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Abstract. We investigate the statistical properties of den-
dritic drainage areas from diverse geological environments
(Deception Canyon, Utah and the Loess Plateau, China) us-
ing narrow band visible ASTER satellite images. We show
that from 240 m to 7680 m, the isotropic (angle integrated)
energy spectraE(k) of all the fields closely follow a power
law form: E(k)∝k−β wherek is a wave number andβ a
scale invariant exponent. In spite of this good isotropic scal-
ing, images with very similarβ ’s and similar isotropic mul-
tifractal exponents have distinct textures; we suggest that the
differences are primarily due to anisotropy, which is never-
theless scaling. We develop the new “Differential Anisotropy
Scaling” technique to characterize this scale-by-scale (dif-
ferential) anisotropy and we test it on simulated anisotropic
scaling fields. The method gives useful characterizations of
the scale by scale anisotropy irrespective of whether or not
the analyzed field is scaling. When the anisotropy is not
too strong, the parameters can be interpreted as scale in-
variant anisotropy exponents. Viewed as a method of esti-
mating these exponents, it has the advantage of relying on
two linear regressions rather than on complex higher dimen-
sional nonlinear ones. When applied to dendritic drainage
basins we find that they have distinct anisotropies character-
ized by differential anisotropy stretching and rotation param-
eters as well as by a distinct absolute anisotropy at the refer-
ence scale of 960 m. Our new method allows us to statisti-
cally distinguish, not only between two geologically different
drainage basins (the China Loess Plateau and Utah Decep-
tion Canyon), but also between different regions of the same
China drainage system.

Correspondence to: A. Beaulieu
(abeaulie@nrcan.gc.ca)

1 Introduction

The Earth’s surface is the product of tectonic, volcanic and
erosion/deposition processes. The resulting complex land-
forms and the evolution of the surface are thus the conse-
quence of nonlinear processes, some of which are catas-
trophic. The same processes apparently repeat from one
scale to another, producing natural structures such as moun-
tains, streams, lava flows and islands which have struc-
tures over wide ranges of scale. Quantitative measure-
ments of these geomorphological features (e.g., lengths,
perimeters, areas, roughness) or their associated topographic
fields are found to be power law functions of their size or
scale/resolution of acquisition (e.g., Lavallée et al., 1993;
Gaonac’h et al., 1992; Gagnon et al., 2006): from meters
to tens of kilometers they are often scale invariant. It is then
important to link the observed scale invariant properties with
the underlying physical and chemical processes.

Erosion of the Earth’s surface on global scales is primar-
ily caused by surface run-off. Fluvial landforms are pecu-
liar structures with diverse drainage systems involving net-
works of small brooks to large rivers that evolve over time.
A number of scaling investigations of river networks have
attempted to relate unique exponents to the network topol-
ogy such as stream orders and stream lengths (Horton, 1945;
La Barbera and Rosso, 1989; Chase, 1992; Pelletier, 1999;
Rodriguez-Iturbe and Rinaldo, 2001). However, investiga-
tions of geophysical fields rather than geometric drainage
patterns are necessary for characterizing and understanding
the geo-processes involved in shaping the Earth. Whereas
scaling geometric sets may be described with unique expo-
nents, scaling geophysical fields require nonlinear exponent
functions. These multifractal exponent functions are gener-
ally necessary to specify the statistical moments of all or-
ders (e.g., Lovejoy and Schertzer, 1990; Lavallée et al., 1993;
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Weissel and Pratson, 1994; Pecknold et al., 1997; Veneziano
and Iacobellis, 1999; Gagnon et al., 2006) hence to com-
pletely characterize the statistical scale dependence of the
multifractal fields. The characterization of geofields by their
scaling exponents is predicated on the fact that geotextures,
georoughness and other basic aspects of geomorphology are
fundamentally multiscale notions requiring wide ranges of
scale for their expression. The acquisition of remotely sensed
multiple spectral images is thus a unique source of data for
determining the scale invariant characteristics of the radiance
fields (e.g. visible, short-wave infrared, infrared, microwave)
related to the chemical composition of soil and bedrock, their
humidity content, their surface temperature (e.g., Laferrière
and Gaonac’h, 1999; Maı̂tre and Pinciroli, 1999; Lovejoy et
al., 2001a, b; Harvey et al., 2002; Beaulieu and Gaonac’h,
2002; Gaonac’h et al., 2003; Cheng, 2004).

The simplest scale invariance hypothesis is that the statis-
tics are independent of direction; the system is isotropic,
“self-similar”. Until now, the scale invariant properties
of surfaces have been routinely characterized using such
isotropic statistics, which disregard (or “wash out”) the ef-
fect of anisotropy or preferentially oriented structures by in-
tegrating or averaging statistics over all directions. For ex-
ample, Gagnon et al. (2006) found over a range of 40 m
to 20 000 km, for statistical moments of order lower than
2, the residuals were on average within±45% of the theo-
retical isotropic values. They concluded that the observed
tremendous diversity of geomorphologies is a consequence
of anisotropy.

Geoanisotropy is expected to be a function of both size
and location. Rather than imposing an a priori isotropic ap-
proach – e.g. by defining the size using the usual isotropic
(Euclidean) distance function – it is more appropriate to al-
low the system itself to define the physically appropriate
anisotropic notion of scale. We therefore seek to relate mor-
phology and texture with anisotropic scaling. Up until now,
only a few studies have investigated scaling anisotropy and
most of these have only considered anisotropy in orthogonal
directions (e.g. Lavallée et al., 1993; Weissel et al., 1995;
Foufoula-Georgiou and Sapozhnikov, 1998). However, this
is an insufficient generalization of the anisotropic scaling for
most applications. Schertzer and Lovejoy (1985) proposed a
general formalism for scale invariance where the anisotropy
changes in direction and intensity via a scale-changing opera-
tion; see Pflug et al. (1993), Pecknold et al. (1997) and Lewis
et al. (1999) for attempts at more general scaling characteri-
zations of empirical fields. In the case where the anisotropy
is only a function of size (but not location) the appropriate
notion of scale for these structures is determined by a power
law where the exponent is a matrix instead of a scalar. This
matrix G, generator of the anisotropy, determines the notion
of scale and hence the differential scaling according to the
directions (for example see Lovejoy et al., 1992, 2001a, b,
2005; Pflug et al., 1993; Pecknold et al., 2001; Lilley et al.,
2004; Cheng, 2004). But anisotropy is important for im-

age processing and pattern recognition too. For example the
investigation of the anisotropy of fluvial regions by remote
sensing is essential to broadly characterize the effect of the
nonlinear processes which create drainage patterns in various
environments.

In the present study, remotely sensed images from the
TERRA ASTER sensor give us an opportunity to analyze
the isotropic and anisotropic scaling statistical properties of
drainage basins in different lithological backgrounds: the
China Loess Plateau and the Utah Desolation Canyon (pre-
sented in Sect. 2); this raises a few questions. Does the
anisotropy of drainage basins break the scaling of the satel-
lite images? Do stream systems evolving in different geo-
logical settings show scaling anisotropies? In Sect. 3, we
compare the isotropic energy spectra demonstrating scale in-
variant characteristics of fluvial textures. In Sect. 4, we con-
sider the anisotropic scaling of the images through a new
“Differential Anisotropy Scaling” technique that character-
izes the differential anisotropy versus the scale of the ob-
served fluvial structures testing it first on simulated multi-
fractal anisotropic scaling fields and then on real images. We
then discuss the resulting statistical similarities and differ-
ences and relate them with distinct drainage areas formation
caused by different underlying Earth processes. In Sect. 5 we
conclude.

2 The data

Remotely sensed images from the TERRA ASTER sen-
sor (level 1A reconstructed unprocessed instrument data) in
band 2 (0.63–0.69µm) were selected over two drainage ar-
eas. This particular spectral band was chosen due to its
low atmospheric diffusion and hence high contrast. The se-
lected images were relatively free of urban areas. They have
vegetation-free homogeneous lithologies and relatively dry
climates. To reduce high frequency banding (due to sensor
calibration imperfections), the images (45 in total) were av-
eraged to 512×512 pixels resulting in a spatial resolution of
30×30 m.

Images were chosen over the China Loess Plateau area on
the Yellow River (Huang He, CL and CY, Fig. 1a) drainage
basin west of Luliang Mountains and in the west part of the
Taihang Mountains (CM, Fig. 1a). The CL group contains 17
images collected on 1 October 2000, the CY group contains
5 images from the same ASTER scenes, the CM group con-
tains 16 images collected on 10 May 2001. The formation of
the Loess Plateau in China dates back to 7–8 Ma, but since
2.6 Ma the loess accumulation was very rapid (DerbyShire,
2001). The average grain size and thickness diminish from
NW to SE, reflecting in a general way the dynamics of the
transport of the loess by the dominant winds. Deposition of
particles from the atmosphere produces very loose particle
packing (Derbyshire, 2001). The stability of the loess de-
posit is sustained over a large area mainly because of climatic
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conditions; the dry climate maintains under-saturated condi-
tions. The effect of rain on loess is drastic; water satura-
tion causes it to disaggregate nearly instantaneously, creating
landslides and mudflows. The section selected over the Yel-
low River (CL and CY) is mainly composed of loess deposits
down to a depth of several meters (Porter, 2001). This area
of the loess plateau displays a dendritic type river network,
demonstrating the great homogeneity of the loess deposits
being expressed as a “superfine texture”. Such a drainage
network could be caused by a poorly permeable surface de-
posit such as loess where conditions of intense but infrequent
rainfalls prevail. Images chosen in this superfine texture area
are separated in two groups CL and CY. The CL images are
predominantly composed of small to medium sized tribu-
taries of the Yellow River (Fig. 2a) while the CY images in-
clude the more developed large Yellow River valley (Fig. 2b).
The CM group with thinner loess deposits containing more
clay was chosen from the Eastern part of the Loess Plateau
near the Taihang Mountains (Fig. 2c). This dendritic area
shows a “fine texture” (not superfine) with small less dense
tributaries compared to the area west of the Luliang Moun-
tains (possibly due to the superimposed effect of the thinner
loess deposit in this area and the more permeable underly-
ing hard rock basement). This Taihang Mountain region is
mainly composed of granite and gneiss (Zunyi et al., 1986).
All of these regions are in semi-arid conditions, and receive
300–600 mm/yr of precipitation with mean annual tempera-
tures of 2–6◦C (Wang and Takahashi, 1998). The effect of
sudden intense rainfalls may be very different on the CL and
CY loess regions compared to the CM loess-granite-gneiss
region.

Another region chosen was Desolation Canyon, Utah,
(Fig. 1b); a selected image is shown in Fig. 2d (UT). The
UT group contains 7 images acquired on 19 October. The
Green River cuts deeply into this area of the Tavaputs Plateau
(mainly the Roan Cliffs and the Desolation Canyon) where
5000 m of sediments were deposited in the ancient “Uinta
Basin” paleogene deposits which are formed by a Laramide
downwarp formed by structural disruption of the foreland re-
gion during the late Cretaceous and Paleogene epochs (Dick-
inson et al., 1986; Franczyk et al., 1991). The sediments are
mainly composed of interbedded formations of shale, silt-
stone and sandstone. The whole region including the Tava-
puts Plateau has witnessed regular tectonic uplift and ero-
sion/deposition in the past 20 Ma influencing the pathway of
river drainage systems. The Green River developed in this
complex geological environment also tends to be dendritic,
but with an even lower drainage density, structurally con-
trolled by diverse permeable rock formations and tectonic
evolution of the Tavaputs Plateau called a “medium texture”.
Although the climate in this area is similar to the Chinese
regions – a semi-arid environment receiving 300–400 mm of
mean annual precipitation and mean annual temperatures of
1–7◦C – the geological setting is very different.

Fig. 1. (a) Location of selected regions in the Loess Plateau of
China. The ASTER flight over the Yellow River (Huang He River)
contains 8 scenes, overall representing 60 km by 485 km; the CL
and CY images were chosen in this section. The other ASTER flight
is partly on the Taihang Mountains and is made of 5 scenes, overall
representing 60 km by 304 km; the CM images were taken from this
area. The map is modified after Derbyshire (2001).(b) Location of
the Utah data set (UT). The dark rectangle shows portion of the
ASTER flight, which is composed of 3 scenes, and is 60 km by
184 km. The map is modified after Dickinson et al. (1986).

3 Isotropic scaling of the radiance fields

3.1 Method

Investigation of the isotropic scaling properties of each image
was performed with spectral analysis. The isotropic Fourier
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Luliang Mountains superfine dendritic 
texture with small tributaries

Luliang Mountains superfine dendritic 
texture with tributaries and the Yellow 
River

Taihang Mountains fine dendritic texture 
with small tributaries

Utah medium dendritic texture with tribu-
taries and the Green River

Fig. 2. Examples of the drainage pattern in each of the data groups.
(a) the CL group,(b) the CY group(c) the CM group,(d) the UT
group. Each image is 512 by 512 pixels and is 15.36×15.36 km2.

power spectrum is a second order statistic and hence is only
a single member of the hierarchy of exponents necessary
to fully characterize multiscaling/multifractal fields. How-
ever, it is adequate for our present purposes; for studying the
anisotropy. We do not attempt to characterize anisotropies of
the other statistical moments, but this could be done, for ex-
ample by considering the spectrum of various powers of the
original field.

The spectral densityP (k) is defined as the ensemble-
averaged, square modulus of the Fourier transform
Ĩ (k)=

∫

eik.xI (x)dx of the imageI (x):

P(k) = 〈|Ĩ (k)|2〉 (1)

where “<.>” denotes ensemble (statistical) averaging. Al-
though the original real space structures may be highly elon-
gated,P (k) is an average over all of them independently of
location; its variation with the direction ofk represents a kind
of spatial and ensemble averaged anisotropy.

We can now define the (isotropic) spectrumE(k) as the
angle-integral ofP (k):

E(k) =
∫

|k′|=k

P(k′)dk′. (2)
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UT

log
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 E(
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log10 k (k in cy/m)

7680 m 240 m

-3,50 -3,00 -2,50 -2,00

Fig. 3. Plot of log10E(k) versus log10(k) for selected images of
each group; they are shifted (from each other by 1) for a better visu-
alization. Theβ values of these individual spectra are respectively
from top to bottom: 0.82; 0.82; 0.96;−0.12. See Table 1 for aver-
ageβ values over the various sets.

(the notation indicates integration over all wave vectors of
lengthk=

∣

∣k
∣

∣, i.e. over all angles). If the scaling is isotropic
we have:

P(k) ∝ |k|−s = k−s (3a)

E(k) ∝ k−β β = s − D + 1 (3b)

whereβ and s are the scale invariant exponents;D is the
dimension of space (=2 for images), andk=|k| is the modu-
lus of the wave vector (k is in cycles/meter or cycles/pixel).
Below, we estimateP (k) from a single realization (single im-
age) since the different images we have are presumably not
realizations of the same process (in particular do not have the
same anisotropy parameters).

3.2 Results

The isotropic analyses demonstrate the presence of scale
invariance of the TERRA ASTER visible radiance fields
between 240 m (8 pixels) and 7680 m (256 pixels) corre-
sponding to log10(k)=−2.38, log10(k)=−3.89 withk in cy-
cles/meter over the China and Utah regions. Representa-
tive individual image spectra of the four data sets (CL, CM,
CY and UT) are presented in Fig. 3 (all spectra were cal-
culated using Hanning windows). The isotropic scaling be-
low 240 m was not considered satisfactory for the ensemble
of data sets. As previously observed by other studies (La-
ferrière and Gaonac’h, 1999; Beaulieu and Gaonac’h, 2002),
breaks in the isotropic scaling at higher resolution often oc-
cur when images are pre-processed (geometric/radiometric
corrections). In the case of the TERRA ASTER data, verti-
cal banding is an obvious artifact which affects the scaling at
the highest resolutions. At the large scales, structures larger
than half the linear size of each image are rare and thus don’t
provide reliable low wave number statistics; we thus omitted
thek=1 statistics. When considering all images, the region-
ally averagedβ ’s (Table 1) above 240 m show an increase
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Table 1. Average estimates of the isotropic scale invariant parameters of each data set with associated standard deviations indicating the
image to image variation of the distribution of the parameters within each group of images. ln(ls ) is estimated with Eq. (14); the corresponding
distance in meters is indicated in parentheses;a2 has been estimated for each image using Eq. (21).

Estimates of the averages± Standard deviation

CL CY UT CM

β 0.09±0.15 0.76±0.23 0.85±0.20 0.91±0.18
ζ1 −0.19±0.19 0.24±0.12 0.18±0.05 −0.07±0.17
ζ0 1.94±1.29 −0.94±0.80 −0.18±0.31 1.06±1.10
θ1 0.09±0.45 0.55±0.82 0.02±0.08 −0.13±0.34
θ0 −0.05±1.13 0.34±1.17 0.25±0.37 0.08±0.86

ln(ls ) 6.89±5.45 (980) 3.00±2.44 (20) 0.68±1.47 (2) 9.73±6.43 (17 000)
a2 0.01±0.03 0.02±0.02 0.01±0.01 0.00±0.003

from CL (β=0.09) to CM (β=0.91). CL images exhibit a dis-
tinct scaling characterization compared to the others (CM,
CY and UT) with an extremely lowβ value (β=0.09) in-
dicating that there are very few large structures compared
to smaller ones in this superfine drainage area of the China
Loess Plateau (CY). On the other hand, the other three im-
age groups exhibit higherβ ’s (CY, CM and UT,β=0.76, 0.91
and 0.85, respectively) reflecting the increased dominance of
large structures in the images compared to small ones but in
a scale invariant relationship. Hence, while isotropic scaling
prevails over the four distinct drainage groups it does not sta-
tistically distinguish the four different areas, which obviously
reveal distinct patterns (Fig. 2).

3.3 Discussion

The relatively lowβ values of the superfine textural CL im-
ages may be explained by the homogeneous thick deposit
of loess where many small source tributaries have devel-
oped, creating a very high-density low order drainage sys-
tem (Fig. 2a). The other three data sets (CY, CM, UT), have
larger β values, reflecting the existence of more dominant
large structures: a) the higher CYβ values may be explained
by the presence of the large and developed Yellow River val-
ley (Fig. 2b) cutting through the loess (producing superfine
texture); b) the fine textural CM images, which present a pat-
tern of dendritic source tributaries (as in CL images) could
reflect with their higherβ ’s the combined effect of loess de-
posits thinner and thinner to the east and shallow underly-
ing crystalline hard rocks, which may partially impose some
structural control on the regional stream network (highβ ’s
indicate “rough” images of images while lowβ ’s smoother
ones). Hence, the thicker the loess is at the tributary source
(CL compared to CM), the lower theβ values of the radiance
fields; c) finally the medium textural UT images have dis-
tinct β values from the CL images, easily explained by the
large sedimentary structures present in the Utah images in-
cluding the presence of the large Green River. Similar obser-

vations of distinctβ values, from differentially eroded por-
tions of a river network located on the Ethiopian Plateau,
were found by Beaulieu and Gaonac’h (2002). Maı̂tre and
Pinciroli (1999) also suggested a possible link between the
fractal dimension and various geomorphologic aspects of the
surface, such as soil composition and friability, where low
fractal dimensions would be associated with friable quick
erosional environments and high values with dissected hard
rock settings. However, Fourier and multiscaling analyses
better characterize scale invariant fields since fractal geomet-
rical dimensions will depend on the radiance or altitude on
which they are defined and will generally not produce unique
values.

4 Anisotropy of the radiance fields

4.1 Generalized scale invariance

If we “zoom” into a self-similar (isotropic and scaling) sys-
tem, the magnified structures are on average of the same type
as the unmagnified ones. In order to obtain the same sim-
ple relation between large and small structures in a scaling
but anisotropic system, the zoom must be accompanied by a
compression and/or rotation as a function of scale. To handle
anisotropy in scaling system the generalized scale invariance
(GSI) framework is needed (Schertzer and Lovejoy, 1985).
Anisotropic scaling can be described by a scale-changing op-
eratorTλ which reduces scale by a factorλ. The operatorTλ

may be written as:

Tλ = λ−G (4)

whereG is the generator that takes the form of the identity
matrix (1) for the isotropic (self-similar) case. A second
element is a unit “ball” which defines all the unit vectors.
From the unit ballB1 we can generate a family of balls by
Bλ = TλB1 i.e., the scale of all the non-unit vectors is de-
fined by applyingTλ to B1. The scale function

∥

∥x
∥

∥ specifies
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Fig. 4. Example of the fitted contours ofP (k) of a 512 by 512 pixel
CL image. The bottom image(b) is a magnification of the small
real space square in the top image(a). In P (k), the small structures
are depicted by the large contours, and the large ones by the small
contours; they are also orthogonal to the real space structures.

the size of a vectorx; it must satisfy the scale function equa-
tion ||Tλx||=λ−1||x||. In words, this means that the size of
a reduced scale vector (Tλx) is λ times smaller than the size
of the original (large scale) vectorx. WhenG=1, a simple
solution of the scale equation is

∥

∥x
∥

∥ =
∣

∣x
∣

∣, i.e. the scale can
be taken as the usual vector norm (length). In an anisotropic
scaling system, the size (scale) of a vectorx is thus defined by
||x|| rather than the usual norm

∣

∣x
∣

∣. If anisotropy is present
in a system, there will generally be one scale (ls) at which
||(ls, 0)||=||(0, ls)|| (however, see below for the apparently
exceptional case of rotation dominance when there can be
infinitely many or none);ls is called the “sphero-scale” since

the corresponding structures will typically be “roundish”.
Although it is not strictly necessary, in many cases of weak
scaling anisotropy such as those studied here, structures are
fairly roundish (see for example Fig. 4a). IfB1 is a circle,
sinceTλ is a linear operator, it will transform the circle to an-
other quadratic form: theBλ are ellipses. Since the images
are 2-D,G is a 2×2 matrix which can be conveniently repre-
sented by a linear combination of basic quaternion-like ele-
ments (Schertzer and Lovejoy, 1985; Lovejoy and Schertzer,
1985):

G = d1 + cK + f J + eI (5)

where

1 =
(

1 0
0 1

)

, K =
(

1 0
0 −1

)

, J =
(

0 1
1 0

)

, I =
(

0 −1
1 0

)

(6)

or:

G =
(

d + c f − e

f + e d − c

)

(7)

wherec andf are associated with stratification,e with ro-
tation andd with an overall contraction of the system. The
eigenvalues ofG ared+a, d−a where:

a2 = c2 + f 2 − e2 (8)

so that we see that the general qualitative behavior of lin-
ear GSI is determined bya. Two different cases can be de-
scribed. Whena2>0, the stratification of the structures is
dominant with rotation never exceedingπ /2. When on the
contrary,a2<0, the rotation is dominant, the balls, or ellipses
rotate as the scale changes through an infinite angle of rota-
tion asλ→∞. When rotation and stratification both act, they
can sometimes givea2 values near zero, since they counter-
act each other.

4.2 The “Differential Anisotropy Scaling” technique

The empirical estimate of GSI parameters is difficult; Lewis
et al. (1999) proposed the “scale invariant generator, SIG”
technique that involves a nonlinear regression in a four-
dimensional parameter space onP(k). The difficulty with
the SIG method is that although it was tested on ideal cases
(i.e. simulations) in many empirical fields the parameter
space turned out to be too large for convergence to the global
error function minimum. As an alternative, in the present
study, contours are fitted toP (k), and the GSI parameters
are then extracted from contours (Fig. 4). This method is in
many ways similar to that of Pflug et al. (1993) except that we
use a weak anisotropy approximation which (when valid) has
several advantages. In particular its parameters are estimated
by two linear regressions so that estimates are more robust.
In addition the parameters have a straightforward interpre-
tation whether or not the system is scaling. To each con-
tour in an image (inP (k)), ellipses are fitted and the major
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axisA, the minor axisB and the angle of orientationθ (be-
tween the major axis and the horizontal axis) are estimated.
We assume both linear GSI (G is a matrix) and also weak
anisotropy (i.e. near elliptical balls; see the exact characteri-
zation below). The simplest way to obtain the basic equation
of the “Differential Anisotropic Scaling” technique is to start
with the characterization of the transformation of ellipses un-
der the action ofλ−G. Sinceλ−G is a linear transformation,
the method maps ellipses onto other ellipses; it suffices to
know the orientation and ellipticity of the ellipses as func-
tions of scale. We follow the results of Pflug et al. (1993);
who showed that the major and minor axes of an ellipse (A

andB), for each contour the ellipticity can be characterized
by:

ζ(l) =

√

√

√

√

√

A(l)

B(l)
−

√

B(l)

A(l)
(9)

Since by definitionB(l)<A(l)>0. Note thatε=A/B−1 is
the more usual “ellipticity”; we haveζ 2=ε/

√
ε+1. When

there exists a roughly isotropic scale (or sphero-scale) in the
image, the ellipticity of its ensemble of structures may be
related to the anisotropic scaling GSI parameters via:

ζ 2(u)=2r
sinh2(au)

a
; a2>0, stratification dominance (10a)

ζ 2(u)=2r
sin2(|a| u)

|a| ; a2<0, rotation dominance (10b)

whereu=ln(λ), λ=l
/

ls , l is the size or scale of the struc-
ture (k=2π /l is the equivalent in Fourier space) andls is the
sphero-scale.l is estimated as the square root of the area
of the corresponding ellipses; this corresponds to usingd=1
(see Lewis et al., 1999). We have introducedr=

√

c2+f 2;
c=r cosϕ andf =r sinϕ, ϕ being an angle in the (c, f) space.
Using the approximation sinhx≈x and usingu=ln(l)–ln(ls)
we obtain:

ζ(u) = |u|
√

2r |a| + O (au)3 (11a)

where “O” means “of order”. To lowest order this is equiva-
lent to:

ζ(l) ≈ |ln(l) − ln(ls)|
√

2r |a| (11b)

The positive root is taken sinceζ>0; the approximation
Eq. (11) is valid for small|au|. Equation (11b) can also be
expressed as:

ζ(l) ≈ ζ0 + ζ1 ln(l) (12)

with:

ζ0 = − ln(ls)
√

2r |a| andζ1 =
√

2r |a| for l > ls

ζ0 = ln(ls)
√

2r |a| andζ1 = −
√

2r |a| for l < ls

This expansion is valid as long as the linear term of the Taylor
expansion dominates the cubic one, i.e.:

u ≪
√

6

|a|
(13)

Pecknold et al’s. (1997) analysis of various geophysical fields
showed that|a| is frequently of the order of 0.1 and usu-
ally <0.2; this implies that the following is applicable if
we are within a factor of∼105 of the sphero-scale (i.e.,

l
/

ls≤e

√
6
/

0.2
). ζ (l) can be plotted against ln(l). From the

data and Eq. (12), the slopeζ 1 and the interceptζ 0 (i.e. the
ellipticity at scalel=ls or ln(l/ls)=0) can be retrieved. In this
case, the parameterζ 1 represents the differential anisotropic
variation from scale to scale of the system. The sphero-scale
ls is estimated as:

ls = e−ζ0/ζ1 (14)

In order to get more information about the matrix generator
G (see Eq. 7), we can consider the variation with scale of the
angle of the axis of the ellipse with respect to the horizontal.
Pflug et al. (1993) expressed it as:

θ(u) =
1

2
tan−1(

f

c
) −

1

2
tan−1

( e

a
tanh(au)

)

(15)

(valid for a real or imaginary). Expanding this expression in
au gives:

θ(u) =
1

2
tan−1(

f

c
) −

1

2
eu + O (au)3 (16)

This approximationθ(u)≈1
2 tan−1(

f
c
)−1

2eu is valid as long
as:

|u| ≪
√

3

r
(17)

which is very close to the previous condition (Eq. 13). Then,
according to the above, we can represent the angle variation
between the major axis and the horizontal as:

θ(l) ≈ θ0 + θ1 ln(l) (18)

whereθ0=ϕ
2+ e

2 ln(ls) andθ1=− e
2, ϕ= tan−1(

f
c
). e is used

in real space,−e in Fourier space (this is because theG in
Fourier space is the transpose of the real spaceG). From
Eqs. (8), (12) and the parametere retrieved fromθ0, we can
rewriteζ 0 andζ 1:

ζ0 = − ln(ls)

√

2r

√

∣

∣r2 − e2
∣

∣ l > ls (19a)

ζ0 = ln(ls)

√

2r

√

∣

∣r2 − e2
∣

∣ l < ls (19b)

and

ζ1 =
√

2r

√

∣

∣r2 − e2
∣

∣ l > ls (20a)
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(a)  

 

(b)

 

 

 

Fig. 5. Example of two anisotropic multifractal simulations
(512×512 pixels) with identical multifractal parametersα=1.90,
C1=0.12 andH=0.7 These are the observed values for the topog-
raphy (see Gagnon et al., 2006).(a) Anisotropic theoretical param-
eters ared=1, c=0.2, e=0.1, f =0, ls=0.5 anda=0.173. (b) Same
except forls=4096.

ζ1 = −
√

2r

√

∣

∣r2 − e2
∣

∣ l < ls (20b)

Since the sign ofζ1 changes at the sphero-scale, if the latter
is within the observable scale range, this fact can be used to
identify it. Finally, sincea2=r2−e2, Eq. (20) can be solved
for r2:

r2 =
e2 +

√

e4 + ζ 4
1

2
, a2 > 0 (21a)

and

r2 =
e2 ±

√

e4 − ζ 4
1

2
, a2 < 0 (21b)

hence, when|ζ1| > |e|, we must have a stratification domi-
nant regime (a2>0) and a unique solution forr2. However,
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Fig. 6. Plots of ζ (l) (filled symbols) andθ (l) (open symbols) as
functions of ln(l) – l in pixels – for simulations 5a and 5b. These
two simulations differ only inls . The black lines are the theoretical
ζ(l) retrieved from Eq. (12) plotted on the data analysis of the sim-
ulations 5a and 5b. The dash lines are the theoreticalθ(l) retrieved
from Eq. (18). See explanations in text.

when|ζ1| < |e|, we have two additional possible solutions for
a2<0. In this case, to establish the sign ofa2 we must con-
sider the third order term of the expansion of the expression
of ζ (Eq. 11a).

4.3 Tests of the Differential Anisotropy Scaling technique
on numerical simulations

This analytical method was applied on anisotropic multi-
fractal simulations (512×512 pixels) such as the fields in
Fig. 5. Results are presented for two simulations, which are
analyzed through their spectral densitiesP (k). We can ob-
serve (Fig. 6) the log-linear relationship implied by the GSI
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Table 2. Theoretical and estimated anisotropic values of the two simulated 5a and 5b fields. Estimatedζ1, ζ0, θ1, θ0 values are retrieved
from Fig. 6 following the ln-linear equations Eq. (12) and Eq. (18). Estimatedls is calculated from Eq. (14). Theoreticalζ1, ζ0, θ1, θ0 are
calculated from simulations values (using the negative ofe for comparison with Fourier estimates).θ0 has been chosen to lie between−π

2
and π

2 as well as to take into account the sign ofζ1 (as discussed in the text).

Theoretical and numerically estimated anisotropic values of simulations 5a and 5b

Theory 5a Numerically
estimated 5a

Theory 5b Numerically
estimated 5b

ζ1 0.263 0.196 −0.263 −0.253
ζ0 0.182 0.561 2.188 2.256
θ1 0.05 0.026 0.05 0.031
θ0 0.035 0.061 −0.416 −0.316
ls 0.50 0.057 4096 7458
a 0.173 0.133 0.173 0.170

model (Schertzer and Lovejoy, 1985; Lovejoy and Schertzer,
1985) betweenζ (l) and ln(l) (Eq. 12; filled symbols in Fig. 6)
and betweenθ (l) and ln(l) (Eq. 18); open symbols in Fig. 6);
we have passed from Fourier to real space usingl=2π/|k|.
A summary of the theoretical values obtained from the two
simulations and estimated values retrieved from their ana-
lyzed image contours is presented in Table 2. We observed
that ζ1 as well asθ1 slopes of the theoretical fits (straight
lines) are reasonably close to the estimatedζ1 andθ1 values
for both simulations.

The values ofζ0 are determined by the Fourier space
sphero-scale (ks). Since there is no simple relation between
Fourier shapes and real space shapes, the use of 2π /ks to es-
timatels is only approximately valid. It is therefore not sur-
prising that thels used to produce the simulation and 2π /ks

estimated from linear regressions on the Fourier estimatedζ

are not identical. We therefore do not expect excellent agree-
ment between Fourier and real spaceζ 0 parameters. How-
everζ 1, θ0, θ1 do not have this problem; we therefore expect
the only differences between real and Fourier space to be the
sign of e and henceθ1. Schematically we have:ζ0r≈ζ0f ;
ζ1r=ζ1f ; θ0r=θ0f ; θ1r=−θ1f , where “r” indicates “real”
space and “f ” indicates “Fourier” space. The only additional
complication is in the estimation of the orientation angleθ .
First, we note that axes of ellipses are only defined to within
π ; for convenience we take –π /2<θ<π /2. Next, the major
and minor axes change places at the sphero-scale: the re-
duced scale image below the sphero-scale of a major axis is
a minor axis and visa versa. This has the effect of addingπ /2
to θ0 below the sphero-scale (see Table 2).

Table 2 shows the comparison of the theoretical and es-
timated parameters for the two simulations shown in Fig. 5
with different ls . This leads to differences in the signs of
the slopesζ1: positive and negative respectively on the plot
of ζ (l) versus ln(l)=ln(2π /k). According to the above, we
must therefore correct theθ0 values byπ /2 in the former,
but not in the latter case. From the table and the figure, we

see that when this is done, the method does a reasonable job
of recovering the theoretical parameters. We conclude that
our method is adequate for the characterization of not too
anisotropic simulated fields (smallaln(l/ ls)). We will below
use estimates of all these parameters for comparison between
the different drainage area groups.

4.4 Empirical results

Estimates of theζ 1 parameters (anisotropic variation with
scale) for all remotely sensed images was done using the
P (k) contours as described above. Data points below 240 m
were considered for extracting statistical properties since the
“Differential Anisotropic Scaling” analyses did not demon-
strate breaks in theζ(l) versus ln(l) behavior over the range
120 to 240 m. Although the isotropic scaling was not so well
displayed between 120 m and 240 m, the anisotropic scaling
is not as much affected and provides useful information. In-
deed the new method exhibiting anisotropic scaling does not
necessarily imply a well defined isotropic scaling. Hence,
we decided to keep all the data above 120 m resolution to
improve the statistics. The estimates were then made up to
the largest available scale. The range of scales over which
the anisotropic scaling was estimated varies from one im-
age to another while the isotropic scaling was determined
over 240 m to half the image size (7680 m). The anisotropic
scaling was revealed by the present “Differential Anisotropic
Scaling” technique over a range of scales of 100–1350 m for
the UT set, 375–3100 m for the CM group, 260–2000 m for
the CY group and finally 225–2750 m for the CL set. Fig-
ure 7 gives an example of anisotropic scaling properties of
two UT and CL images. The differential anisotropy present
in both images is exhibited byζ 1 with opposite signs reflect-
ing the fact that the Utah structures are increasingly stretched
at larger scales while structures from the superfine textural
dendritic drainage area of the China Loess Plateau (CL) are
on the contrary increasingly roundish, a tendency reflected

www.nonlin-processes-geophys.net/14/337/2007/ Nonlin. Processes Geophys., 14, 337–350, 2007



346 A. Beaulieu et al.: Anisotropic scaling of remotely sensed drainage basins

0

0.2

0.4

0.6

0.8

1

1.2

1.4

 -π/2

0.4 -π/2

0.8 -π/2

1.2 -π/2

1.6 -π/2

2 -π/2

2.4 -π/2

2.8 -π/2

3.2 -π/2

4 5 6 7 8 9

ζ(l) θ(l)

ζ(l) θ(l)

UT

1530 m115 m

A

ln(l)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

-π

0.4 -π

0.8 -π

1.2 -π

1.6 -π

2 -π

2.4 -π

2.8 -π

3.2 -π

4 5 6 7 8 9

ζ(l) θ(l)

ln(l) 

3640 m255 m

CL

B

ζ(l) θ(l)

Fig. 7. Examples ofζ (l) (filled symbols) andθ (l) (open symbols)
as functions of ln(l) – l in meters – on a UT sub-image(A) and on
a CL sub-image(B). The lines were fit between the indicated scales
(115 m-1530 m for UT; 255 m- 3640 m for CL).

by negativeζ 1 values. When considering the rotation of
structures with scale, the Utah structures exhibit a lower rate
of rotation (θ1 has a lower value) relative to the China CL
image. The tendencies are confirmed by the averages (Ta-
ble 1).

ζ 1 andθ1 characterize the rates at which structures are re-
spectively stretched and rotated with scale. In Figs. 8a, c
we plot them against the isotropic spectral exponentβ in or-
der to discriminate the very high density (superfine) dendritic
China CL data set (β≈0.09) from the other sets (CY, CM and
UT; β>0.70). The parameterζ 1 separates the groups well,
especially when considering the mean of each group (larger
symbols), the CL and CM small tributaries groups (ζ 1<0)
from the CY and UT groups (ζ 1>0) where larger distribu-

taries are present. Theθ1 values of all the data are confined
between−1 and 1, except for one point (Fig. 8c).θ1 doesn’t
improve classification with respect toζ 1; neither doζ 0,θ0
and ls (Figs. 8b, d, e). Note thatθ0 is the only parameter
which depends on the absolute orientation of structures, it
reflects preferential fixed directions.

Using group averages ofζ 1 and ζ 0 for respectively CL,
CM, CY and UT, we extrapolated – following Eq. (12) – the
ellipticity parameterζ (l) estimated within the observed range
of scales (limited by dashed lines in Fig. 9a). This reveals a
range (6<ln(l)<8) where the UT group may be distinguished
from the others (see arrow in Fig. 9a). For ln(l)>6, the UT
structures display more anisotropic characteristics. We thus
decided to examine the absolute (single scale) anisotropy of
the images for ln(l) above 6 and chose 960 m corresponding
to 1/16 of the image size (any other scale with ln(l)>6 could
have equally well been chosen). The plot of the anisotropy
ζ(l) at this reference scale of 960 m –ζ (960 m) – versus
theβ values indeed demonstrated a good discrimination be-
tween the UT group on one hand and the China CM, CL and
CY groups on the other hand (Fig. 9b). Medium to large
Utah structures show a lot of aligned, elongated structures
(Fig. 2d) compared to other data sets, a result predicted by
the anisotropic scaling properties of the data.

The parametera2 is a measure of the overall dif-
ferential anisotropy of a system, including the strat-
ification/contraction and rotation of the structures
(a2=c2+f 2−e2). The a2 values range between−0.01
and 0.10. While our “Differential Anisotropic Scaling”
technique applies to structures and fields that are not too
anisotropic (Eqs. 12 and 18), the observed smallau values
around 0 are consistent with this. The estimated sphero-
scalesls (ζ(l)=0) are in general beyond the observed range
of scales for the CL and CM groups because of the negative
ζ 1 values of these images, whereas the CY and UT groups
show ls values around 20 and 2 meters, respectively also
generally outside the observed range of scales (see Table 1).

4.5 Discussion

The analysis of differential anisotropy over the two differ-
ent drainage areas proved to give insightful quantitative esti-
mates of the satellite images. CL and CM groups are char-
acterized byζ1<0 reflecting that patterns exhibit less strati-
fication at larger compared to smaller scales (Fig. 8a): i) in
the CL group, the images show weak large structures due
to the presence of a superfine dendritic texture of the region
where small source tributaries are uniformly widespread all
over the space; ii) in the CM images, large structures are
present. We suggest they are the result of a thinner loess
and a harder basement. Their spatial distribution however
reflects the dominance of larger tributaries and valleys ran-
domly distributing the water over the China Plateau revealing
less overall statistical anisotropy on the images at larger
scales. On the other hand, CY and UT images exhibit higher
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anisotropy at increasing scales (ζ1>0; Fig. 8a). In the CY
case, a major river, the Huang He (Yellow River), is present,
creating a large very well oriented valley, hence drastically
affecting the stratification at larger scales. On the UT images
large rivers also have created deep elongated large valleys.
Within these two groups of images involving large valleys
(CY and UT),β andζ 1 do not permit any distinctions be-
tween regions nor do the other parametersζ 0,θ1,θ0, ls . The
anisotropy at 960 m helps to differentiate the Utah from the
three Chinese areas (Fig. 9b). As predicted by the linear
ζ(l) obtained by using the region averagedζ0, ζ1 parameters,
all China groupsζ (960 m) exhibit similar values (CL=0.72,
CY=0.74 and CM=0.56) explained as being related to the
same drainage area (Yellow River system) developed in a pe-
culiar geological environment while the Utah shows a higher
ζ (960 m) value (UT=1.06) reflecting its higher stratification

of structures at 960 m on the other sets due to geology and
tectonic.

5 Conclusions

Geostructures, textures, morphologies typically span huge
ranges of scale and include structures whose direction and
elongation depend on position as well as scale. However,
it is frequently found that spectraP (k) – an average over
all the structures with a given orientation and scale (fixed
wave vector k) – are not so strongly anisotropic so that the
usual angle integrated spectrumE(k) is nearly a (scaling)
power law. In addition, the exponent ofE(k), β, may be
nearly the same even though the morphologies are distinct. In
this case, different geomorphologies are thus associated with
either differences between higher order isotropic statistics
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ensembles. Symbols are the same as in Fig. 8.

(i.e. their multiscaling properties: the power spectrum is only
a second order statistic) or different anisotropies or both. In
this paper, we focus on characterizing the anisotropy by de-
veloping a new “Differential Anisotropic Scaling” technique.
The method works by approximating structures inP (k) by el-
lipses and then systematically determining how their orienta-
tions and elongations vary with scale and characterizing each
of these by linear regression. Whether or not scaling holds,
the method provides a valid and useful characterization of the
differential anisotropy. However, if the anisotropy is not too
strong, then the resulting parameters have a relatively sim-
ple interpretation in the GSI framework. The method quan-
tifies the statistical anisotropy so that while the individual
real space structures may be highly elongated (anisotropic)
they nevertheless do not necessarily have an overall prefer-
ential direction. The extracted parameters are therefore in-
dependent of the approximate scaling of the isotropic statis-

tics (such as the angle integrated power spectrum). With re-
spect to existing anisotropy exponent estimation techniques,
this method avoids the problems associated with nonlinear
regressions in high dimensional parameter spaces.

In order to test out the method, we considered the example
of erosional landforms. The type of soil and rock basement,
the tectonics, the climate and the vegetation all influence
the erosion mechanism, the permeability of the superficial
deposits and hence the resulting river network geometries.
All of these mechanisms affect satellite radiances over huge
ranges of scale and hence should be reflected in remotely
sensed images. In this study, we attempted to use anisotropic
scaling parameters to classify TERRA ASTER satellite im-
ages of the semi-arid, vegetation free environments of the
Loess Plateau, China and Desolation Canyon, Utah.

We first confirmed that the images did indeed exhibit
isotropic and anisotropic scaling from 240 m to 7680 m. The
isotropicβ values simply express the relative importance of
small and large structures. Superfine loess dentritic textures
(CL images) exhibiting predominantly small source tribu-
taries were distinguished by their relatively smallβ ’s. The
three other image sets form a highβ group without distinc-
tion on the basis of their spectral exponent. To be more dis-
criminating, anisotropic analyses were performed. A particu-
larly useful parameter is the differential anisotropy tendency
ζ 1, which quantifies the rate at which structures change
their elongations as functions of scale. It was found that
this parameter distinguishes between images with large well-
oriented structures such as rivers and between those without
preferential orientations such as source tributaries. Finally
the elongation at the reference scale of 960 m (ζ (960)) is well
correlated with variations in the Earth basement due to differ-
ences in lithology (loess versus sedimentary rocks), tecton-
ics and erosion/deposition processes and provided additional
classification information.

These promising results open new avenues for both
understanding quantitative geomorphological classifica-
tion/segmentation using satellite or spacecraft images. While
further research is needed on the subject of regional vari-
ations of anisotropic exponents (i.e. spatially varyingG’s,
non linear GSI), we also need a more systematic theory of
weak scaling anisotropy. Also needed are generalizations
to stronger differential anisotropy as well as to anisotropic
fields that could not be well described via elliptical Fourier
space structures. Analyses of remotely sensed data from
other spectral regions could moreover be investigated to bet-
ter constrain the properties of the studied drainage basins.
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Mâıtre, H. and Pinciroli, M.: Fractal characterization of a hydrolog-
ical basin using SAR satellite images, IEEE Trans. Geosci. Rem.
Sens., 37, 175–181, 1999.

Pecknold, S., Lovejoy, S., Schertzer, D., and Hooge, C.: Multifrac-
tals and resolution dependence of remotely sensed data: GSI to
GIS, in: Scale in Remote Sensing and GIS, edited by: Quat-
trochi, D. A. and Goodchild, M. F., pp. 361–394, Boca Raton,
FL, CRC Press, 1997.

Pecknold, S., Lovejoy, S., and Schertzer, D.: Stratified multifrac-
tal magnetization and surface geomagnetic fields-II. Multifractal
analysis and simulations, Geophys. J. Int., 145, 127–144, 2001.

Pelletier, J. D.: Self-organisation and scaling relationships of evolv-
ing river networks, J. Geophys. Res., 104, 7395–7375, 1999.

Pflug, K., Lovejoy, S., and Schertzer, D.: Differential rotation and
cloud texture: analysis using generalized scale invariance, J. At-
mos. Sci., 50, 538–553, 1993.

Porter, S. C.: Chinese loess record of monsoon climate during
the last glacial-interglacial cycle, Earth-Sci. Rev., 54, 115–128,
2001.

Rodriguez-Iturbe, I. and Rinaldo, A.: Fractal river basins: Chance
and self-organisation, 564 pp. Cambridge, UK, Cambridge Univ.
Press, 2001.

Schertzer, D. and Lovejoy, S.: Generalised scale invariance in tur-
bulent phenomena, Phys. Chem. Hydrodyn. J., 6, 623–635, 1985.

Veneziano, D. and Iacobellis, V.: Self-similarity and multifractality
of topographic surfaces at basin and subbasin scales, J. Geophys.
Res., 104, 12 797–12 812, 1999.

Wang, Q. and Takahashi, H.: Regional hydrological effects of grass-
land degradation in the Loess Plateau of China, Hydrol. Pro-
cesses, 12, 2279–2288, 1998.

Weissel, J. K. and Pratson, L. F.: The length-scaling properties of
topography, J. Geophys. Res., 99, 13 997–14 012, 1994.

Weissel, J. K., Malinverno, A., Harding, D. J., and Karner, G.
D.: Erosional development of the Ethiopian Plateau of north-
east Africa from a fractal analysis of topography, in: Fractals in
Petroleum Geology and Earth Processes, edited by: Barton, C.

www.nonlin-processes-geophys.net/14/337/2007/ Nonlin. Processes Geophys., 14, 337–350, 2007

http://www.nonlin-processes-geophys.net/13/541/2006/


350 A. Beaulieu et al.: Anisotropic scaling of remotely sensed drainage basins

C. and La Pointe, P. R., pp. 127–142, Plenum Press, New York,
1995.

Zunyi, Y., Yuqi, C., and Hongzhen, W.: The Geology of China,
Oxford Monographs on Geology and Geophysics no. 3, 303 pp.,
Clarendon Press, Oxford, 1986.

Nonlin. Processes Geophys., 14, 337–350, 2007 www.nonlin-processes-geophys.net/14/337/2007/


