sci.), 113, 1–25, 2004.

Dhanorkar, S. and Kamra, A. K. : Diurnal variation of ionization rate close to ground, J. Geo-

phys. Res., 99(D9), 18 523–18 526, 10.1029/94JD01335, 1994.

Du, H. and Yu, F.: Formation of volatile nanoparticles in engine exhaust: Contributions of the

binary H2SO4H2O homogeneous nucleation, Atmos. Environ., 40, 7579–7588, 2006.20

Duncan, B. N., Martin, R. V., Staudt, A. C., R. Yevich, and Logan, J. A.: Interannual and

seasonal variability of biomass burning emissions constrained by satellite observations, J.

Geophys. Res., 108(D2), 4100, doi:10.1029/2002JD002378, 2003.
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M.: Identification and classification of the formation of intermediate ions measured in boreal

forest, Atmos. Chem. Phys. 7, 201–210, 2007.20

Hopke, P. H. and Utell, M. J.: Ambient Air Quality Monitoring of Ultrafine Particles in Rochester,

New York – NYSERDA Report 05-04, 2005.

Iida, K., Stolzenburg, M., McMurry, P., Dunn, M. J., Smith, J. N., Eisele, F., and Keady, P.:

Contribution of ion-induced nucleation to new particle formation: Methodology and its appli-

cation to atmospheric observations in Boulder, Colorado, J. Geophys. Res., 111, D23201,25

doi:10.1029/2006JD007167, 2006.

IPCC, Climate Change 2007: in: The Physical Scientific Basis, edited by: S. Solomon, D. Qin,

M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor and H. L. Miller, Cambridge Univ.

Press, New York, 2007.

Ito, T.: Size distribution of Antarctic submicron aerosols, Tellus, Ser. B, 45, 145–159, 1993.30

Jeong, C. H., Evans, G. J., Hopke, P. H., Chalupa, D., and Utell, M. J.: Influence of atmospheric

dispersion and new particle formation events on ambient particle number concentration in

Rochester, United States, and Toronto, Canada?, J. Air & Waste Manage. Assoc., 56, 431–

13615

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/13597/2007/acpd-7-13597-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/13597/2007/acpd-7-13597-2007-discussion.html
http://www.egu.eu
http://www.atmos-chem-phys-discuss.net/6/9603/2006/


ACPD

7, 13597–13626, 2007

Ion-mediated

nucleation as source

of tropospheric

aerosols

F. Yu et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

443, 2006.

Kazil, J., Lovejoy, E. R., Barth, M. C., and O’Brien, K.: Aerosol nucleation over oceans and the

role of galactic cosmic rays, Atmos. Chem. Phys., 6, 4905–4924, 2006,

http://www.atmos-chem-phys.net/6/4905/2006/.

Koponen, I. K., Virkkula, A., Hillamo, R., Kerminen, V.-M., and Kulmala, M.: Number size dis-5

tributions and concentrations of marine aerosols: Observations during a cruise between

the English Channel and the coast of Antarctica, J. Geophys. Res., 107 (D24), 4753,

doi:10.1029/2002JD002533, 2002.
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measurement station in Finnish Lapland 1998–2002, Atmos. Chem. Phys., 4, 2015–2023,

2004, http://www.atmos-chem-phys.net/4/2015/2004/.

Wehner, B., Bauer, S., Wu, Z., et al.: Formation and Growth of Ultrafine Particles in Beijing,

China, in Proceedings of 7th International Aerosol Conference, p 1609–1610, 2006.

Wu, Z., Hu, M., Liu, S., Wehner, B., Bauer, S., Ma ßling, A., Wiedensohler, A., Petäjä, T., Dal30
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Table 1. Measurements of particle formation events in addition to those listed in the review

paper by Kulmala et al. (2004). J3 and J10 refer to the “apparent” formation rates of 3 nm and

10 nm particles during the nucleation periods, respectively (in cm
−3

s
−1

) (refer to Turco et al.,

1998, for a discussion of apparent nucleation rates).

Location Time period # of

events

J3 J10 Growth rates (nm/hr) references

Rochester, USA

(43
◦

10
′

N, 77
◦

36
′

W)

Dec 2001–Dec 2003 307 3 5–12 Jeong et al., 2004, 2006; Hopke and Utell, 2005;

Värriö, Finland

(67
◦

46
′

N, 29
◦

35
′

E)

1998–2002 147 0.1 0.5–10 Vehkamäki et al., 2004

Sumas Mountain

(49
◦

03
′

N, 122
◦

15
′

W)

13 Aug 2001–1 Sep 2001 5 5 5–10 Mozurkewich et al., 2004

Antarctica (70
◦

45
′

S,

11
◦

44
′

E)

10 Jan 1997–24 Feb 1997 14 0.1–0.8 Deshpande and Kamra, 2004

Pittsburgh, USA

(40
◦

26
′

N, 79
◦

59
′

W)

July 2001–June 2002 107 1–10 Stanier et al., 2004

Po Valley, Italy (44
◦

39
′

N,

11
◦

37
′

E)

24 Mar 2002– 24 Aug 2004 304 ∼ 7 0.3–22.2 Laaksonen et al., 2005; Hamed et al., 2007

New Deli, Indian

(28
◦

35
′

N, 77
◦

12
′

E)

26 Oct 2002–09 Nov 2002 8 ∼ 7.3 11.6–18.1 Mönkkönen et al., 2005

Santa Ana, Mexico

(19
◦

11
′

N, 98
◦

59
′

W)

10 Apr 2003–20 Apr 2003 2 ∼ 10 4.7 Dunn et al., 2004

CENICA, Mexico

(19
◦

21
′

N, 99
◦

04
′

W)

2 May 2003–11 May 2003 3 ∼ 4 Dunn et al., 2004

Tumbarumba, Australia

(35
◦

40
′

S, 148
◦

15
′

E)

2005 ∼ 100 0.15 1–6.5 Suni et al., 2006

Mukteswar, Himalaya

Mt. (29
◦

31
′

N, 79
◦

39
′

E)

23 March 2006–7 June 2006 23 0.4 Lihavainen et al., 2006

Anmyeon, S. Korea

(36
◦

22
′

N, 126
◦

19
′

E)

Jan 2005–Dec 2005 24 1.5 Lee et al., 2006

Beijing, China (39
◦

55
′

N,

116
◦

25
′

E)

Mar 2004–Feb 2005 ∼ 170 ∼ 1.5 0.1–13.5 Wehner et al., 2006; Wu et al., 2007.

Gosan, S. Korea

(33
◦

17
′

N, 126
◦

10
′

E)

11 Mar 2005–08 Apr 2005 ∼ 6 ∼ 1.5 Yum et al., 2006

Houston, USA (29
◦

54
′

N,

95
◦

20
′

W)

22 Aug 2004–29 Aug 2004 ∼ 8 ∼ 2 Fan et al., 2006

Marseille, France

(43
◦

19
′

N, 5
◦

42
′

E)

1 Jul 2002–19 Jul 2002 4 3–5.3 2–8 Petäjä et al., 2007

Athens, Greece (38
◦

9
′

N,

23
◦

45
′

E)

11 Jun 2003–26 Jun 2003 7 1.3–6.5 1.2–9.9 Petäjä et al., 2007

St. Louis, USA

(38
◦

36
′

N, 90
◦

09
′

W)

1 Apr 2001–31 May 2003 155 8–14 4.7 Qian et al., 2007

Pear River Delta, China

(22
◦

36
′

N, 113
◦

36
′

E)

3 Oct 2004–5 Nov 2004 4 4–6 6.8–13.8 Gong et al., 2007
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Table A1. Ship-based particle formation rates (Jobs) derived from measurements obtained

during 10 ship cruise campaigns. The data in this table are plotted in Fig. 2 of the main text.

Latitude Longitude Jobs

(degree) (degree) (#/cm
3
s)

(1) RITS94 (2) INDOEX99 (3) ACE-ASIA

49.98 −128.20 1.5E-02 27.37 −60.62 7.6E-04 34.03 −174.90 2.7E-03

51.49 −131.20 4.6E-02 24.48 −56.26 9.5E-04 31.76 178.00 3.1E-03

54.90 −139.80 1.6E-02 21.99 −52.59 1.9E-03 31.33 173.50 2.0E-04

50.46 −140.00 1.5E-04 18.99 −48.23 3.7E-03 32.39 168.10 4.5E-03

44.84 −140.00 0.0E+00 15.94 −43.90 2.5E-03 32.95 165.30 4.3E-03

39.99 −140.00 0.0E+00 13.72 −40.78 2.6E-03 34.20 162.80 0.0E+00

36.31 −140.00 2.8E-03 10.79 −36.73 1.6E-03 33.00 158.10 0.0E+00

32.24 −140.00 5.6E-03 7.66 −32.46 8.1E-03 32.74 155.20 1.6E-03

28.27 −140.00 3.4E-03 1.93 −25.01 0.0E+00 33.00 143.90 1.0E-01

22.95 −140.00 6.6E-05 −0.64 −22.07 0.0E+00 33.01 141.50 0.0E+00

17.62 −140.00 0.0E+00 −3.86 −18.39 0.0E+00 33.20 139.90 8.3E-02

12.14 −140.00 7.6E-05 −7.55 −14.13 1.6E-03 32.82 136.70 2.2E-02

5.42 −140.00 4.9E-05 −10.36 −10.89 0.0E+00 31.96 133.50 2.9E-02

−0.07 −140.00 4.5E-04 −13.90 −6.74 5.5E-03 30.72 131.50 1.4E-01

−3.97 −140.00 0.0E+00 −17.53 −2.44 8.1E-05 31.70 127.70 5.5E-02

−4.95 −140.20 2.6E-04 −23.82 5.25 6.1E-03 33.45 128.60 6.2E-02

−4.85 −140.40 9.2E-04 −25.98 7.98 6.9E-04 35.47 131.80 0.0E+00

−4.75 −140.50 7.8E-04 −28.97 11.80 6.0E-03 38.06 133.60 3.8E-02

−4.62 −140.90 1.1E-03 −31.47 15.13 9.1E-03 38.97 134.50 1.7E-02

−12.93 −141.70 1.7E-03 −34.22 18.07 0.0E+00 37.92 131.00 5.8E-03

−14.99 −145.60 0.0E+00 −34.53 22.64 1.0E-02 37.53 130.00 0.0E+00

−19.14 −149.50 2.5E-03 −33.58 27.55 1.2E-02 35.01 130.00 1.9E+00

−23.49 −149.10 2.0E-03 −32.30 30.71 0.0E+00 35.74 132.50 2.8E+00

−28.24 −148.40 1.9E-03 −30.32 35.53 0.0E+00 33.84 129.50 0.0E+00

−31.45 −145.40 1.5E-03 −28.23 40.52 4.1E-03 32.52 128.40 3.0E-01

−35.39 −145.10 9.6E-03 −26.15 45.39 5.8E-04 31.36 126.40 2.6E-02

−38.88 −144.80 0.0E+00 −24.42 49.38 4.8E-04 33.01 128.00 8.1E-02

−46.02 −143.00 5.5E-02 −19.45 57.59 9.9E-04 31.22 131.40 1.9E-01

−49.61 −141.70 0.0E+00 −15.34 58.43 3.7E-04 33.13 135.40 6.3E-01

−55.01 −139.30 6.1E-03 −11.07 59.27 1.2E-03 (4)ACE2

−61.27 −135.60 9.0E-03 −7.50 60.59 2.0E-04 36.94 −9.40 0.0E+00

−67.28 −130.30 1.7E-02 −3.12 65.12 2.7E-03 35.67 -10.78 5.9E-03

−67.02 −122.90 4.7E-03 15.71 69.81 2.3E-02 35.44 -8.97 7.1E-02

−69.00 −113.00 1.0E-02 17.44 68.43 1.2E-02 35.92 -9.00 9.9E-02

−68.56 104.90 0.0E+00 16.55 67.00 0.0E+00 38.22 −12.58 2.0E-03

−68.95 −94.26 5.0E-04 10.76 67.00 1.3E-03 40.40 −14.01 0.0E+00

−67.27 −79.36 8.1E-03 7.08 71.43 1.5E-03 37.27 −14.86 0.0E+00

−66.81 −72.76 0.0E+00 4.98 73.48 4.4E-03 37.00 −8.91 8.2E-02

−64.78 −64.08 4.7E-03 1.59 75.00 7.4E-03 37.16 −9.05 8.0E-02

−64.71 −63.10 2.9E-02 −2.76 75.00 0.0E+00 37.16 −9.05 0.0E+00

−58.01 −63.88 3.9E-02 4.10 73.76 1.9E-02 38.85 −10.67 0.0E+00

−53.34 −67.03 2.4E-01 3.08 77.74 0.0E+00 39.12 −11.65 0.0E+00
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Table A1. Continued.

Latitude Longitude Jobs

(degree) (degree) (#/cm
3
s)

(4) ACE2 −40.81 144.20 2.5E-01 36.97 −76.44 9.5E-02 43.00 11.92 1.0E-03

36.30 −9.86 3.2E-01 −44.28 141.10 0.0E+00 (8) NEAQSO4 −39.53 12.76 1.0E-04

36.77 −9.84 3.5E-02 −45.14 141.20 0.0E+00 42.42 −70.65 2.0E+00 −35.32 13.88 1.0E-04

34.21 −10.50 0.0E+00 −47.47 147.00 8.7E-03 42.51 −70.56 2.3E-01 -32.84 16.44 1.0E-04

33.40 −14.40 0.0E+00 −44.96 144.90 2.1E-02 43.72 −66.20 2.9E-01 -30.61 18.15 1.0E-04

30.74 −14.15 0.0E+00 (6) NAURU99 43.00 −66.80 7.6E-02 −27.90 15.28 1.0E-04

30.54 −11.10 8.0E-03 −10.82 135.30 5.8E-03 42.46 −70.35 4.6E-01 −24.93 12.12 1.0E-04

33.15 −9.70 1.0E-01 −10.78 140.00 0.0E+00 42.36 −71.03 3.7E+00 −21.23 8.39 1.0E-04

35.57 −8.26 5.8E-02 −9.59 145.50 2.6E-03 42.78 −70.71 2.3E+00 −17.78 4.94 1.0E-04

37.17 −9.35 2.7E-02 −10.42 152.50 4.5E-03 42.41 −70.74 2.0E-01 −14.07 1.78 1.0E-04

39.22 −11.29 4.7E-02 −1.91 164.40 0.0E+00 42.38 −70.86 4.0E-01 −9.88 −2.52 1.0E-04

39.75 −10.87 1.0E-01 −1.92 164.40 0.0E+00 42.74 −70.70 7.1E-01 −5.19 −7.12 1.0E-04

37.91 −9.78 5.8E-02 −1.92 164.40 2.6E-03 42.74 −70.73 6.2E-01 −1.24 −10.85 1.0E-04

36.71 −8.94 3.1E-02 −1.92 164.40 3.7E-03 43.17 −69.26 1.5E-01 2.71 −14.30 1.0E-04

36.35 −9.36 0.0E+00 −0.52 166.70 7.1E-03 44.32 −67.10 2.5E-02 6.66 −17.46 1.0E-04

38.46 −11.78 0.0E+00 −0.52 166.90 3.6E-02 44.00 −66.59 1.2E-01 11.36 −18.91 1.0E-04

(5) ACE1 −0.55 166.90 5.2E-02 43.16 −70.47 1.3E-01 15.00 −18.93 4.1E-02

40.44 −135.70 0.0E+00 −0.50 166.90 4.5E-03 42.45 −70.82 6.6E-01 18.56 −18.90 6.0E-02

36.17 −141.00 5.2E-03 −0.56 167.00 0.0E+00 42.80 −70.51 1.4E-02 21.26 −18.39 1.0E-02

31.99 −145.80 0.0E+00 −0.57 167.00 0.0E+00 42.80 −70.63 5.9E-02 25.47 −16.98 1.0E-04

27.85 −150.40 0.0E+00 (7) NEAQSO2 42.97 −70.51 0.0E+00 29.92 −15.28 1.0E-04

23.80 −154.80 3.8E-04 34.45 −76.11 9.6E-03 42.67 −69.77 3.8E-01 36.12 −12.74 5.7E-01

19.19 −157.00 5.0E-02 38.84 −72.78 4.7E-03 42.82 −70.74 7.7E-02 41.32 −9.91 6.4E-01

19.12 −159.10 0.0E+00 40.49 −73.87 1.2E+00 43.32 −70.17 2.8E-01 45.53 −7.07 5.0E-01

12.34 −160.00 1.0E-03 40.44 −73.80 5.9E-01 43.09 −70.44 3.9E-01 48.01 −3.94 4.0E-01

7.39 −160.00 3.1E-03 40.82 −68.92 3.2E-02 43.52 −70.07 9.9E-01 (10) Davidson et al., 1996

2.49 −160.00 1.2E-04 42.46 −70.79 8.1E-01 43.65 −69.90 2.3E-01 −68.00 0.00 3.2E+00

−3.68 −160.00 7.1E-04 43.02 −70.33 5.8E-02 44.39 −67.62 4.7E-01 −69.00 −4.00 3.2E+00

−8.34 −160.00 3.1E-04 43.01 −70.66 6.5E-01 43.64 −69.41 4.2E-01 −70.00 −8.00 3.2E+00

−14.14 −160.00 1.0E-03 42.94 −70.72 2.3E-01 43.62 −70.12 1.4E-01 −71.00 −12.00 3.2E+00

−20.51 −160.00 5.4E-02 42.83 −70.71 8.3E-01 42.55 −68.38 2.3E-02 −72.00 −16.00 3.2E+00

−25.33 −160.00 1.2E-0 42.75 −70.59 4.2E-01 42.43 −70.50 4.6E+00 −73.00 −20.00 3.2E+00

−30.76 −161.60 2.2E-02 43.46 −70.21 1.3E-01 42.37 −71.05 1.6E+00

−32.11 −164.30 7.7E-04 43.40 −69.37 0.0E+00 42.63 −69.61 0.0E+00

−34.58 −169.50 0.0E+00 43.02 −70.67 8.1E-01 42.87 −70.77 4.4E-01

−37.61 −176.60 1.1E-02 42.32 −70.73 9.7E-01 (9) Koponen et al., 2002

−35.53 178.80 0.0E+00 42.40 −70.77 6.4E-01 −69.50 4.06 1.0E-01

−35.15 177.10 1.5E-01 42.97 −70.65 2.4E-01 −66.49 3.47 7.4E-02

−34.40 172.10 0.0E+00 42.79 −70.59 9.3E-02 −63.30 3.78 4.0E-02

−42.04 150.80 3.0E-02 43.02 −70.68 1.8E-01 −59.59 4.00 1.0E-02

−50.29 155.90 9.8E-03 43.01 −70.67 8.2E-02 −55.14 4.83 5.5E-02

−47.75 145.40 0.0E+00 42.79 −70.54 1.2E-01 −51.92 6.25 4.6E-02

−49.99 138.30 0.0E+00 43.02 −70.64 1.7E-01 −49.69 8.52 3.4E-02

−42.88 140.80 5.7E-02 39.06 −72.99 1.1E-01 −47.21 11.08 1.8E-02

−41.08 143.30 2.6E-02 36.82 −75.84 5.1E-02 −44.98 11.64 8.0E-03
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Fig. 1. Horizontal (a, c, e: average over first seven model layers above Earth’s surface) and

vertical (b, d, f: sigma=pressure/surface pressure) distributions of annual mean values of SO2

mixing ratio, condensation sink (CS), and [H2SO4]. We run the GEOS-Chem coupled with

nucleation model for one year from 1 July 2001 to 30 June 2002. The time step for trans-

port is 15 min and for chemistry (and nucleation) is 30 min. The calculations of CS, [H2SO4],

and hence nucleation rates are only limited to grid boxes below GEOS-Chem’s annual mean

tropopause.
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Fig. 2. Simulated global distribution of annual mean nucleation rates averaged within the

boundary layer (0–930 m) (refer to the color bar on the right). Corresponding measured particle

formation rates from ship observations are shown as color-filled circles (refer to the lower color

bar, which gives the average local nucleation rate, typically over a window of several hours).

Measurements over land are indicated by unfilled circles, where circle size defines the number

of nucleation events reported (refer to the scale at the bottom of the figure), while color gives the

average nucleation rate over the event ensemble. Land-based nucleation data prior to 2004 are

taken from Kulmala et al. (2004); after 2004, publications listed in Table 1 are used. Ship-based

nucleation rates are derived from the recorded time-series of ultrafine particle concentrations

at sizes between ∼3 nm and ∼12 nm (Appendix Table A1). Assuming that typical nucleation

events last for 3 h, an observed nucleation rate of 1 particle cm
−3

s
−1

is equivalent to roughly 10
4

particles cm
−3

day
−1

; this equivalence has been used to cross-calibrate the color bars in the

figure.
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Fig. 3. (a) Meridional structure of predicted annual-mean zonally-averaged nucleation rates

calculated using GEOS-Chem coupled to an ion-mediated nucleation sub-model. (b) Zonally-

averaged latitudinal and vertical distributions of total ultrafine condensation nuclei (UCN) con-

centrations measured in situ (Sect. 3.3). In panel (3b), to avoid overlap owing to the large

number of data points, the pressure-latitude cross section is divided into a 5 mb×0.5
◦

grid,

wherein all data, at all longitudes, are averaged. The average value for each grid point is repre-

sented as a color-coded circle. The observed UCN concentrations have also been normalized

to standard conditions (1 atm, 298 K).
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Fig. 4. The ratio of annual mean IMN rates integrated within the lowest 3 km of atmosphere

(e.g., the source strength due to IMN, SSIMN0−3, #/cm
2
day) to the annual mean rate of emis-

sion of primary particles (e.g., source strength due to primary aerosol emission, SSprimary,

#/cm
2
day). The primary aerosols considered in GEOS-Chem, and their corresponding as-

sumed (fixed) sizes (radius), are: dust (4 sizes: 0.7, 1.5, 2.5, 4µm), sea salt (3 sizes: 0.732,

5.67µm, and an ultrafine sea salt mode with a radius of 40 nm), black carbon aerosol (39 nm),

and organic carbon particles (70 nm).
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