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Abstract

An investigation of the Planetary Boundary Layer (PBL) height evolution over Greece,

during the solar eclipse of 29 March 2006, is presented. Ground based observations

were carried out using lidar detection and ranging devices (Lidars) and ground mete-

orological instruments, to estimate the height of the Mixing Layer (ML) before, during5

and after the solar eclipse in Northern and Southern parts of Greece exhibiting differ-

ent sun obscuration. Data demonstrate that the solar eclipse has induced a decrease

of the PBL height, indicating a suppression of turbulence activity similar to that during

the sunset hours. The changes in PBL height were associated with a very shallow en-

trainment zone, indicating a significant weakening of the penetrative convection. Heat10

transfer was confined to a thinner layer above ground. The thickness of the entrain-

ment zone exhibited its minimum during the maximum of the eclipse, demonstrative

of turbulence mechanisms suppression at that time. Model estimations of the PBL

evolution were additionally conducted using the Comprehensive Air Quality Model with

extensions (CAMx) coupled with the Weather Research and Forecasting model (WRF).15

Model diagnosed PBL height decrease during the solar eclipse due to vertical trans-

port decay, in agreement with the experimental findings; vertical profiles of atmospheric

particles and gaseous species showed an important vertical mixing attenuation.

1 Introduction

Solar eclipses, although astronomical events, provide a unique opportunity for studying20

various atmospheric phenomena, when the incoming solar radiation is sharply turned

off and on during these events. Since the planetary boundary layer (PBL) is the at-

mospheric range closer to the earth’s surface, where mass, energy and momentum

transport towards other parts of the atmosphere take place via a turbulence process, a

change in the radiative heating or cooling will be felt firstly in the PBL before it reaches25

the free atmosphere.
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During a normal day overland, a convective atmospheric boundary layer (CBL) de-

velops, reaching a quasi-steady state in the afternoon, with a mixed layer from the

ground up to the interfacial layer with the free atmosphere, a region of strong thermal

inversion. Generally, the CBL afternoon/evening transition is marked before sunset by

a development of a surface inversion related to surface cooling. The CBL, often called5

the residual layer after sunset, becomes neutral above that stable layer. After sunrise,

the stable layer is destroyed and a new mixing layer develops. These phenomena have

been extensively studied experimentally and theoretically in steady state (Stull, 1988),

but the evolution during transitions is still not so well known. During a solar eclipse, the

two transition situations are reproduced, however with time scales much shorter than10

those of the normal diurnal cycle, still providing an excellent chance for investigating

the mechanisms driving the PBL evolution.

In the few studies dealing with PBL during solar eclipses, important findings are re-

ported. Antonia et al. (1979) examined the velocity and temperature fluctuations during

a solar eclipse (23 October 1976) of 80% totality over Delinquin, Australia, to determine15

the Atmospheric Surface Layer (ASL) response on the changes of ground heat-flux. It

was found that during the eclipse the surface layer turbulence approximately follows a

continuum of equilibrium states in response to stability changes brought about by the

change in surface heat flux. This point has been also illustrated by Eaton et al. (1997).

The authors showed the eclipse effects on the PBL over a desert site in New Mex-20

ico, USA (94% totality), using data acquired near the ground and in the surface layer

with a frequency-modulated continuous wave (FMCW) radar. They report that dur-

ing the eclipse maximum, the sensible heat-flux and the radiation flux were affected,

the turbulence was reduced and the air refractive index structure constant decreased

dramatically.25

Another closely related study of the PBL dynamics during the 11 August 1999

eclipse was performed with Ultra High Frequency Radio Acoustic Sounding System

(UHFRASS) radar, sodar and an instrument mast by Girard-Ardhuin et al. (2003). It

was found that the eclipse induces a clear response in the atmosphere with a time lag
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of 15 to 30 min. Boundary Layer experiments conducted over India during the total

solar eclipse of 16 February 1980 (Narasimha et al., 1982; Sethuraman, 1982) and

also during the total solar eclipse of 1995 (Arulraj et al., 1998), witnessed a decrease

in near surface temperature, wind speed and also the changes in atmospheric stability

following the solar eclipse.5

There are also evidences of oscillations in ASL parameters over India (Dolas et al.,

2002) following the total eclipse event of 11 August 1999. However, that particular

event occurred near sunset thus masking the absolute effects of the eclipse on the

meteorological variables. The dynamics of the PBL during the solar eclipse of 11 Au-

gust 1999, over Bulgaria were studied with an aerosol backscatter lidar by Kolev et10

al. (2005). Data used in this study demonstrate that the solar eclipse affects the me-

teorological parameters of the atmosphere near the ground, the ozone concentration

and the height of the mixing layer. During the period encompassed by the beginning of

the solar eclipse (at 12:36 LT) and its maximum (reached at 14:03 LT), the ML height

increased from 1600 m to 1900 m; from 14:03 LT to 15:27 LT when the eclipse ended,15

the ML height decreased down to 1200 m as a result of the diminished irradiation of the

Earth’s surface. This behaviour was followed by another increase in the ML height.

The aim of this paper is to study the PBL height response to the March 2006 solar

eclipse, by analysing the aerosol structure of the atmosphere. Two backscatter lidars,

as well as additional meteorological surface and vertical profile data (radiosondes) are20

used to document and analyse the dynamic and thermodynamic response of the lower

atmosphere to the sudden change of the incoming solar radiation. The analysis of the

lidar data is complemented by numerical simulations with the CAMx model.
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2 Instrumentation and methods

2.1 Lidar systems and methodologies

The lidar system of Aristotle University of Thessaloniki – AUTH (40.5
◦

N, 22.9
◦

E), is

designed to perform continuous measurements of suspended aerosols particles in the

PBL and the lower free troposphere. It is based on the second and third harmonic5

frequency of a compact, pulsed Nd:YAG laser, simultaneously emitting simultaneously

pulses of 120 and 150 mJ output energy at 355 and 532 nm, respectively, with a 10 Hz

repetition rate. The receiving telescope has a primary diameter of 500 mm and an

equivalent focal length of 5000 mm. Photomultiplier tubes (PMTs) are used to detect

the received lidar signals in the analog and the photon counting mode, with a corre-10

sponding raw range resolution of 7.5 m (Balis et al., 2000; Amiridis et al., 2005).

The lidar system of National Technical University of Athens - NTUA (37.9
◦

N, 23.8
◦

E),

is also based on the second and third harmonic frequency of a compact pulsed

Nd:YAG laser, which emits simultaneously pulses of 80 and 130 mJ output energy

at 355 and 532 nm, respectively, with a 10 Hz repetition rate. The optical receiver is15

a Cassegrainian reflecting telescope with a primary mirror of 300 mm diameter and a

focal length of 600 mm, directly coupled, through an optical fiber, to the lidar signal

detection box (Papayannis and Chourdakis, 2002). The detectors are operated both in

the analog and photon-counting mode and the spatial raw resolution of the detected

signals is 15 m.20

Both lidar systems are equipped with a Raman channel working at 387 nm (atmo-

spheric N2 channel) for night-time operation. The lidar systems of AUTH and NTUA

operate within EARLINET project (European Aerosol Lidar Network) since 2000 and

both operation and the algorithms implemented were successfully inter-compared with

other EARLINET lidar systems as reported by Matthias et al. (2004), Boeckmann et25

al. (2004) and Pappalardo et al. (2004).

Averaging time of the lidar profiles during the March 2006 solar eclipse case, was

of the order of 3 min for Thessaloniki and 1 min for Athens, corresponding to 2000
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and 1000 laser shots, respectively. The final spatial resolution of the range-squared-

corrected signal (RSCS) at both stations was 15 m. The determination of the ML height

distribution by lidar during the eclipse is the first step in our analysis. In general, the

optical power measured by a lidar system is proportional to the signal backscattered

by particles and molecules present in the atmosphere. Using aerosol particles as a5

tracer, one can determine the top of the ML as the height where the lidar signal profile

exhibits a discontinuity between the mixed layer and free troposphere. The method

used to retrieve the ML height in this study is based on the detection of the drop off in

the RSCS signals at the interface between the free troposphere and the mixed layer.

Following the methods analytically presented by Menut et al. (1999) and Flamant10

et al. (1997) we have used the minimum value of the filtered first order derivative of

averaged RSCS profiles with respect to the altitude to define the top of the mixed layer,

which coincides with the base of the entrainment zone. The depth of the entrainment

zone is defined here as the height difference between the derivative minimum and the

lowest data point defined by that negative peak (Flamant et al., 1997). The gradient15

method can be quite complicated because the minimum cannot be well defined or

several minima might exist over an extended height range. Therefore, one should also

study, simultaneously, the temporal distribution of the aerosol layers and of the altitude

of the minima.

2.2 Modeling20

The regional air quality model simulations were performed with the Comprehensive Air

quality Model with extensions (CAMx) version 4.40. Within the scope of this campaign,

CAMx ran with coarse grid spacing over Greece, in a spatial resolution of 10×10 km

and two fine nests with higher resolution (2×2 km) over Greater Athens and Thes-

saloniki area, respectively. The vertical profile of the domain contained 15 layers of25

varying thickness. Layer 1 was 22 m deep and subsequent layer depths increased with

height. The uppermost layer was 1.5 km thick and extended to about 8 km. The meteo-

rological fields were derived from the Weather Research and Forecasting (WRF version
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2.1.2) Model, developed at the National Center for Atmospheric Research (NCAR),

operated by the University Corporation for Atmospheric Research (UCAR). The first

model domain covered the Balkan area (55×55 grid points with 30 km resolution), the

second domain covered Greece (nested domain with 121×121 grid points and 10 km

resolution) and the two domains with finer resolution (2×2 km) covered the two mea-5

suring sites (Athens; Thessaloniki). The vertical profile contained 31 vertical layers

extending to 18.5 km.

Anthropogenic and biogenic emissions were compiled for a coarse master domain

covering Greece (98×108 cells, 10×10 km) and for the two nested grids with finer res-

olution (2×2 km). Emission data for gaseous pollutants (NMVOC, NOx, CO, SO2, NH3)10

and particulate matter (PM10) were estimated for different anthropogenic emission

source sectors such as the transport, power plants, the industrial and the central heat-

ing sector. Anthropogenic emissions of the neighbouring countries (Albania, Bulgaria,

Turkey) were taken from the EMEP emission database. Diurnal biogenic emissions for

Greece and neighbouring countries were calculated for every month of the year fol-15

lowing the EMEP/CORINAIR methodology (Poupkou et al., 2004). All emissions are

ejected in the first model level.

Three days of simulation were regarded as “spin-up” time (26–28 March 2006) in

order to eliminate the effect of initial conditions. Initial and boundary conditions corre-

sponded to concentrations of clean air. The chemistry mechanism invoked was Carbon20

Bond version 4 (CB4). Photolysis rates were derived for each grid cell as a function of

five parameters: solar zenith angle, altitude, total ozone column, surface albedo, and

atmospheric turbidity. Both meteorological and chemical models have been modified

accordingly to reproduce the eclipse event (for more details see Founda et al., 2007;

Zanis et al., 2007). In order to account for the photochemical changes of the atmo-25

sphere during the eclipse, photolysis rates in the chemical model were adjusted during

the period 09:30–12:00 UTC using a space- and time-dependent factor. Thermody-

namic changes were introduced into the chemical model with a set of eclipse-affected

meteorological input.
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3 Results and discussion

With the objective of studying the changes in the PBL structure due to the sudden

attenuation of radiation, field experiments were conducted over Athens and Thessa-

loniki close to the totality path of the solar eclipse of 29 March 2006. During the solar

eclipse, Athens and Thessaloniki experienced 84% and 74% obscuration, respectively.5

The partial eclipse for both sites took place between 09:36–12:04 UTC, with the max-

imum phase occurring around 10:50 UTC. A general description of the field experi-

ments and the local eclipse circumstances over Greece can be found in Gerasopoulos

et al. (2007)
1
.

3.1 Lidar measurements10

Figure 1 presents the time cross-section of the first derivative of the RSCS at 532 nm,

measured by the backscatter lidars in Thessaloniki (a) and Athens (b) on 29 March

2006. In Fig. 1a, the evolution of the ML height along with the thickness of the en-

trainment zone is shown for Thessaloniki. In the morning and until 09:30 UTC when

the eclipse began, the height of the ML in Thessaloniki grew up to about 700 m. ML15

heights below 400 m would not been detected by the AUTH lidar due to laser beam

and telescope field-of-view overlap limitations (Balis et al., 2002). Between first con-

tact (09:36 UTC) and maximum of the eclipse (10:50 UTC), 74% obscuration), the ML

height declined to about 550 m. At 11:00 UTC low clouds were formed over Thessa-

loniki at an altitude of approximately 250 m and remained until 11:50 UTC, inhibiting20

aerosol lidar measurements. During this period, the lidar-retrieved cloud base height

is presented in Fig. 1a. After 11:50 UTC, the ML height was measured at 600 m and

remained at this altitude until 12:50 UTC, followed by a small fall of 50 m between 12:50

and 13:20 UTC. During the above time periods, the upper boundary of the entrainment

1
Gerasopoulos, E., Zerefos, C. S., Tsagouri, I., et al.: The Total Solar Eclipse of March 2006:

Overview, Atmos. Chem. and Phys. Discuss., to be submitted, 2007.
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zone exhibits similar behaviour. The entrainment zone thickness ranged between 80 m

and a minimum of 20 m during the total phase. This indicates a significant weakening

of the penetrative convection, induced by the solar eclipse. After the end of the eclipse,

the entrainment zone thickness reached an almost constant value of 60 m.

In Fig. 1b, the evolution of the ML height over Athens is shown. In this case mea-5

surements were performed within the time interval 09:00–13:10 UTC (84% sun obscu-

ration). At the beginning of the phenomenon, the ML height over Athens was found

at 800 m and the entrainment zone had a thickness of 100 m. After a constant fall be-

tween 09:30 and 10:50 UTC, the ML height reaches a value of 700 m at the maximum

of the eclipse, while the thickness of the entrainment zone exhibits its minimum value10

of 30 m. From 10:50 to 12:04 UTC (end of eclipse), the ML height continued to fall,

reaching a value of 620 m, while the entrainment zone thickness increased to 60 m.

3.2 PBL evolution from lidar and meteorological measurements

The PBL generally forms due to heating of the Earth’s surface. During the solar eclipse

the gradual decrease of the Sun’s radiation influences the surface heat fluxes and the15

boundary layer temperatures. In order to explain the evolution of the ML height as re-

vealed by lidar measurements, we present time-series of the measured surface wind

speed and air temperature at Thessaloniki (a) and Athens (b), respectively (Fig. 2).

Figure 2a shows that relatively low wind-speed values prevailed during the hours pre-

ceding the eclipse. At Athens, the surface wind speed ranged between 2–6 m s
−1

while20

at Thessaloniki between 0.5–2.5 m s
−1

. A further decrease of wind speed near mid–

eclipse is observed at both sites, retaining low values until the end of the event and

recovering after. At the same time, temperatures gradually fell with the evolution of the

event and rose again during the recovery phase (Fig. 2b). In particular, at Thessa-

loniki, the surface temperature decreased by about 4
◦

C between the first contact and25

the maximum of the eclipse, while for Athens the corresponding temperature fall was

in the order of 2.5
◦

C (Founda et al., 2007)

Additional meteorological measurements, namely analytical radiosonde data of po-
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tential temperature, relative humidity (RH) and wind speed with a vertical resolution of

approximately 5 m are presented in Fig. 3. The radiosonde data from the Macedonia

Airport of Thessaloniki launched at 11:55 UTC (Fig. 3a), indicate humid conditions with

RH between 80–90% inside the PBL. The PBL height is estimated from the potential

temperature profile, which indicates a clear inversion at 350 m, coinciding with an in-5

flection point in the profile of the relative humidity. The wind-speed profile (Fig. 3a)

shows weak winds inside the PBL, in the range 2.5–4.5 m s
−1

. Radiosonde data avail-

able at Athens at 09:38 and 12:03 UTC (Fig. 3b) indicate less humid conditions, with

RH lower than 60% up to 1000 m. Launching times coincide with the start and the

end of the eclipse. PBL heights calculated by the potential temperature profiles were10

approximately 400 and 220 m at 09:38 and 12:03 UTC respectively.

The PBL heights over Thessaloniki and Athens derived from the radiosondes profiles

are also presented in Fig. 1. The radiosonde measurements in Athens were performed

at Ellinikon Airport, located nearby the coast of the city and at a distance of 11.3 km

from the lidar station (220 m a.s.l.), thus not being representative for Athens case. For15

this reason, the PBL height that one should expect for Athens lidar station is also repre-

sented by red squares in Fig. 1b. This PBL height is estimated by the radiosonde profile

plus 220 m, since the relatively gentle slope of the topographic surface is expected to

displace upwards the boundary layer (Stull, 1988).

In order to explain the evolution of the ML height as this was followed by lidar mea-20

surements, we analyse the lidar estimates in conjunction with the meteorological ob-

servations for both sites. At Thessaloniki, the almost clear sky conditions and low wind-

speed values (Fig. 2a, squares) prevailing during the pre-eclipse hours, are expected to

lead to free convective conditions. Since the beginning of the eclipse occurred almost

at local noon, a well mixed layer is expected to have formed by that time. After the first25

contact, incoming solar radiation progressively decreases and so does surface tem-

perature, although with some delay due to thermal inertia of the atmosphere-land-sea

system. As already mentioned, the amplitude of temperature drop at Thessaloniki was

about 4.0
◦

C while the minimum temperature occurred 12 min after the total phase of the
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eclipse (Founda et al., 2007). According to the lidar signal (Fig. 1a), at the beginning of

the event, the convective mixed layer extends up to around 700 m a.s.l. at Thessaloniki

area. At the early stages of the eclipse, radiative cooling starts to take place near the

surface in a similar way that surface cools after sunset. At that time the atmosphere is

still mixed and temperature deficit extends from the surface at higher levels throughout5

the whole boundary layer due to turbulence mixing, resulting to the decrease of the

ML height (Vogel et al., 2001). As evident from the lidar signal (Fig. 1a) at 10:15 UTC

the ML height has decreased by about 200 m. As eclipse approaches to the maximum

phase, a pronounced temperature deficit is observed (Fig. 2b) and stable stratifica-

tion is reached near the surface. Convectional mechanism is expected to weaken and10

eventually break down and heat transfer is confined to a thinner layer above ground.

Aerosol tracers injected in the atmosphere are now dispersed between the surface

and the new temperature inversion height (200 m). Due to the stabilization of the air

at lower levels and the suppression of turbulent mechanisms, the conditions at higher

levels remain relatively unchanged and this is also exhibited clearly in Fig. 1a, where15

the structure of the initial mixed layer remains almost unaltered after 10:20 UTC. This

behaviour resembles the one observed during night-time where the so called Residual

Layer coexists with the nocturnal boundary layer.

Another important observation that supports our arguments is the variation of the

amplitude of the entrainment zone. It is obvious from Fig. 1a that the thickness of this20

zone is reduced near the maximum phase of the eclipse, indicating the suppression

of turbulence mechanisms and the weakening of the penetrative convection at that

time. The weakening of the mixing processes due to the cooling of the atmosphere is

also reflected in the surface wind speed (Fig. 2a) which decreases near mid-eclipse

and retains low values until the end of the event. Between 11:00 and 11:50 UTC25

when clouds were observed over Thessaloniki, one can see in Fig. 1a (red triangles)

that the lidar retrieved cloud base height shows a positive trend. According to Stull

(1988) in presence of clouds, the PBL height is defined as the cloud base height. After

11:00 UTC surface air temperature starts to recover (Fig. 2b) although it does not
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recover to its pre-eclipse value, mainly due to the time of the day and the increased

cloud cover. We indicate that for the time period between 11:00 and 11:50 UTC, the

height of the inversion base is increasing due to the surface temperature recovery and

this argument is supported by the height of the layer at 200 m on 11:00 UTC, followed

by the increase of the cloud base height. According to radiosonde data at 11:55 UTC5

(Fig. 3a), the structure of the upper part of the PBL indicates a slight stability, however, it

is expected that eddies transfer heat and momentum, mixing again the boundary layer.

After 11:50 UTC when the eclipse approximately ended, the ML height was found at

600 m and that height was approximately retained until 12:50 UT.

The effect of the thermal inertia of the atmosphere-land-sea system in surface tem-10

perature response due to the eclipse seems to be more pronounced in Athens area.

According to observations performed in the Athens area (Fig. 2b), surface air tem-

perature at 1.5 m a.s.l. retained its increasing march after the beginning of the event,

while the time shift of temperature drop from the first contact was of the order of 30 min

(Founda et al., 2007). This is partly attributed to the higher (compared to Thessaloniki)15

wind speeds which prevailed in Athens (Fig. 2a) area resulting to the mixing of the air

and other local factors, like cloudiness that preceded the eclipse (Founda et al., 2007).

High values of incoming short-wave radiation and moderate wind speeds in Athens

contributed to the formation of a well-mixed boundary layer by the beginning of the

event, as is also evident from radiosonde data at 09:38 UTC (Figs. 3b, i). According20

to the lidar signal (Fig. 1b) the mixed layer extends up to the height of 800 m a.s.l. at

09:30 UTC. The delay in surface air cooling observed in Athens area is reflected to the

height of the mixed layer which decreases at a slower rate compared to Thessaloniki

for about one h after the first contact as evident in Fig. 1b. Then the height of the mixed

layer starts to decrease faster for the reasons already explained in the Thessaloniki25

case. The formation of a lower stable layer extending from the ground to the height of

410 m is also observed in Athens for a short period near the maximum phase of the

eclipse.

The smaller amplitude of temperature drop and higher surface wind speeds in Athens
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have possibly contributed to less stable (compared to Thessaloniki) atmospheric condi-

tions near the surface. This is also supported from the radiosonde data at the two sites

near the end of the eclipse in Figs. 3a and 3b-ii. The potential temperature gradient in

the layers 23–220 m at Athens and 23–350 m at Thessaloniki were 0.6 and 0.8
◦

C/100 m

respectively, suggesting greater stability at Thessaloniki. Under these conditions sur-5

face temperature deficit is transferred at higher levels resulting to the cooling of the

entire mixing layer and its depression. Finally, due to thermal inertia of the air and the

natural decrease of solar elevation after the eclipse, mixing layer height does not regain

its initial value for Athens.

3.3 Modeling10

Figure 4 shows the PBL height as diagnosed by CAMx process analysis in Thessaloniki

and Athens (lines with markers). An additional run has been performed in order to

simulate the atmospheric processes without eclipse (dashed lines). At both sites the

PBL height is approximately 150 m at 06:00 UTC and gradually increases to reach a

maximum 4 h later. Normally, the PBL should continue to develop in order to reach15

its maximum height early afternoon hours as indicated by the dashed lines. However

after 09:30 UTC the eclipse starts to affect the PBL height. Due to vertical turbulent

mixing decay PBL decreases and reaches a local minimum at around 11:30 UTC, i.e.

during the eclipse maximum. 2 h later the PBL height has almost fully recovered and

starts to decrease gradually again after 15:00 as the sun slowly sets. Interestingly the20

PBL height in Thessaloniki is on average higher than in Athens. This is also supported

by the radiosonde measurements which indicate that at around 12:00 UTC the PBL

height at Thessaloniki is appreciably higher than the respective over Athens. During

sunrise the PBL height in Thessaloniki reaches up to 350 m, while in Athens only to

225 m. During the maximum of the eclipse, the PBL height is reduced to 290 m and25

190 m in Thessaloniki and Athens, respectively. If the eclipse had not taken place

the PBL heights would have reached 440 and 245 m, respectively, during the period

12:00–15:00 UTC.
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Another interesting feature giving insight to the PBL evolution during the eclipse is

the time slice of the vertical PM distribution. The vertical profile of PM concentrations is

basically dominated by two factors: ground emissions and turbulent mixing. As clearly

depicted in Fig. 5, emissions injected mostly between 06:00–12:00 UTC, control the

PM concentration levels in the first 100 m. For altitudes higher than 100 m, vertical5

mixing is the dominant factor over pollutant concentrations. If PM is to be used as a

qualitative index of the PBL evolution, it can be noticed that the basic patterns observed

in Fig. 4 can also be noted in Fig. 5. After 06:00 UTC particulate matter trapped in

lower levels is transported upwards, a clear indication of the PBL expansion. However

vertical transport does not appear to evolve undisturbed by reaching a maximum at10

early afternoon hours, on the contrary it decays during the eclipse. For a constant

altitude between 200 and 300 m at both sites, PM concentrations are higher before

and after the eclipse and fall somewhat during the event.

Finally, we use CO as an additional tracer for the PBL evolution. In Fig. 6, the evo-

lution of CO vertical profile is shown from 08:30 to 16:30 UTC, for the non-eclipse15

model run (top panel). During the early morning hours (08:30–10:30 UTC), ground CO

concentrations increase in the lower levels with time due to increasing emissions. A

negative vertical gradient above indicates that there is not sufficient turbulent mixing

yet to homogenize pollutant concentrations. Later, the PBL is gradually developing and

reaches up to 450 m until 12:30 UTC as indicated by the constant CO mixing ratios. The20

negative gradient remains for altitudes higher than 450 m. It is noticeable that Figs. 4

and 6 compare well concerning the PBL height which is derived with two different meth-

ods: CAMx diagnosed and indirectly using CO as a tracer of the PBL evolution. For the

three consecutive hours (14:30–16:30 UTC) CO values remain almost unchanged to

the whole range of altitude justifying the assumption of a well developed PBL. The bot-25

tom panel shows model results, for a run with eclipse parameterizations. Differences

are obvious during the 2 h span 09:30–11:30 UTC. A negative CO vertical gradient re-

mains until the end of eclipse implying a poorly developed PBL, while the 12:30 UTC

curve indicate a homogenized layer that extends only up to 200 m. The comparisons
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of CO vertical profiles after 14:30 with eclipse and no-eclipse parameterizations, which

are almost identical, imply that after two h the atmosphere has recovered from the

eclipse “disturbance”.

4 Summary and conclusions

Several effects consistent with the rapid cut-off and turn-on of solar radiation were5

observed in the planetary boundary layer during the 29 March 2006, solar eclipse at

Greece by the use of lidar backscatter methods. As expected, the eclipse primarily

influenced the surface meteorological parameters. However, from the lidar data pre-

sented here, it becomes clear that the influence of the eclipse is observed up to the

height of the mixing layer. The thickness of the entrainment zone exhibits its minimum10

during the maximum of the eclipse indicating the suppression of turbulence mecha-

nisms at that time. A ground layer with height of 200 m for Thessaloniki and 410 m

for Athens was formed around the maximum of the eclipse due to the stabilization of

the air at lower levels. The elevated temperature inversion was responsible for the

suppression of convectional mixing and the formation of a residual aerosol layer for15

Thessaloniki, where the inversion was stronger.

In this study we used both CO and PM as tracers for the PBL height. To investigate

further the eclipse effects on the atmospheric dynamics, a second run was performed,

without introducing the eclipse parameterizations. The results exhibit clear differences

in PBL height and structure for both Athens and Thessaloniki. Model diagnosed PBL20

height decrease during the solar eclipse due to vertical transport decay, in agreement

with the experimental findings. Moreover, the vertical profiles of atmospheric particles

and gaseous species showed vertical mixing attenuation.
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Fig. 1. Time-height cross section of the first derivative of the range squared corrected lidar
signal at 532 nm (in arbitrary units – A.U.) at Thessaloniki (a) and Athens (b) measured on
29 March 2006. The upper and lower limits of the entrainment zone are demonstrated with
the thin and bold solid line, respectively, the latter representing the evolution of the ML height.
Red triangles correspond to lidar retrieved cloud base height. Squares represent PBL heights
calculated from radiosonde meteorological profiles.
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Fig. 2. Surface wind speed (a) and temperature (b) timeseries for Thessaloniki (black dotted
line) and Athens (red dotted line). Vertical lines correspond to the first contact-maximum-last
contact of the eclipse.
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Fig. 3. Potential Temperature, relative humidity and wind speed measured with radiosondes
on 29 March 2006, at 11:55 UTC for Thessaloniki (a) and at 09:38 UTC (b-top panel-(i)) and
12:03 UTC for Athens (b-bottom panel-(ii)).
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Fig. 4. PBL height as diagnosed by CAMx for Thessaloniki and Athens. Dashed lines corre-
spond to control runs without eclipse.
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Figure 5
Fig. 5. Time slice of vertical particulate matter (PM) distribution modeled for the two measuring
stations, Thessaloniki (top panel) and Athens (bottom panel).
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Fig. 6. Temporal evolution of modeled CO vertical profiles for the eclipse (bottom panel) and
non-eclipse case (top panel) for the site in Thessaloniki.
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