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Abstract. Model Output Statistics (MOS) refers to a method
of post-processing the direct outputs of numerical weather
prediction (NWP) models in order to reduce the biases in-
troduced by a coarse horizontal resolution. This technique is
especially useful in orographically complex regions, where
large differences can be found between the NWP elevation
model and the true orography. This study carries out a com-
parison of linear and non-linear MOS methods, aimed at the
prediction of minimum temperatures in a fruit-growing re-
gion of the Italian Alps, based on the output of two dif-
ferent NWPs (ECMWF T511–L60 and LAMI-3). Temper-
ature, of course, is a particularly important NWP output;
among other roles it drives the local frost forecast, which
is of great interest to agriculture. The mechanisms of cold
air drainage, a distinctive aspect of mountain environments,
are often unsatisfactorily captured by global circulation mod-
els. The simplest post-processing technique applied in this
work was a correction for the mean bias, assessed at individ-
ual model grid points. We also implemented a multivariate
linear regression on the output at the grid points surround-
ing the target area, and two non-linear models based on ma-
chine learning techniques: Neural Networks and Random
Forest. We compare the performance of all these techniques
on four different NWP data sets. Downscaling the temper-
atures clearly improved the temperature forecasts with re-
spect to the raw NWP output, and also with respect to the
basic mean bias correction. Multivariate methods generally
yielded better results, but the advantage of using non-linear
algorithms was small if not negligible. RF, the best perform-
ing method, was implemented on ECMWF prognostic output
at 06:00 UTC over the 9 grid points surrounding the target
area. Mean absolute errors in the prediction of 2 m temper-
ature at 06:00 UTC were approximately 1.2◦C, close to the
natural variability inside the area itself.

Correspondence to: E. Eccel
(emanuele.eccel@iasma.it)

1 Introduction

Meteorological models are the best prognostic instruments
available for operational forecast purposes. The output of
such models is only available on a coarse grid, whose nodes
are scattered unevenly over the geographical domain. The
typical distance between grid points ranges from a few dozen
km for general circulation models (GCM) down to a few km
for limited area models (LAM). One of the quantities that can
be forecasted is the ground level temperature (the tempera-
ture at 2 m above the surface), but this prediction is closely
tied to the (approximated) topographic position assigned by
the model to each grid point.

Large-scale models cannot represent the local topography
when the orography is strongly irregular. This is a typi-
cal feature of alpine territory, where deviations as large as
1000 m are likely to occur at some grid points (Fig.1). This
effect is particularly evident in the case of deep valleys such
as Adige Valley, which is one of the largest in the Alps in
terms of both length and depth. In alpine areas, a bias of
4 to 6◦C in temperature forecasts is common at grid points
where the model elevation is dramatically different from the
true elevation.

As a consequence, many numerical weather simulations
use downscaling as a post-processing step (Weichert and
Bürger, 1998; Schoof and Pryor, 2001; Huth, 2002, 2004;
Miksovsky and Raidl, 2005), in order to relate predictions on
grid points to real physical sites.

The forecast of spring frosts (or equivalently the predic-
tion of sub-zero nocturnal minimum temperature) is partic-
ularly important to agriculture. Unfortunately, it is also a
difficult task for meteorological models. During night the
thermal profile of the atmosphere strongly depends on me-
teorological conditions, which can affect the downward flow
of cooled air. This flow not only depends on atmospheric sta-
bility and cloud cover, but is also influenced by atmospheric
circulation on a wider scale and by local orography (André
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Fig. 1. Differences between the model elevation at LAMI grid
points and the true elevation taken from a 10 m resolution DEM.

and Mahrt, 1982; Carlson and Stull, 1986; Gassmann and
Mazzeo, 2001).

A good quantitative prediction of minimum nocturnal tem-
peratures at Alpine areas can only be achieved by downscal-
ing the raw (direct) output of numerical models (hereafter
DMO). There are several previous approaches to this prob-
lem. The simplest are univariate methods as, for example,
the application of site-specific offsets (fixed or seasonal) or
Kalman filter techniques (Homleid, 1995; Galanis and Anad-
ranistakis, 2002; Anadranistakis et al., 2004; Cane et al.,
2004). Although univariate methods have been well tested,
multivariate methods have the potential for modelling the in-
fluence of both properties of the site and prognostics pro-
vided by meteorological models. The use of machine learn-
ing (ML) techniques is widespread in meteorological prac-
tice, particularly for temperature prediction (Schizas et al.,
1991; Abdel-Aal and Elhadidy, 1994; Robinson and Mort,
1997; Arca et al., 1998; Verdes et al., 2000, Basili et al.,
2006). Such methods usually create accurate non-linear mul-
tivariate models. A potential drawback is that they do not
produce understandable relationships between predictors and
outputs, which prevent some researchers to adopt these meth-
ods.

In this work we apply two different machine learning algo-
rithms to downscale the gridded output of numerical models,
to obtain more accurate predictions of minimum nocturnal
temperatures in the Adige Valley and compare them to the
more traditional multilinear regression model.

2 Methods

2.1 Choice of post-processing approach

The two most well-known statistical approaches to the down-
scaling of numerical outputs are “Perfect Prog” (Perfect
Prognosis) and “MOS” (Model Output Statistics) – Wilks
(1995). Both methodologies build functional relationships
(which may or may not be explicit) between numerical fore-
casts and observations, but they differ in the way these re-
lationships are inferred. In the Perfect Prog technique, it is
assumed that the atmospheric state predicted by the model
exactly matches the true atmospheric state (hence the name
“perfect prognosis”). Relationships are then established be-
tween the model outputs and the observed variables (“pre-
dictands”) during a training stage. The relationships ob-
tained from past data are modelled over a certain “lead time”,
which, in the algorithm training stage, had been used as an
“analysis” input. This approach demonstrates the importance
of calculating individual downscaling offsets; even though
the model is considered to be perfect, its low spatial resolu-
tion still requires site-specific adjustments. The algorithms
linking predictors to predictands are always developed with
a reference to an observational dataset, rather than numerical
weather prediction (NWP) prognostics.

In the MOS approach, relationships are obtained by us-
ing the model’s outputs as predictors (e.g., for model run at
00:00 UTC, temperature forecast at different grid points at a
lead time of +30 h), and measured quantities as predictands.
This approach, however, also takes into account “errors” in-
trinsic to the model itself. It has the disadvantage of being
strictly applicable only over periods of time when the algo-
rithms used in the NWP models are homogeneous. Changes
in NWP calculation modules might alter model performance
and require a new MOS parameterisation.

Each technique has its pros and cons. Perfect Prog has
the disadvantage of not taking into consideration discrep-
ancies between the NWP model and the true atmospheric
state (Wilson, 2001). It is stable, however, and does not re-
quire adjustment after changes to the NWP model. MOS, on
the other hand, takes into account systematic biases in the
NWP output. Its major shortcoming is that any change to
the model, such as an improvement in spatial resolution or a
new parameterisation, may alter the performance of the post-
processing. The MOS therefore needs to be checked after
any major change. Nonetheless, for the purposes of this pa-
per we chose an MOS approach to allow for the correction
of systematic errors in the model. A different MOS was de-
veloped for each dataset: two models (ECMWF and LAMI)
and two times of operation (12:00 and 00:00 UTC).

2.2 Investigation area and meteorological data

An irregular orography characterises alpine regions, whose
mountain massifs are carved by deep valleys. Agricultural
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areas in the territory of Trento cover either gentle valley sides
or large, flat valley floors; the Adige valley region, in par-
ticular, is highly urbanised and its territory has been put to
intensive use in fruit-growing. In this context, DMOs are
problematic because the “internal” orography of the models
is highly simplified and thus generally different from the true
orography. This is true not only in terms of the absolute el-
evation of grid points, but also in terms of accurately repre-
senting valley widths and other morphological features. A
comparison of differences in grid point elevations in the re-
gion between the LAMI topographic model and 10-m Digital
Elevation Model (DEM) is reported in Fig. 1).

The target area is the middle reach of the Adige river val-
ley, extending from the meteorological station of S. Michele,
close to the northern border of Trentino, to that of Rovereto
(Fig. 2). The area covers a fruit- and vine-growing region;
south and north of it, apple (the frost-endangered crop) is
less common. The selected area contains a total of three me-
teorological stations, which are situated on the floor of the
valley. The Adige valley is large and deep, with a flat bottom
formed by alluvia from the Adige River. Figure 2 indicates
the geographic positions of all grid points and the meteo-
rological stations. The variation in height over the reach is
very low; over a distance of about 40 km (from Rovereto to
S. Michele), the altitude rises from 170 to 210 m above sea
level. The inclination of transverse terrain in the valley is
also negligible. The three stations inside the valley can be
considered as lying on generally flat terrain, even though they
are surrounded by mountain peaks rising as much as 2000 m
above the valley floor. The area reflects a good climatic ho-
mogenity, allowing to treat it as a meteorological unit; es-
pecially south of Rovereto, minimum temperatures are often
higher than in the selected area.

Due to prevailing thermal inversion conditions during frost
episodes, the valley bottom of the Adige river is a particu-
larly frost-prone area. Thanks to its low elevation, however,
phenological development in the valley is generally more
advanced than in the hilly surroundings, resulting in an in-
creased spring frost risk all over the valley bottom area. This
reason led us to select the central reach of this valley as a
suitable target area for minimum temperature modelling.

The post-processing model is calibrated using the mean
hourly 2 m temperature, measured from 06:00 to 07:00 lo-
cal time (05:00 to 06:00 UTC). This choice is close to the
usual time of temperature minima under standard conditions
of clear sky and calm wind, and it is also quite close to the
standard lead time of 06:00 UTC used in NWP models.

2.3 NWP models

The European Centre for Medium-Range Weather Forecasts
(ECMWF) operates a semi-lagrangian global model. The op-
erational model in use through 2006 (T511, L60) carries out
a triangular truncation on the spectral components down to
a grid size of 0.5◦ (about 55 km N-S×39 km E-W at 45◦ N).

Fig. 2. The ECMWF (large spots, numbered) and LAMI (small
spots) grids over the province of Trento. The 21 grid points used
for LAMI post-processing fall inside the marked area.

The vertical dimension is discretised into 60 levels. Initial
conditions are obtained using the four-dimensional data as-
similation scheme “4Dvar” (User Guide to ECMWF prod-
ucts, http://www.ecmwf.int/products/forecasts/guide/). The
regional model “Lokal Modell” (LM) is based on the fun-
damental hydro-thermodynamical equations describing com-
pressible, non-hydrostatic flow in a moist atmosphere. LM
does not make any scaling approximations. The equations
are written in advective form and solved numerically using
the finite difference method, with leapfrog time stepping.
The Italian implementation of LM, denoted LAMI (Schättler
and Montani, 2005), covers Italy and the surrounding region
with a horizontal resolution of 0.0625◦ (grid size of 7 km)
and 35 vertical levels. Since 2003 it has included a continu-
ous assimilation cycle based on the nudging scheme, which
includes surface observations, radio soundings, and aircraft
reports. As for the physical parameterisation, in 2002 the
first-order turbulence scheme was replaced by a new second-
order scheme based on turbulent kinetic energy equations. In
2003, the parameterisation of microphysical processes was
again updated in order to take into account the ice phase in
clouds.

As far as investigation periods are concerned, five years
(2001–2005) of ECMWF data were used for the 12:00
run (hereafter ECMWF-12). For the 00:00 run (hereafter
ECMWF-00), only the 2004–2005 period was used due to
the unavailability of previous outputs. We performed a sep-
arate evaluation of the 2004–2005 period for ECMWF-12,
for purposes of comparison with ECMWF-00. For LAMI’s
00:00 run (LAMI-00), the period of available data started in
2002 and ended in 2005. The NWP output quantities used as
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Fig. 3. An MLP network example for the calculation of minimum
temperature.

input for the post-processing algorithms are reported in Ta-
ble 1. The “lead times” for the various runs are +42 h for
ECMWF-12, and +30 h for both ECMWF-00 and LAMI-00.
Each model thus provides a forecast of hour 06:00 UTC on
the day following each forecast issue.

The grid points considered in this analysis (Fig. 2) are
close to the central part of Adige Valley. There are 9 grid
points for the ECMWF model, and 21 for LAMI.

2.4 MOS algorithms

Post-processing was carried out in four different ways: a
simple mean bias correction, a multilinear model, and two
machine-learning techniques (a neural network and a random
forest). Each of these MOS techniques is described below.

2.4.1 Mean bias correction

We selected the grid points that best predicted temperature
for the target area in each model (those with the highest deter-
mination coefficientr2). For the ECMWF grid, point number
5 was chosen as a reference, being the closest to the target
area. To obtain an unbiased value, we simply subtracted the
average difference between the DMO and measured temper-
atures from the DMO for this point at 06:00 UTC.

2.4.2 Multilinear regression (MLR)

Multilinear regression techniques are often applied in the
post-processing of temperature forecasts from meteorolog-
ical models. In the simplest case (linear regression), the
raw output correction is a function of only one parameter
(Woodcock and Southern, 1983; Massie and Rose, 1997). In
the more general case, many parameters (predictors) enter
into a multilinear model (Sugahara, 2000; Schoof and Pryor,
2001; Casaioli et al., 2003). We applied a backward stepwise
multilinear regression, where predictors were selected by the

Akaike information criterion (AIC). This selection was im-
plemented using the R package “mass” (Venables and Ripley,
2002). The AIC index is computed as follows:

AIC = 2N − 2n ln

(

RSS

n

)

(1)

where:
N = number of predictors
n = number of cases (days with prediction and observation)
RSS = sum of squared residuals.

The importance of a single predictor can be determined by
comparing this index with the value found after its removal
from the pool. Those which produce the greatest change in
AIC are retained in the MLR model.

2.4.3 Artificial Neural networks (ANN)

Neural networks have seen extensively use in meteorology
over the last decade (Navone and Ceccatto, 1994; Hsieh et
al., 1998; Tangang et al., 1998). From their origins as mod-
els of human brain function, they have evolved into power-
ful non-linear statistical models (Bishop, 1995). The most
widely used neural network is the “Multilayer Perceptron”,
or MLP (Rumelhart and McClelland, 1986), whose archi-
tecture is shown in Fig. 3. An MLP is formed from layers
of individual processing units, which are usually called neu-
rons. Each neuron takes its input from all elements in the
previous layer, evaluates a (usually non-linear) function of
the inputs, and forwards this result to the next layer. In the
simplest case there are only two layers of neurons. The first
takes its input values directly from the data, and computes
a non-linear transformation. The second layer consists of a
single unit, which computes some linear combination of the
first layer’s outputs. Each connection between two neurons
is given a relative weight, which is adjusted during a train-
ing phase in order to minimize some measure of error (typi-
cally, the mean square error between observed and predicted
values). Neural networks are extremely flexible non-linear
regressors, but they are prone to overfitting. Even when ap-
propriate methods are implemented to avoid this problem,
any error measure calculated on data used in the training
stage is expected to be biased. For this reason, only com-
pletely independent datasets should be used to evaluate the
performance of neural networks. We used a commercial soft-
ware package (STATISTICA Neural Networks; StatSoft Inc.,
http://www.statsoft.com) in all the experiments reported in
this paper.

2.4.4 Random Forest (RF)

New modelling tools based on ensembles (or groups) of pre-
dictors have recently been introduced (Breiman, 1996, 2001;
Freund and Schapire, 1995; Granitto et al., 2005; reviews
from Ho, 2002, and Tresp, 2001). These have been con-
sistently shown to be more accurate than single-predictor

Nonlin. Processes Geophys., 14, 211–222, 2007 www.nonlin-processes-geophys.net/14/211/2007/
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Table 1. Predictors available to the downscaling algorithms. Some units are modified before the application of post-processing algorithms.

Abbreviation Variable ECMWF-12 ECMWF-00 LAMI-00

cpsfc convective precipitation[m] × ×

hccsfc high sky cover[0 − 1] × ×

lccsfc low sky cover[0 − 1] × ×

lhtflsfc surface latent heat flux
[

W m−2
]

×

mccsfc medium sky cover[0 − 1] × ×

mslsfc atmospheric pressure at sea level[Pa] × × ×

night night length[h] × × ×

nlwrssfc surface net long wave
[

W m−2
]

×

nswrssfc surface net short wave
[

W m−2
]

×

no10usfc zonal wind at 10 m
[

m s−1
]

× × ×

no10vsfc meridional wind at 10 m
[

m s−1
]

× × ×

no2dsfc dew point at 2 m
[

◦C
]

× × ×

no2tsfc temperature at 2 m
[

◦C
]

× × ×

qprs500 specific humidity at 500 hPa
[

kg kg−1
]

× ×

qprs700 specific humidity at 700 hPa
[

kg kg−1
]

× ×

qprs850 specific humidity at 850 hPa
[

kg kg−1
]

× × ×

shtflsfc surface sensible heat flux
[

W m−2
]

×

T.db temp. at 2 m predicted for the day before [◦C] × × ×

tccsfc total sky cover[0 − −1] × × ×

tprs500 temperature at 500 hPa [◦C] × ×

tprs700 temperature at 700 hPa [◦C] × ×

tprs850 temperature at 850 hPa [◦C] × × ×

tpsfc total precipitation[m] × ×

tsoildpl soil temperature [◦C] ×

uprs500 zonal wind at 500 hPa
[

m s−1
]

× ×

uprs700 zonal wind at 700 hPa
[

m s−1
]

× ×

uprs850 zonal wind at 850 hPa
[

m s−1
]

× × ×

vprs500 meridional wind at 500 hPa
[

m s−1
]

× ×

vprs700 meridional wind at 700 hPa
[

m s−1
]

× ×

vprs850 meridional wind at 850 hPa
[

m s−1
]

× × ×

wprs700 vertical velocity at 700 hPa
[

Pa s−
1
]

×

zprs500 geopotential height at 500 hPa[m] × ×

zprs700 geopotential height at 700 hPa[m] × ×

zprs850 geopotential height at 850 hPa[m] × ×

models (Bauer and Kohavi, 1999). An ensemble is a set of
individual regression models which are combined to solve a
single problem. There are many possible ensemble construc-
tion strategies; each predictor can belong to a different kind
of model (MLR, ANN, etc.), be fitted to a different subset of
the full dataset, or even differ only in the initial conditions of
the fitting procedure. To produce a prediction for new data,
first the inputs are evaluated by each regressor and then the
results are combined to form a final decision. Usually, a sim-
ple weighted average is used to combine the responses of the
ensemble.

Among such ensemble techniques, one of the most suc-
cessful approaches is based on the well-known statistical
principle of “bias-variance tradeoff”. According to this prin-
ciple, any statistical method of prediction with low bias (i.e.,
an intrinsic capacity to accurately model any distribution)
also has high variance (i.e., models fitted to several different
samples drawn from the same distribution of data tend to be
diverse). Interestingly, if a combined regressor is formed us-
ing several models with low bias and high variance, then the
overall variance can be reduced. The result is a regression
method which on average is more accurate than any of its
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Fig. 4. Distribution of downscaled predictions in five error classes
for four different post-processing algorithms. In this figure the al-
gorithms only made use of outputs from the ECMWF grid point
closest to the target area (number 5 – see Fig. 2). Legend: RF =
Random Forest; LM = Multi-linear model; NN = Artificial Neural
Network; RAW = raw (direct) model output; BIAS = bias-corrected
model output.

members (Geman et al., 1992). Furthermore, the accuracy
of the ensemble grows with the degree of diversity among
its individual members. The Random Forest (hereafter RF)
method is based on this property.

An RF is formed by growing several regression trees,
which individually are very unstable; i.e., a small change
in the dataset can result in large changes in the regression
model (Breiman, 1996). A regression tree (Breiman et al.,
1984) consists of a set of nodes that branch out from a root
node. Each node contains a question with several possible
answers, each leading either to another node or a “leaf” (a
terminal node with an associated prediction). Several auto-
matic, recursive procedures have been developed to build (or
grow) regression trees, but most of these are also determin-
istic. To create diversity in the ensemble, RF fits each tree
to a bootstrap replica of the sample data. The bootstrap pro-
cedure (Efron and Tibshirani, 1983) creates a sample of the
same length as the available dataset, randomly drawn from
the original data, with duplication allowed (i.e., each exam-
ple is picked at random from the full dataset, whether or not
it has been picked before). To increase diversity further, only
a small random sample of all possible features (predictors)
is made available to the fitting algorithm when growing each
node of the tree. These two sources of diversity are easy to
implement and lead to ensembles with very good prediction
performance.

One of the most important features of the RF method is
that it limits overfitting, even when the ensemble contains
thousands of trees. Its error rate on independent examples
converges smoothly to a limiting value as the number of trees
approaches infinity. In practice, the RF algorithm has only
one free parameter: the number of predictors m made avail-
able to each node during tree growth. Breiman (2001) has
shown, however, that results are not strongly dependent on
this parameter and that the default value of m (the square root
of the total number of features) usually gives nearly optimal
results. A package implementing RF is available for the sta-
tistical software R (Liaw and Wiener, 2005), and is used in
this paper.

3 Results

The performance of the post-processing models described
above has been assessed in three different aspects:

1. Accuracy; that is, deviation between the predicted min-
imum temperature and the observed value (hourly aver-
age). An error distribution is reported, as the percent-
age of forecasts with deviations within the following 5
intervals from the measured value:±0.5◦C, ±1.0◦C,
±1.5◦C, ±2.0◦C and±3.0◦C.

2. Mean absolute error (MAE); that is, the average of the
absolute values of the differences between predicted and
measured values.

3. Correlation between predicted and observed tempera-
ture, expressed as Pearson’s correlation coefficient (r).

In order to compare different downscaling approaches, each
post-processing algorithm has been compared to NWP out-
put. In general, the site-specific, unbiased value (see
Sect. 2.4.1) for grid point number 5 (which is closest to
the target area) can be thought of as a term of comparison
to quantitatively assess the improvement achieved with each
technique.

3.1 Comparison of post-processing methods

These are the results of the four post-processing algorithms,
as applied to one single grid point (number 5) of the
ECMWF-00 prediction. The goal of this preliminary analy-
sis is simply to identify the downscaling model with the best
overall performance. The most complete version of the algo-
rithm considers all grid points that have the potential to influ-
ence the temperature forecast. The results are summarized in
Fig. 4, which reports the distribution of errors in classes, and
in Table 2, which includes additional statistics. A remark-
able improvement is attained with a simple mean bias cor-
rection determined from a single, well correlated grid point.
Nevertheless, further improvement can be obtained with the
multi-parameter models, even though the difference between
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Table 2. Performances of different post-processing models, applied to ECMWF-12 (2001-2005). MAE = mean absolute error. r = Pearson’s
correlation coefficient. RF = random forest. LM = multi-linear model. NN = neural network. DMO = Direct (raw) Model Output. BIAS =
mean-bias-corrected output. RF - BIAS = RF improvement with respect to the performance of BIAS.

RF LM NN DMO BIAS RF - BIAS

Error distribution in classes
[

±
◦C

]

0.5 21.3 20.7 20.9 1.9 17.1 4.2
1.0 43.9 42.7 42.1 4.9 33.9 10.0
2.0 74.8 70.8 72.3 9.6 61.8 13.0
3.0 89.5 85.5 88.3 19.0 81.0 8.5

MAE [◦C] 1.87 2.10 1.88 6.94 2.47 0.60

r 0.971 0.964 0.972 0.949 0.949 0.022

the three approaches tested is often negligible. The degree of
improvement, measured in terms of accuracy, is on the order
of a few percent in each error class. RF post-processing gives
an average improvement of 9.9 percentage points over every
error class compared to the simple average bias correction
(column “BIAS” in Table 2), with a maximum improvement
of 13 percentage points in the error class±2.0◦C. The mean
absolute error (MAE) is reduced from 2.47◦C to 1.87◦C by
RF post-processing, and the correlation coefficient (r) rises
from 0.95 to 0.97.

3.2 Choice of predictors for multi-parameter models

The previous section assessed the performance of models
when applied to a single grid point. Because all the grid
points surrounding the target area are potentially useful, a
subset of the most useful predictors must be selected. The
R implementation of RF method is particularly robust in se-
lecting the most influential variables. Since it also yielded the
best results on a single grid point, for the RF all grid points
are included in the pool of potentially influencing variables.
All the following analysis refers now to the RF algorithm.
We considered the following set of predictors (divided into
four categories): i) All of the NWP output variables evalu-
ated at 06:00 UTC (27 for ECMWF-12, 24 for ECMWF-00,
19 for LAMI-00), for each grid point (9 for ECMWF, 21 for
LAMI). ii) The average temperature from 05 to 06 UTC on
the previous day (i.e., the average of the three temperatures
recorded at each meteorological station). iii) The tempera-
ture prediction errors at each grid point, on each of the three
previous days for each grid point. iv) The length of the night.

In total, there were 272 possible predictors for ECMWF-
12, 245 for ECMWF-00, and 464 for LAMI. The inclusion
of forecast errors into the predictor space means that we also
considered the recent performance history of the forecast to
be influential.

To evaluate the relative influence of these variables, a sen-
sitivity analysis has been carried out on the predictors of grid
point number 5. The results of this analysis for other grid

Fig. 5. Sensitivity analysis for the RF model. Single point model
(using data only from grid point number 5). The x-axis represents
the normalised increase in Mean Standard Error when the variable
is removed from the pool of model inputs. For the meaning of the
abbreviations, see Table 1.

points (not given here), were not particularly different. Fig-
ures 5 and 6 (for the single-point and nine-point models, re-
spectively) show the relative importance of each variable, or-
dered according to their influence on the result. As expected,
the temperature forecast at 06:00 UTC (no2tsfc) is the most
important predictor in both cases. Other especially important
variables include the night length, meridional (parallel to the
main valley) wind velocity, 2 m dew point temperature, and
temperature and humidity in the lowest layer (850 hPa). Re-
member that these variables are not those that most directly
affect the minimum temperature, but rather those that best
correct the systematic errors of the model. When the vari-
ables related to all grid points are considered together, it can
be seen (Fig. 6) that the temperature prognosis of other grid
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Fig. 6. Same as Fig. 5, for the nine-point model.

Fig. 7. Correlation coefficient between predicted and observed val-
ues, as a function of the number of predictors used (RF algorithm).

points at 06:00 UTC is also important. In other words, many
of the grid points surrounding the target area independently
contribute to improving the temperature forecast in the Adige
valley. More space will be devoted to this issue in Sect. 4.

3.3 Comparison among meteorological models

The four different NWPs (model and run time) are now com-
pared after RF post-processing. Table 3 reports their sta-
tistical performance measures. The effect of an increase in
the number of predictors can be appraised in Figs. 7 and 8,
which, respectively, show the correlation coefficient r and the
“out-of-bag” (OOB) error as a function of the number of pre-

Fig. 8. “Out-of-bag” error between predicted and observed values,
as a function of the number of predictors used (RF algorithm).

dictor variables. The OOB error is an internal error estimator
of the RF, measured on an independent test set, which re-
mains “out of the bag” of data used in the forest development.
The OOB error is the standard prediction error, referred to the
measured values, when the algorithm is applied to the OOB
data set.

In general, there is remarkable improvement when the
number of variables increases from a few to a few dozen,
but no further improvement is observed beyond this point.
Rather, when more than 100 variables are used there is a
slight decrease in performance. This behaviour is typical
of statistical modelling, where a large number of input vari-
ables gives the model increased flexibility but usually results
in some degree of overfitting. The variable selection process
itself can also produce overfitting (Ambroise and McLach-
lan, 2002), but this effect would be the same for all NWP
models and thus not change their relative performance.

When the number of variables is sufficiently high (as in
operational applications), there is no appreciable difference
among the three ECMWF runs. The ECMWF-00 model,
for which only two years of data were available, appar-
ently yields results just as good as the five-year ECMWF-
12 model. Nevertheless, in the case of LAMI, attention
must be paid to the different meaning of the total number
of predictors; in LAMI it is much higher because there are
more grid points (21, compared to ECMWF’s 9) and each
of them is multiplied by the number of meteorological pre-
dictors; for this reason, the total number of predictors in
LAMI model cannot be compared to the corresponding num-
ber for ECMWF. Downscaling with LAMI performs worse
than with any ECMWF run, considering the results in terms
of OOB error and the other evaluation parameters.
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4 Discussion

The outcome of this investigation confirms the advantage
of MOS analysis on the DMO. All the methods tested here
clearly improve the raw NWP predictions. The best MOS ap-
proach (a nine-point RF) yields a mean average error (MAE)
of 1.2◦C. This is similar to results found by other authors
using non-linear methods (Marzban, 2003; Casaioli et al.,
2003; Boi, 2004). Nevertheless, it must be recognised that
the rather high correlation (r=0.95) between the DMO and
measured values is itself a good starting point for design-
ing a MOS procedure. On the other hand, the literature has
shown that the advantage of non-linear post-processing algo-
rithms is not universal. Non-linear methods have produced
only questionable results, for example, in the prediction of
sea surface temperatures (SST) from sea level pressure and
SST time series (Tang et al., 2000). The relative advan-
tages of different non-linear methods have also been inves-
tigated by Trigo and Palutikof (1999) and Miksovsky and
Raidl (2005). These authors also found little difference in
the performance of various methods, also in the case of tem-
perature post-processing.

In the context of NWPs, it is useful to analyse which vari-
ables can be considered most responsible for the systematic
error in the raw output. Indeed, these are the only sources
of error that can be reduced by statistical post-processing.
A mean daily temperature downscaling can be successfully
carried out in geographically regular areas, generally with
few variables (Huth, 2002). For minimum temperatures in
an alpine region, however, there are several quantities that af-
fect the dynamics of cooling and downvalley air flow. Atmo-
spheric temperatures were among the most influential factors
in the NWP prediction, mainly at the 850, 700, and 500 hPa
atmospheric layers. The latter layers may seem too high to
directly affect temperature at the ground when its elevation is
limited to a few hundred meters. However, these temperature
data are made available to the algorithm to model the temper-
ature lapse rate in the free atmosphere, which is a measure of
atmospheric stability and therefore of the ability of the lower
atmosphere to set up a stable layer close to ground and to
foster thermal inversion. Indeed, the intrinsic difference in
elevation between the topographic models inside NWPs and
the real altitude of corresponding sites, is a major source of
errors due to the application of an inaccurate lapse rate to the
simulated atmosphere. The bigger the error in lapse rate, and
the difference in elevation, the larger this kind of error.

The role of wind is outstanding in temperature prediction,
especially at night, preventing the formation of a shallow
thermal inversion layer close to ground when its speed ex-
ceeds some very low threshold value. As for the wind speed
at ground level, it can be seen that the meridional compo-
nent is more important than the zonal component. This can
be easily explained by the north-south orientation of Adige
Valley, which strongly inhibits transverse air flow. Hence,
the predicted (large-scale) zonal circulation is less correlated

with the actual flow in the valley than the meridional circula-
tion. In other words, a better parameterisation of wind in the
valley increases the quality of temperature prediction, and
the better predictability, in the case of a north-south oriented
valley, especially comes from the meridional component of
wind velocity.

Cloudiness, which normally plays an important role in the
radiative balance at ground level, has a significant effect only
for total cover. It is not, however, in a position of great impor-
tance. This would show ECMWF’s good parameterisation
for the process of backward reflection of longwave radiation
from clouds, making any systematic errors related to the de-
gree of sky cover negligible.

The night length must be considered separately; it is not
a meteorological variable, yet it occupies a high position in
the ranks of predictor importance. This can be probably ex-
plained by considering the basic distinction in temperatures
recorded before and after sunrise. For part of the year hour
06:00 UTC (corresponding to 07:00 local time) occurs af-
ter sunrise, when the temperature has already experienced a
sharp rise; for the rest of the year, however, particularly in
winter, at that time temperatures are still close to the mini-
mum night values. Night length is thus capable of triggering
a discontinuity along the year in the modelling of early morn-
ing temperature evolution.

The prediction errors of the previous three days also are
not meteorological in nature, but are potentially useful pre-
dictors. Such variables could account for long-term biases
in the prediction, correcting systematic offsets. Though such
sources of error often exist in NWP outputs, these were not
among the most influential predictors as determined by our
sensitivity analysis (i.e., the ranks of “importance” in the RF
method as shown in Figs.5 and 6). The reason is to be sought
in the procedure of the set-up of the “random forest”: the
choice of training data sets in the RF is made at random, as is
the choice of out-of-bag data. This random selection breaks
the continuity of the time series, preventing the identification
of temporary, self-consistent biases. The prediction errors of
previous days thus leave no trace on the RF algorithm, which
is designed to work with general data. This is perhaps the
most important shortcoming in a MOS approach. Kalman
filtering, applied post-downscaling, could probably make up
for the inability of “static” post-processing models – as are
all those considered in this research – in coping with time-
related biases.

Having applied the most reliable method (RF) to four dif-
ferent NWP outputs, we have observed that there is no ap-
preciable improvement in the ECMWF-00 model compared
to the ECMWF-12 model. Moreover, applying the RF cor-
rection is less effective on the LAMI-00 data than on the
ECMWF data. This is in spite of the former model’s higher
spatial resolution, which enhances the representation of ge-
ographic features. One possible explanation is that even
though the 21 grid points considered more closely follow the
geography of Adige Valley, they cover a much smaller area
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Table 3. The performance of RF on different NWP models. MAE = mean absolute error. r = Pearson’s correlation coefficient.

ECMWF-12 ECMWF-12 ECMWF-00 LAMI-00
2001–2005 2004–2005 2004–2005 2002–2005

Error distribution in classes
[

±
◦C

]

0.5 29.4 27.6 31.3 24.0
1.0 52.1 50.4 53.5 46.9
1.5 68.9 69.9 71.9 64.8
2.0 81.3 81.2 81.8 76.8
3.0 94.1 93.6 93.1 90.9

MAE [◦C] 1.20 1.22 1.17 1.36

r 0.980 0.980 0.980 0.975

than the nine grid points of the ECMWF. In other words,
information at more than one grid point might be partially
redundant, while the true improvement could come from the
increase in the real spatial domain. This could enable the
downscaling models to capture atmospheric features that typ-
ically show at theβ-meso scale (20 to 200 km). For ex-
ample, the pressure gradient in the direction W-E (linked to
northerly winds in the Adige Valley) cannot be satisfactorily
represented when the horizontal domain is too narrow, as is
the case of the small target area of LAMI grid. The related,
potentially undersampled phenomena include, e.g., local pat-
terns of wind field and sky clearing. For the same reason, the
smaller domain may also decrease the downscaling models
resilience to NWP-based errors in the time development of
phenomena.

5 Conclusions

NWP output is generally available on a fixed grid rather
than at given desired sites. This work has demonstrated
the advantages of post-processing NWP data by successfully
downscaling the DMO of two models (ECMWF and LAMI)
for the minimum temperature. The general purpose of this
application was forecasting the minimum spring tempera-
ture within a frost-prone region of agricultural interest (the
middle Adige Valley, in the Italian Alps). Several differ-
ent approaches were compared: a simple correction by the
mean bias, multilinear regression analysis, and two machine-
learning methodologies (a neural network and the “Random
Forest” method).

Results show that the model output’s accuracy improves
after downscaling, particularly in non-linear models. The al-
gorithm that yielded the best results (Random Forest) can be
easily automated to process the model output and produce an
improved minimum temperature prediction for the following
day. Such an application has been working on a server in
IASMA since spring 2006. It uses data from both ECMWF-

12 and ECMWF-00, and the results are made available daily
for end users on the IASMA website.

The residual error (expressed as MAE) is probably as low
as possible after downscaling, yet it is still greater than 1◦C
(1.2◦C for the nine-point RF algorithm). The very good
agreement among multi-parameter algorithms (especially the
non-linear ones) shows that there is a technical limit to the
improvement that MOS methods can obtain. Post-processing
algorithms can calibrate and correct systematic errors, pro-
vided that relationships exist between these errors and out-
put variables. It is not, however, effective in reducing errors
with some other origin. This would apply, for example, to er-
rors in the prediction of night sky cloud cover or wind speed.
Failures in such model outputs can obviously be ascribed to
unsatisfactory knowledge of initial atmospheric conditions,
to the discretisation of the atmospheric, or even to mathemat-
ical simplifications in the physics of atmospheric processes.
Such causes generate errors that are only detectable a poste-
riori, and thus cannot be classified and corrected within post-
processing algorithms. It is likely that a good fraction of the
total error in minimum temperature predictions can be as-
cribed to such reasons. Further improvements in forecasting
thus have to be sought in the NWP itself, rather than in com-
plex statistical downscaling.

Finally, it is worth mentioning that the present ECMWF
model release, which has been available since January 2006
(T799 L91), has doubled its resolution with respect to the
previous one (0.25◦ instead of 0.50◦). Given the limited pe-
riod available, it was not possible to formulate algorithms on
data from this latest release. Nevertheless, the RF model can
be applied to the outputs of both ECMWF-12 and ECMWF-
00 in the present high-resolution releases since the position
of grid points in the previous version remains unchanged. A
few years from now, when the model output archives are long
enough, it will be possible to repeat this process and compare
the results to those obtained with older releases. This will al-
low us to assess any NWP-related improvements in the min-
imum temperature prediction.
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