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Abstract

Emerging microwave satellite techniques are expected to provide improved global mea-

surements of cloud ice mass. CloudSat, Aura MLS and Odin-SMR fall into this category

and first cloud ice retrievals from these instruments are compared. The comparison is

made for partial ice water columns above 12 km, following the SMR retrieval product.5

None of the instruments shows significant false cloud detections and a consistent view

of the geographical distribution of cloud ice is obtained, but differences on the absolute

levels exist. CloudSat gives the lowest values, with an overall mean of 2.12 g/m
2
. A

comparable mean for MLS is 4.30 g/m
2
. This relatively high mean can be an indica-

tion of overestimation of the vertical altitude of cloud ice by the MLS retrievals. The10

vertical response of SMR has also some uncertainty, but this does not affect the com-

parison between MLS and CloudSat. SMR observations are sensitive to cloud inho-

mogeneities inside the footprint and some compensation is required. Results in good

agreement with CloudSat, both in regard of the mean and probability density func-

tions, are obtained for a weak compensation, while a simple characterisation of the15

effect indicates the need for stronger compensation. The SMR mean was found to be

1.89/2.62/4.10 g/m
2

for no/selected/strongest compensation, respectively. Assump-

tions about the particle size distribution are a consideration for all three instruments,

and constitute the dominating retrieval uncertainty for CloudSat. The comparison indi-

cates a retrieval accuracy of about 40% (3.1±1.2 g/m
2
). This number is already very20

small compared to uncertainties of cloud ice parametrisation in atmospheric models,

but can be decreased further through a better understanding of main retrieval error

sources.

1 Introduction

The circulation of water through the atmosphere is key to the Earth’s climate system,25

but this branch of the hydrological cycle is still not fully understood due to its complex-
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ity and measurement system limitations. Traditional satellite observation techniques

largely fail at providing information on the internal structure of ice clouds and knowl-

edge around the tropospheric cloud ice component is particularly poor. There is not

even a consistent view upon such a basic variable as the vertically integrated cloud ice

mass, often denoted as the ice water path (IWP). For example, the zonal mean IWP in5

climate models used in the 4th assessment of the Intergovernmental Panel on Climate

Change differs with up to one order of magnitude, and the IWP response to increasing

levels of CO2 deviates in sign (John and Soden, 2006).

Satellite techniques are needed to obtain the geographical and temporal coverage

required for running and validating global atmospheric models. The climate is driven10

by fluxes of optical and IR radiation and satellite observations in these wavelengths

regions are important for understanding cloud radiative forcing. Morphological data,

such as occurrence frequency and cloud top altitude are also obtained, but information

on micro-physical properties is restricted to thinner clouds or the cloud top layer (e.g.

Dessler and Yang, 2003). This as the scattering of optical and IR radiation by cloud15

particles is strong.

Further considerations regarding the cloud penetration capability, the strength of at-

mospheric gaseous absorption and that the measured signal should be generated by

interaction with particles carrying a dominating fraction of the cloud ice mass, indicate

that mm and sub-mm technologies are the most suitable for characterising the bulk20

properties of thicker clouds (Evans and Stephens, 1995; Evans et al., 1998). The rel-

ative importance of observations at different wavelengths depends on the atmospheric

conditions, the technology selected (active or passive) and the observation geometry

(down-looking or limb sounding). Cloud ice absorption is relatively low at mm and sub-

mm wavelengths, and clouds affect the measured radiation mainly through scattering.25

Meteorological microwave satellite sensors, such as AMSU-B, are so far restricted

to frequencies below 190 GHz and down-looking geometry. Only the largest cloud

ice particles cause significant scattering for these observation conditions, and data of

AMSU-B type have primarily been used to identify deep convection at tropical latitudes
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(Hong et al., 2005). Limb sounding offers longer propagation paths through the atmo-

sphere and this results in detectable cloud ice radiance signatures already at lower

frequencies. Ice water content (IWC) retrievals based on 203 GHz radiances were

presented for UARS MLS (Wu et al., 2005), the first satellite microwave limb sounder

launched in 1991.5

Remaining microwave limb sounders, Odin-SMR (launched 2001) and Aura MLS

(launched 2004), are both in operation, and are also the only other examples of satel-

lite observations in the frequency range above 200 GHz. Based on the good experi-

ence from UARS MLS, IWC retrievals were a design target of Aura MLS, and promising

initial results involving validation of atmospheric models have already been presented10

(Li et al., 2005, 2007; Su et al., 2006a,b). These results are based on observations at

240 GHz, but unofficial results from 115, 190 and 640 GHz also exist (Wu et al., 2006).

The operational Odin-SMR processing covers strato- and mesospheric altitudes, but

an off-line dual frequency (501/544 GHz) retrieval approach for deriving humidity and

a partial IWP product for the tropical upper troposphere has been presented recently15

(Ekström et al., 2007; Eriksson et al., 2007a). Similar comparisons with ECMWF and

climate models in Li et al. (2005) and Eriksson et al. (2007a) indicate on overall agree-

ment between Odin-SMR and Aura MLS cloud mass retrievals, while a first direct com-

parison of the datasets is presented here.

Active techniques provide cloud observations with much higher spatial resolution20

than the passive methods discussed above. Lidars, being a optical/IR method, perform

best for thinner clouds. Radars do not have this limitation, but require high frequency

pulses or large antennas to obtain sensitivity to cloud ice particles. Two ground-based

networks of such radars exist: ARM (www.arm.gov) and CloudNet (www.cloud-net.

org). CloudSat, launched 2006 and operating at 94 GHz, is the first space-borne radar25

of this type, and signifies a very important step forward in global remote sensing of

clouds (Stephens et al., 2002). The first CloudSat ice mass retrievals have just been

made released as a provisional product (R03).

It can then be expected that global measurements of cloud ice masses are now
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performed with improved accuracy, and by three different sensors. However, important

retrieval uncertainties still exist and different validation efforts are needed. This paper

contributes to these efforts by investigating the consistency between first official version

of Odin-SMR, Aura MLS and CloudSat IWC/IWP retrievals. Special attention is put on

Odin-SMR as this is the first comparison study of this dataset. Aura MLS and CloudSat5

are also compared in Wu et al. (2007)
1
, but then in a broader context and using an Aura

MLS data version in production. Some aspects of main retrieval uncertainties are also

emphasised here.

A main consideration for all present satellite techniques is that assumptions about

the particle size distribution must be made in order to retrieve cloud ice masses. This10

introduces a substantial retrieval uncertainty as the particle distribution changes with

local atmospheric conditions (Heymsfield and McFarquhar, 2002) and no parametrisa-

tion of general validity exists. A second main retrieval error source for instruments with

poorer spatial resolution, such as Odin-SMR and Aura MLS, is that the cloud ice is not

homogeneously distributed over the antenna footprint. This problem increases with the15

degree of non-linearity between cloud ice mass and observed signal. Different cloud

ice masses, averaged over the footprint, can then cause the same signal, depending on

the spatial distribution. This is known as the beam filling effect, and has been studied

for Aura MLS by Davis et al. (2006).

2 Data20

This section describes datasets involved. The aim is to compare first official cloud

ice mass retrievals from three satellite microwave sensor presently in operation: Odin-

SMR, Aura MLS and CloudSat. Ground-based radar observations from the Atmo-

1
Wu, D. L., Jiang, J. H., Read, W. G., Austin, R. T., Davis, C. P., Lambert, A., Kahn, B. H.,

Nankervis, C. J., Sneep, M., Veefkind, J. P., Pumphrey, H. C., Stephens, G. L., Tanelli, S., Vane,

D. G., and Waters, J. W.: Validation of Aura MLS cloud ice water content (IWC) measurements,

J. Geophys. Res., submitted, 2007.
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spheric Radiation Measurement program are used for further reference. The compar-

ison follows the characteristics of the Odin-SMR retrieval approach and all data are

analysed as the partial ice water path defined by Fig. 1. That is, only ice above about

11 kmis considered and a natural limitation to tropical latitudes is imposed.

2.1 Odin-SMR5

2.1.1 Observations

The Odin satellite was launched in February 2001 into a ∼600 km quasi-polar sun-

synchronous orbit, with ascending node around 18:00 h. The payload includes the

first space-borne sensor for atmospheric sub-mm observations, Odin-SMR. This limb

sounding instrument measures thermal emission at frequencies around 500 GHz. The10

atmospheric signal is recorded through a 1.1 m telescope, single-sideband heterodyne

receivers and two auto-correlation spectrometers with 800 MHz bandwidth. Further

information is found in, for example, Murtagh et al. (2002) and Ekström et al. (2007).

The observation time of Odin is timeshared, both between astronomy and atmo-

spheric science objectives, and between different atmospheric observation modes.15

Cloud ice retrievals are based on radiances from the stratospheric mode, mea-

surements made approximately every third day. The data set includes 2.0×10
5

re-

trievals, covering the period 24 July 2001–20 April 2007, and can be obtained through

www.rss.chalmers.se/∼patrick/OdinUT.

2.1.2 Retrieval approach20

Operational Odin-SMR processing does not account for cloud scattering and data are

here taken from the separate retrieval algorithm presented by Eriksson et al. (2007a).

These retrievals consider only spectra from tangent altitudes below 9 km, where the

atmosphere around the tangent point acts as blackbody background to cloud scattering

at higher altitudes. Clouds are then detected by a depression of recorded brightness25
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temperatures, ∆Tb. The measurement strategy is accordingly more of down-looking

character and the footprint size is relatively small, compared to pure limb sounding

geometry. The sampled volume is a tilted cylinder, where the horizontal cross-section

has an area of about 2 x 45 km
2
.

The observation geometry selected provides no inherent altitude information, but this5

problem is partly overcome by combining data from 501 and 544 GHz. This procedure

results in the retrieval of a partial IWP, with an estimated response to cloud ice at

different altitudes shown in Fig. 1. This retrieval product is below denoted as pIWP.

The mapping from derived ∆Tb values to pIWP relies on the particle size distribu-

tion of McFarquhar and Heymsfield (1997) and radiative transfer calculations made10

for completely homogeneous cloud layers (1-D). The simple correction for cloud inho-

mogeneity (beam filling) suggested in Eriksson et al. (2007a) is applied, but with new

parameter values derived below in Sect. 3.2.

2.2 Aura MLS

2.2.1 Observations15

Aura MLS is a passive instrument consisting of seven radiometers at frequencies near

118, 190, 240, 640 GHz, and 2.5 THz (Waters et al., 2006). The 118 GHz and 2.5 THz

radiometers have two receivers at orthogonal polarisations. The 118 GHz receivers are

single-sideband, while at other frequencies double-sideband systems are employed.

The Aura satellite has a 13:40 ascending node sun-synchronous orbit at 705 km alti-20

tude with 98
◦

inclination. The MLS on Aura views forwards in the satellite flying direc-

tion with daily latitude coverage from 82
◦
S to 82

◦
N. The field of view at 240 GHz has

a vertical size of ≈3.2 km, and is ≈7 km in the cross-track dimension. MLS scans are

synchronised to the orbital period such that nominal operation will have 240 limb scans

per orbit. The data integration time for each measurement is 1/6 s. For GHz measure-25

ments, each scan includes 40–50 spectra dedicated to tropospheric measurements

with a 300 m sampling resolution in tangent height (Jarnot et al., 2006).
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The first official Aura MLS data product is denoted as version 1.5 and is used here.

The newer V2.2 was avoided as this data set is not yet complete. Most importantly,

the time period for which CloudSat data are at hand has not yet been processed.

This study is based on 1.0×10
6

IWC profiles, spanning the period 8 August 2004–14

February 2007 in a continuous manner.5

2.2.2 Retrieval approach

The V1.5 IWC data product is based on measurements around 240 GHz and covers

altitudes above the 261 hPa level. Only usage of data above 215 hPa is recommended,

but as the conversion to Odin-SMR pIWP (Fig. 1) puts little weight below 215 hPa

possible retrieval problems at 261 hPa should be of relatively small importance. The10

officially suggested screening and bias correction of data (Wu et al., 2006) has been

performed.

The fundamental quantity for Aura MLS cloud ice retrievals is the difference between

measured and expected clear-sky radiance, named as the cloud-induced radiance Tcir.

This is basically the same quantity as the Odin-SMR ∆Tb, but there are some important15

practical differences. First of all, Tcir is determined as part of the operational process-

ing, where the estimation of clear-sky radiance incorporates retrieval information from

other bands and Tcir should be more accurately determined than ∆Tb. Further, the

Aura MLS retrievals are made at higher tangent altitudes, and at a frequency with com-

parably low optical thicknesses. This causes relevant Tcir values to be strictly positive.20

Derived V1.5 Tcir values are mapped to IWC in a linear manner, as described in

Wu et al. (2006). This approach causes a systematic underestimation of IWC at large

values, where the relationship between Tcir and IWC is non-linear. The effect of this

non-linearity has been addressed in the V2.2 data version that replaced V1.5 in March

2007. An initial study has found that V2.2 yields better IWC results, particularly at25

pressures ≤261 hPa (Wu et al., 2007
1
). Both V1.5 and V2.2 IWC retrievals assume

the PSD of McFarquhar and Heymsfield (1997), as for Odin-SMR.
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2.3 CloudSat

2.3.1 Observations

CloudSat is a satellite mission designed to measure the vertical structure of clouds

from space (Stephens et al., 2002). The satellite flies in tandem with Aura, and has

accordingly the same orbit properties. CloudSat carries a 94 GHz 0.16
◦

off-nadir look-5

ing radar which measures the power backscattered by clouds as a function of distance

from the radar. The standard data product consists of 125 vertical bins that are 240 m

thick, while the vertical resolution of the radar is approximately 500 m. Each profile is

generated over a 160 ms integration, with a footprint resolution of approximately 1.4 km

across-track and 2.5 km along track. The minimum detectable equivalent radar reflec-10

tivity is approximately –30 dBZ and the dynamic range is 70 dBZ. IWC profiles from the

2B-CWC-RO release 3 (R03) product for the period of 15 October 2006–15 November

2006 are considered. These are the only official CloudSat ice mass retrievals offered

at this moment, providing 5.4×10
6

data points. The provisional R03 product should

be replaced by an operational R04 product covering the full extent of the mission later15

during 2007.

2.3.2 Retrieval approach

The CloudSat 2B-CWC-RO R03 IWC product is retrieved from radar reflectivity mea-

surements only. In this retrieval algorithm a gamma particle size distribution is as-

sumed. Such a function can be completely characterised by three parameters: the20

width and slope of the distribution and the total number concentration of particles.

The distribution width, number concentration, and profile of slope values are retrieved

in an optimal estimation framework that uses a priori values based on a generic ice

cloud case and the reflectivity level. The IWC can then be estimated based on the

retrieved particle size distribution parameters. The retrieval approximates ice particles25

as spheres and applies a correction for Mie scattering.
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2.4 Tropical ARM radars

The Atmospheric Radiation Measurement (ARM) program involves a number of highly

instrumented ground stations for measuring parameters that determine the radiative

properties of the atmosphere. Data from the Millimetre Wavelength Cloud Radars

(MMCR) located at the tropical western Pacific sites Manus (2.006
◦
S, 147.425

◦
E) and5

Nauru (0.521
◦
S, 166.916

◦
E) are considered. The MMCR is a zenith-pointing radar that

operates at a frequency of 35 GHz, and reports radar reflectivity of the atmosphere up

to 20 km, with a vertical resolution of 90 m. From the Manus site data from 28 Febru-

ary 2003–14 December 2003, and from the Nauru site data from 8 January 2002– 2

February 2002 and 11 September 2003–14 December 2003 were obtained.10

The scheme of Liu and Illingworth (2000) was applied for the mapping from dBZ

to IWC. Reflectivity profiles are reported as 30 s mean values. A further averaging

over 100 sequential corresponding IWC profiles was applied to create a dataset better

matching the satellite measurements in respect of horizontal resolution.

3 Results and discussion15

3.1 Particle size sampling

The interaction between radiation at a given wavelength and a cloud ice particle de-

pends on the particle’s size, shape and complex refractive index. The overall radiative

impact of cloud ice inside a given volume depends further on the particle size distribu-

tion (PSD). These facts cause a remote sensing system to have a maximum sensitivity20

to a specific particle size range. If the purpose of the measurement is to estimate IWC

or IWP, it is of course beneficial if the range of maximum sensitivity corresponds to ice

particles carrying a large fraction of the ice mass.

This aspect is investigated by Fig. 2, for considered satellite observations and a char-

acteristic infrared wavelength. The two cases selected roughly match the thinnest and25
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thickest clouds of relevance for considered data. Different cross-section components

are considered, to best represent the properties of each measurement technique. The

secondary maximum in MLS sensitivity functions around 50 µm corresponds to particle

absorption, as shown by Fig. A1 in Wu et al. (2005). Absorption is neglected for Odin-

SMR due to the different observation geometry applied. In short, absorption gives here5

a low radiative effect as absorbed energy is replaced with emission of similar strength,

as described in Eriksson et al. (2007a).

Figure 2 confirms that IR radiation interacts primarily with smaller particles, while the

microwave techniques are more sensitive to larger particles. The division line is found

at a particle diameter of around 100 µm. For the “thin cloud” case, the area of highest10

response for the IR wavelength corresponds roughly to the lower half of the mass, while

the microwave responses (MLS is discussed separately below) match approximately

the upper third. The situation is reversed for the “thick cloud”: 30/50% coverage but

with a higher value for microwaves.

An interesting exception is MLS and the “thin cloud” case, where the response func-15

tion shows a clear sensitivity to both small and large particles, caused by a combined

effect of absorption and scattering. A more detailed sensitivity study would show an

even higher relative response to small particles, as extinction due to absorption here

influences measured spectra more strongly (with about a factor of 2). This indicates

that MLS, in this aspect, is the most suitable choice here for measuring the ice mass in20

thinner clouds, again on the condition that a detectable signal is obtained.

The scattering for MLS and CloudSat is predominately of Rayleigh character. That is,

the scattering strength is proportional to D6
, where D is the particle diameter. The rel-

atively shorter wavelength of SMR results in a transition to Mie conditions at a smaller

particle size, and this gives a lower relative response for particles above ∼300 µm.25

This has the consequence that MLS and CloudSat retrievals are more easily affected

by large particles above the PSD range important for the total mass, than for SMR.

A combination of mm and sub-mm measurements has accordingly some potential for

discriminating between medium sized and large particles. This particularly for higher
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IWC and temperatures than considered here, but lower incidence angles than used

for SMR are needed to maintain sensitivity at sub-mm wavelengths down to altitudes

where such conditions are encountered.

Despite the features noted above, the overall responses of the microwave techniques

are quite similar. The MH97 PSD (McFarquhar and Heymsfield, 1997) is assumed for5

both MLS and SMR retrievals. This has the consequence that no larger deviations will

be caused between SMR and MLS retrievals even if MH97 would be a poor represen-

tation of mean state of true PSDs. CloudSat is independent on this point from SMR and

MLS. It is impossible to judge, without detailed simulations, if the assumptions made

for CloudSat lead to higher or lower retrieved ice masses.10

However, on the assumptions that all involved instruments make a perfect retrieval

and that the true PSD equals MH97, it can be determined that CloudSat (assuming a

gamma pSD) would give a lower ice mass than MLS and SMR. MH97 divides the total

PSD into two modes, one each for small and large particles. CloudSat has limited sen-

sitivity to particles of the small mode, and the retrieval will, for the assumed conditions15

yield the mass held by the large mode. MLS and SMR retrievals will include the mass

of the low mode, due to the a priori assumption of MH97, even if the measurement

itself has no sensitivity to small mode particles.

3.2 Impact of cloud inhomogeneity

Cloud ice fields normally show horizontal inhomogeneities on scales matching the foot-20

prints of Aura MLS and Odin-SMR. This causes a beam filling effect (see introduction)

as the relationship between cloud ice amount and measured signal is non-linear (see

Fig. 6 in Wu et al. (2006) for MLS and Fig. 6 in Eriksson et al. (2007a) for SMR). A

simple correction scheme for this cloud inhomogeneity effect was suggested for SMR

in Eriksson et al. (2007a), based solely on simple arguments around the pIWP – ∆Tb25

relationship and data from a case study made by Davis et al. (2006).

The access to CloudSat data gives the possibility to quantify the beam filling effect,

and the result of a simple analysis is given in Fig. 3. Synthetic Odin-SMR data were
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generated by mapping time series of CloudSat pIWP to ∆Tb, and approximating the

antenna response as a rectangular function spanning 30 sequential CloudSat data

points. The mapping from pIWP to ∆Tb, denoted as f in figure axes labels, was taken

from the retrieval lookup tables. The antenna response is denoted as r . Simulated

SMR measurements are obtained as r(f (pIWP)). The retrieval assumes that pIWP5

averaged over the antenna footprint gives same ∆Tb. The later quantity is f (r(pIWP)).

Completely homogeneous ice fields are found at the diagonal of Fig. 3, while non-

linear effects place inhomogeneous cases off the diagonal. Data points above the

diagonal, only found for low ∆Tb, are caused by a non-linearity originating in the PSD.

This effect was not foreseen by Eriksson et al. (2007a). The pIWP to ∆Tb mapping is10

further non-linear due to radiative transfer effects, and this feature is the origin to data

points below the diagonal and would, if neglected, cause a systematic underestimation

of pIWP. These effects can not be compensated on a single measurement basis, and

the only option is to apply a general correction with the aim to obtain correct mean

values.15

The correction suggested in Eriksson et al. (2007a, Eq. 1) is included in Fig. 3 and it

catches the properties of simulated results for higher pIWP. Considering the reversed

effect discovered for low IWP, it was decided to not apply any correction for ∆Tb below

10 K. The breakpoint, between a linear increase of correction factor and a constant

value, was then also moved up to 40 K (from 20 K) to avoid a too narrow transition re-20

gion. Numerical tests showed that changes of the breakpoints inside realistic ranges

have low influence, but the choice of maximum correction is critical. For example, the

overall mean of the Odin-SMR data is 1.95, 2.69 and 4.19 g/m
2

for a maximum correc-

tion of 0, 10 and 20%, respectively. The choice of 20% was based on an expectation

of throughout inhomogeneous conditions for high pIWP, but Fig. 3 contradicts this as-25

sumption (high number of points close to the diagonal). The maximum correction was

decreased to 10% based on this observation. The updated correction function is dis-

played in Fig. 3.

Beam filling is also a relevant phenomenon for MLS, but probably with a smaller
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impact. The relationship between ice mass and influence on measured spectra is

approximately linear up to 30 g/m
2

for SMR, while the same applies for MLS up to

≈50 mg/m
3

(Wu et al., 2007
1
). Assuming an effective cloud thickness of 2 km for

higher pIWP, this indicates a larger linear regime of MLS with a factor of around 3,

which is advantageous with respect to beam filling.5

3.3 Geographical distributions

CloudSat data are only available for a single month, and a comparison to seasonally

matched Odin-SMR and Aura MLS data is found in Fig. 4. The Odin-SMR data set

is comparably sparse, particularly for the part of the year of interest here. A broader

seasonal window was then applied, but the statistical basis is still poorer for Odin-SMR10

than for the other instruments. SMR also provides the least smooth field of pIWP.

The geographical distribution is very similar between the instruments. Higher mean

values are primarily found around the intertropical convergence zone (ITCZ), north-

east parts of the Indian, western Pacific Ocean, central equatorial areas of Africa and

South America. The south pacific convergence zone (SPCZ) can further be distin-15

guished, but its southern end is not present for CloudSat. The presence of large areas,

common for the instruments, with mean pIWP below 1 g/m
2

show that none of the

instruments have a notable percentage of false cloud detections.

The match between local mean pIWP values is analysed further in Fig. 5. The spread

of the data points is significant for all three instrument pairs, but smallest for the MLS –20

CloudSat due to the higher statistical noise in the SMR data. The data are best centred

around the 1 – 1 line for SMR – CloudSat, while MLS gives higher pIWP, especially in

comparison with CloudSat. The mean values are also 4.30, 3.08 and 2.12 g/m
2

for

MLS, SMR and CloudSat, respectively. A difference between mean value of SMR

and the other instruments can be caused by incorrect estimation of SMR’s vertical25

response (Fig. 1). MLS and CloudSat IWC profiles are weighted with same vertical

response and the only complication is that data are given as a function of pressure and

altitude, respectively. Conversion between pressure and altitude should only cause
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marginal uncertainty. However, the vertical resolution of MLS is relatively poor and

there are indications on that cloud top altitudes are overestimated by about 1 km (Wu

et al., 2007
1
). A test where MLS IWC profiles were shifted 1 km downwards gave a

mean of 2.29 g/m
2
, a value in good agreement to CloudSat. This would then leave

SMR with a higher mean value, pointing towards an overcompensation for beam filling5

or that the sensitivity of the SMR measurements has been underestimated for lower

altitudes.

The complete Odin-SMR and Aura MLS data sets are summarised in Figs. 6 and

7. The overall mean is 3.16 g/m
2

for SMR and 4.40 g/m
2

for MLS. The SMR fields

appear also here as less smooth. This is mainly caused by a smaller volume of data10

for SMR, but differences in footprint size could further be of importance. Clear seasonal

variations are seen. The variations are not discussed in detail here, but it is noted that

the instruments show the same patterns. For example, the strongest SPCZ and the

least pronounced ITCZ for the eastern Pacific Ocean appear during the DJF season

in both cases. This shows again that the cloud identification is robust for both MLS15

and SMR, and cloud ice mass differences originate in the mapping from cloud induced

radiances.

Further, the data sets give a consistent view of comparably high ice masses above

areas of Africa and South America (Fig. 4) . This in contrast to corresponding ice

fields in ECMWF and climate models, as noticed in Li et al. (2005, 2007) and Eriksson20

et al. (2007a). Figures 6 and 7 show that the ice mass over these areas has a clear

annual cycle, with minimum during the JJA season and maximum around the DJF

season. The DJF maximum is most pronounced in the MLS data. The analysis in Li

et al. (2005) was performed for January 2005, based on same MLS data as used here.

A more detailed analysis of the data sets reveals strong diurnal variations for these25

areas (Eriksson et al., 2007b), and this can cause differences in mean value between

SMR and CloudSat/MLS (flying in tandem, as part of the A-train satellite set). Diurnal

variations are much less pronounced over the oceans.
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3.4 Probability density functions

Deeper insight into the performance of the different retrievals can be obtained by com-

paring probability density functions (PDF). That is, the relative occurrence rate of dif-

ferent pIWP values, with respect to the total number of data points. This implies com-

parison on single measurement basis and some additional considerations are needed.5

For example, instrumental noise should have little influence on seasonal means for all

three instruments, but will cause differences in PDF for lower pIWP. Only values above

4 g/m
2

are considered in PDFs for this reason. This value matches the estimated de-

tection threshold for Odin-SMR, and the other instruments are better in this respect,

particularly CloudSat.10

A more critical consideration is differences in horizontal resolution. This is illustrated

in Fig. 8, where PDFs for CloudSat data averaged over different distances are dis-

played. The frequency of lower pIWPs increases with size of averaging window. The

reversed, and largest, impact is found for highest pIWP, showing that such pIWP values

are normally confined to smaller areas. This observation gives perspective to the beam15

filling simulation reported in Sect. 3.2.

PDFs for complete data sets are compared in Fig. 9. No important differences were

found when restricting the MLS and SMR data to the season covered by the CloudSat

measurements available (as for Fig. 4). An excellent agreement is found between

CloudSat and SMR, except for the lowest and highest pIWP. The higher PDF at low20

pIWP for SMR can indicate false cloud detections, caused by the random calibration

error reported by Ekström et al. (2007). The beam filling effect for low ∆Tb originating in

the PSD (Sect. 3.2) can also be involved. The cloud inhomogeneity correction for SMR

(Sect. 3.2) changes the PDF above ≈150 g/m
2
. The CloudSat PDF is largely found

between the two SMR PDFs. This could be taken as an indication on that a lower25

value for the maximum correction shall be applied for SMR. A maximum correction of

4% (instead of 10%) gives also same mean as CloudSat for seasonally matched data.

However, the CloudSat PDF is for the provisional R03 data product relatively uncertain

12050

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/12035/2007/acpd-7-12035-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/12035/2007/acpd-7-12035-2007-discussion.html
http://www.egu.eu


ACPD

7, 12035–12066, 2007

Odin-SMR, Aura MLS

and CloudSat cloud

ice mass retrievals

P. Eriksson et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

at higher ice masses, and this option for tuning the SMR beam filling correction was

rejected.

The MLS PDF deviates from the others. A possible reason for this behaviour is the

larger footprint of MLS. A rough estimate of this effect is provided by the 40 s averages

in Fig. 8. Complete agreement can not be expected as the simple averaging of Cloud-5

Sat does not manage to mimic all properties of the MLS limb sounding measurements,

but a limitation to values below 200 g/m
2

is found in both cases. The linear mapping

from Tcir to IWC applied in MLS V1.5 retrievals also affects the PDF. The MLS PDF is

not discussed further here as a detailed comparison between IWC PDFs for MLS V2.2

data and CloudSat is made in Wu et al. (2007)
1
.10

Comparison with ARM tropical ground-based radar measurements is made in

Fig. 10. The ARM radars are placed in the equatorial western part of the Pacific Ocean.

This is an area characterised by high sea surface temperatures and associated high

convection. Mean pIWP values are accordingly higher for Fig. 10 than for complete

SMR and CloudSat datasets. More precisely, the means are 6.14, 7.65 and 9.51 g/m
2

15

for CloudSat, ARM and SMR, respectively. Main differences are found above 100 g/m
2
,

where the ARM PDF is consistently above the CloudSat one. The ARM data also con-

tain cases with pIWP above 500 g/m
2

values totally lacking for SMR and CloudSat.

The SMR PDF suffers from a small statistical ensemble and is noisy, but is on average

above the ARM PDF.20

4 Summary and conclusions

Data from first official Odin-SMR, Aura MLS and CloudSat microwave cloud ice re-

trievals have been compared. The comparison follows the SMR retrievals, and MLS

and CloudSat ice water content profiles are weighted to obtain a partial ice column

(pIWP) starting at ≈11 km (Fig. 1). Only latitudes inside ±30
◦

have been considered.25

The instrument with the least complicated error budget is CloudSat. This as the

spatial resolution of SMR and MLS is much poorer, resulting in two main considera-
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tions. Firstly, inhomogeneities of the ice field over the antenna footprint combined with

a non-linear relationship between ice mass and measured signal, cause a retrieval un-

certainty denoted as the beam filling problem. This effect was studied for SMR and

found to have a smaller impact than speculated in Eriksson et al. (2007a), and the cor-

rection function applied was updated accordingly. MLS measurements were estimated5

to be less influenced by beam filling than SMR. Secondly, the poorer vertical resolution

of MLS and SMR gives a possible ambiguity in the altitude of observed cloud ice mass.

All the retrievals involve assumptions concerning the particle size distribution (PSD).

It is shown that the resulting retrieval uncertainty should be relatively similar between

the instruments, particularly for MLS and SMR that both apply the PSD of McFarquhar10

and Heymsfield (1997). Microwave techniques are primarily sensitive to the particle

fraction having the largest size and the amount of small particles is estimated by an

extrapolation of measurement information using assumed PSD. This effect was not

studied in any quantitative manner, but we have argued that the various assumptions

made in the different retrievals could lead to CloudSat yielding lower values than MLS15

and SMR.

Geographical regions with very low mean values coincide very well between the

instruments, and match the general expectations on areas with a low amount of high

clouds. This indicates that none of the retrievals suffers of a significant degree of

false cloud detections. This, combined with a similar dynamic range of the retrievals20

in terms of pIWP, give a consistent view on geographical distribution of the cloud ice

mass. However, there are substantial differences in overall retrieved mean values.

Comparable mean values for CloudSat and MLS are 2.12 and 4.30 g/m
2
, respec-

tively. This difference is only marginally influenced by uncertainties around the vertical

response of SMR. Inclusion of correction for beam filling should increase the MLS25

mean. The same applies to the improved (non-linear) mapping from cloud induced

radiance to IWC applied in a newly activated MLS V2.2 retrieval version, that anyhow

mainly affects altitudes lower than considered here (Wu et al., 2007
1
). This leaves

two main explanations for the found difference: 1. Different PSD assumptions. 2. An
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upward shift of cloud ice masses in MLS retrievals. There are indications that MLS

retrievals give cloud top altitudes with a ≈1 km positive bias (Wu et al., 2007
1
), and it

was found that such a shift of complete IWC profiles largely explains the difference to

CloudSat discussed.

Odin-SMR mean values, consistent with both CloudSat and MLS, can be obtained5

by applying different corrections for cloud inhomogeneity. No correction gives a SMR

mean of 1.95 g/m
2
. A maximum correction of 4% was found to give data very similar to

CloudSat, with respect to both mean value and pIWP probability density function. The

correction function suggested in Eriksson et al. (2007a) and the updated version give

4.19 and 2.69 g/m
2
, respectively, where the latter value shall be taken as best estimate10

for SMR.

If the span of values given above are used as an overall error estimation, mean

pIWP for considered season is found to be 3.1±1.2 g/m
2
. This retrieval accuracy on

the order of 40% can potentially be decreased by future retrieval versions, where the

problems discussed above are better addressed. On the other hand, such an accuracy15

must be judged as good in comparison to the high spread of cloud ice masses among

climate models found by John and Soden (2006), and datasets considered should

constitute good a validation source for improving the parameterisation of cloud physic

processes used in atmospheric models.
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Fig. 1. Estimated vertical response of considered Odin-SMR retrievals. Profiles of IWC are

converted to SMR partial IWP (pIWP) by weighting with the shown function, often denoted as

the averaging kernel. The function is re-evaluated compared to Eriksson et al. (2007a). The

analysis was here performed for conditions more relevant for the overall cloud ice mass.
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Fig. 2. Estimates of relative sensitivity to different particle sizes for some remote sensing in-

struments. Two combinations of IWC and temperature are considered: 3 mg/m
3

/ 205 K (left)

and 100 mg/m
3

/ 233 K (right). Spherical particles and the PSD of McFarquhar and Heymsfield

(1997) are assumed. Cumulative mass distributions are shown as dashed lines. The instrument

responses are estimated as the product between PSD and the size-dependent cross-section.

The complete extinction cross-section is considered for IR and MLS, only the scattering cross-

section for SMR, and the backscattering cross-section for CloudSat. All functions are nor-

malised with their maximum value. The figure shall only be interpreted in a schematic manner

as no complete radiative transfer calculations are involved.
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Fig. 3. Simple simulation of the beam filling effect for Odin-SMR. All available CloudSat data

were considered, where 50 000 randomly selected data points are displayed here. The horizon-

tal data dimension represents (1-D) retrieval assumptions made, while the vertical dimension

aims at capturing real measurement conditions. The dashed (black) line corresponds to the

correction function suggested in Eriksson et al. (2007a), while the solid (red) line is equivalent

to the function selected here. Further details are given in the text.
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Fig. 4. Odin-SMR (top), Aura MLS (middle) and CloudSat (bottom) pIWP fields for data around

1 November . Data cover 15 October–15 November for Aura MLS (mean over 2004–2006) and

CloudSat (2006), while for Odin-SMR the time period is 15 September–15 December (mean

over 2001–2006). Black indicates less than 50 data points available for averaging and no IWP

is given. Data averaged over 7.5
◦

in both latitude and longitude.
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Fig. 5. Comparison of local mean values, between SMR and MLS (a), between SMR and

CloudSat (b), and between MLS and CloudSat (c). Data as in Fig. 4, but divided into areas

with length of 15
◦

in both latitude and longitude. The one-to-one relationship is given as a

dashed line.
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Fig. 6. Overall (top) and seasonal (lower four panels) mean pIWP fields for Odin-SMR. Data

cover the period August 2001–September 2006. Black indicates less than 50 data points avail-

able for averaging and no IWP is given. Seasons are defined as: DJF = December–February,

MAM = March–May, JJA = June–August, and SON = September–December.
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Fig. 7. Overall (top) and seasonal (lower four panels) mean pIWP fields for AURA MLS. Data

cover the period August 2004–February 2007. Seasons are defined as in Fig. 6.
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Fig. 8. Distribution of CloudSat pIWP values when averaged over different time windows. One

second corresponds to a horizontal distance of ≈7.5 km.
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Fig. 9. Distribution of IWP values for complete Aura MLS, Odin-SMR and CloudSat data sets.

For Odin-SMR data are shown with and without correction for cloud inhomogeneity. CloudSat

data are shown for 6 s averaging, to roughly match the SMR footprint.
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Fig. 10. Comparison of pIWP distributions from an area around the tropical ARM stations.

Satellite data are taken from a rectangular area, limited of latitudes –9
◦

and 11
◦

and longitudes

142
◦

and 172
◦
. Selection of SMR and ARM data are further restricted to the time period 15

September–15 December (all available years included).
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