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Abstract. The chaotic dynamics of Alfv́en waves in space
plasmas governed by the derivative nonlinear Schrödinger
equation, in the low-dimensional limit described by station-
ary spatial solutions, is studied. A bifurcation diagram is
constructed, by varying the driver amplitude, to identify a
number of nonlinear dynamical processes including saddle-
node bifurcation, boundary crisis, and interior crisis. The
roles played by unstable periodic orbits and chaotic saddles
in these transitions are analyzed, and the conversion from
a chaotic saddle to a chaotic attractor in these dynamical
processes is demonstrated. In particular, the phenomenon
of gap-filling in the chaotic transition from weak chaos to
strong chaos via an interior crisis is investigated. A coupling
unstable periodic orbit created by an explosion, within the
gaps of the chaotic saddles embedded in a chaotic attractor
following an interior crisis, is found numerically. The gap-
filling unstable periodic orbits are responsible for coupling
the banded chaotic saddle (BCS) to the surrounding chaotic
saddle (SCS), leading to crisis-induced intermittency. The
physical relevance of chaos for Alfvén intermittent turbu-
lence observed in the solar wind is discussed.

1 Introduction

Unstable structures such as unstable periodic orbits and
chaotic saddles play a fundamental role in nonlinear dynam-
ics of the earth-ocean-space environment (Samelson, 2001a;
Chian et al., 2003; Selten and Branstator, 2004), economics
(Ishiyama and Saiki, 2005; Chian et al., 2006), fluid mechan-
ics (Kawahara and Kida, 2001; Faisst and Eckhard, 2003),
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lasers (Green and Krauskopf, 2002), and neuroscience (Har-
rison et al., 2004).

Unstable periodic orbits are the skeleton of a chaotic at-
tractor since its chaotic trajectory is the closure of an infinite
set of unstable periodic orbits (Ott, 1993; Auerbach et al.,
1987; Cvitanovíc, 1988). In contrast to a periodic attractor
thereby all trajectories initiated from any point in the state
space within its basin of attraction are attracted to a stable
periodic orbit, in a chaotic attractor all periodic orbits are un-
stable. Chaotic sets are not necessarily attracting sets. A set
of unstable periodic orbits can be chaotic and nonattracting
so that the orbits in the neighborhood of this set are even-
tually repelled from it; nonetheless, this set can contain a
chaotic orbit with at least one positive Lyapunov exponent;
if the chaotic orbit has also one negative Lyapunov exponent
the nonattracting set is known as a chaotic saddle (Grebogi
et al., 1983; Nusse and Yorke, 1989; Szabó and T́el, 1994a,b).

Recently, there has been a remarkable advance in the study
of unstable periodic orbits and chaotic saddles in fluid turbu-
lence. Christiansen et al. (1997) and Zoldi and Greenside
(1998) showed that the periodic orbit theory of dynamical
systems formulated by Auerbach et al. (1987) and Cvitanović
(1988) can determine the global averages of a chaotic attrac-
tor or a chaotic saddle in the Kuramoto-Sivashinsky equa-
tion, based on a finite ensemble of fundamental unstable peri-
odic orbits. Kawahara and Kida (2001) numerically found an
unstable periodic orbit in a three-dimensional plane Couette
turbulence described by the incompressible Navier-Stokes
equation. (Chian et al., 2002) and Rempel et al. (2004a)
showed that unstable periodic orbits and chaotic saddles can
characterize an interior crisis and the intermittency induced
by an interior crisis in the Kuramoto-Sivashinsky equation.
Faisst and Eckhard (2003) identified a family of unstable tra-
veling waves originating from saddle-node bifurcations in a
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18 A. C.-L. Chian et al.: Chaos in driven Alfvén systems

numerical experiment of flow through a pipe, and showed
that these unstable structures provide a skeleton for the for-
mation of a chaotic saddle responsible for the transition to
turbulence. Kato and Yamada (2003) detected an unstable
periodic orbit in the Gledzer-Ohkitani-Yamada shell model
turbulence, and showed that an intermittent turbulence is de-
scribed by this unstable periodic orbit. Kawahara (2005) ap-
plied the method of controlling chaos to stabilize an unsta-
ble periodic orbit in a plane Couette turbulent flow and suc-
ceeded in driving the system to a regime of laminar flow.
Rempel and Chian (2005) showed that unstable periodic or-
bits and chaotic saddles are the origin of the intermittency
induced by an attractor merging crisis in the Kuramoto-Siva-
shinsky equation. Van Veen et al. (2006) extracted unstable
periodic orbits from a forced box turbulence with high sym-
metry and compared the statistical properties of these peri-
odic flows with those of turbulent flow.

The aim of this paper is to investigate the roles of unstable
periodic orbits and chaotic saddles in nonlinear processes in
space plasmas. Based on a low-dimensional model of driven
Alfv én systems originally formulated by Hada et al. (1990),
Chian et al. (1998) showed that a nonlinear Alfvén wave in
the solar wind can evolve from order to chaos via a saddle-
node bifurcation and evolve from weak chaos to strong chaos
via an interior crisis. Borotto et al. (2004) identified nu-
merically a period-9 unstable periodic orbit responsible for
the Alfvén chaos studied by Chian et al. (1998), leading to
the onset of a boundary crisis and an interior crisis. Fol-
lowing the works of Hada et al. (1990), Chian et al. (1998)
and Borotto et al. (2004), we show in this paper that local
and global bifurcations such as saddle-node bifurcation and
boundary/interior crises involve the conversion of a chaotic
saddle into a chaotic attractor. This conversion may result
from gap-filling due to the creation of new unstable periodic
orbits in the gap regions of the chaotic saddles. An example
of gap-filling unstable periodic orbit in an interior crisis is
numerically determined.

Crisis results from a global bifurcation whereby a chaotic
attractor suddenly widens or disappears (Grebogi et al.,
1983). The former is known as an interior crisis and the latter
a boundary crisis. Both types of crisis involve the collision of
a chaotic attractor with an unstable periodic orbit or its stable
manifold. We will demonstrate in this paper that at the onset
of both boundary crisis and interior crisis, a chaotic attractor
collides with a chaotic saddle.

Section 2 of this paper formulates the derivative nonlinear
Schr̈odinger equation that models the propagation of a non-
linear Alfvén wave. Section 3 analyzes chaos in Alfvén sys-
tems based on bifurcation diagrams, unstable periodic orbits,
chaotic attractors and chaotic saddles. Section 4 discusses
the saddle-node bifurcation. Section 5 treats the boundary
crisis. Section 6 studies the interior crisis. Discussion and
conclusion are given in Sect. 7.

2 Derivative nonlinear Schrödinger equation

Nonlinear spatiotemporal evolution of Alfvén waves can be
modeled by the derivative nonlinear Schrödinger equation
(DNLS) (Hada et al., 1990; Chian et al., 1998; Borotto et al.,
2004):

∂tb + α∂x(|b|2b) − i(µ + iη)∂2
xb = S(b, x, t), (1)

where the wave is propagating along an ambient magnetic
field B0 in the x-direction,b=by+ibz is the complex trans-
verse wave magnetic field normalized to the constant ambient
magnetic field,µ is the dispersive parameter,η is a charac-
teristic scale length, timet is normalized to the inverse of
the ion cyclotron frequencyωci=eB0/mi , spacex is nor-
malized tocA/ωci , cA=B0/(µ0ρ0)

1/2 is the Alfvén velocity,
cS=(γP0/ρ0)

1/2 is the acoustic velocity,α=1/[4(1−β)],
andβ=c2

S/c2
A. The external forcingS(b, x, t)=A exp(ikφ)

is a monochromatic left-hand circularly polarized wave with
a wave phaseφ=x−V t , whereV is a constant wave velocity,
A is the driver amplitude, andk is the driver wave number.

Equation (1) has been extensively used to study the non-
linear evolution of Alfv́en waves and MHD phenomena.
Mjølhus (1976) used DNLS to examine the modulational in-
stability of circularly polarized MHD waves of finite am-
plitude propagating parallel to the ambient magnetic field.
Spangler and Sheerin (1982) derived DNLS from two-fluid
equations using the reductive perturbation method and an-
alyzed the properties of an envelope Alfvén soliton based
on the pseudo-potential formalism. Machida et al. (1987)
compared the temporal behavior of the electromagnetic hy-
brid simulation with the numerical solution of DNLS, which
shows that a left-hand circularly polarized Alfvén mode
evolves into a shocklike structure due to the modulational
instability; for the right-hand mode, the formation of shock
does not take place. Kennel et al. (1988) derived DNLS by
means of Lagrangian variables and obtained solitary and pe-
riodic solutions of elliptically polarized quasiparallel Alfvén
waves. Hada et al. (1989) used a pseudo-potential method
to classify the stationary solutions of DNLS, which con-
sist of a rich family of nonlinear Alfv́en waves and soli-
tons with parallel and oblique propagations. Dawson and
Fontan (1990) compared two statistical models of Alfvén
solitons described by DNLS and applied the resulting power
spectra to solar wind observations. Buti (1991) showed
that nonlinear Alfv́en waves in inhomogeneous plasmas are
governed by a modified DNLS; the inhomogeneity leads to
acceleration/deceleration of Alfvén solitons. Spangler and
Plapp (1992) performed numerical investigations of DNLS,
which indicate that for circularly polarized wave packets
close to parallel propagation there is little change in its wave
form; however, for oblique propagation the wave steepens
and undergoes polarization changes, and can generate high-
frequency wavelets similar to the observed large-amplitude
MHD waves upstream of the Earth’s bow shock. Verheest
and Buti (1992) used the reductive perturbation analysis to

Nonlin. Processes Geophys., 14, 17–29, 2007 www.nonlin-processes-geophys.net/14/17/2007/



A. C.-L. Chian et al.: Chaos in driven Alfvén systems 19

derive DNLS for parallel Alfv́en waves in warm, streaming,
multispecies plasmas. Khabibrakhmanov et al. (1993) devel-
oped a model of collisionless parallel shock based on a mod-
ified DNLS by including the anisotropy of the plasma dis-
tribution function and higher-order dispersion; the number
of adiabatically reflected ions define the threshold conditions
of the fire-hose and mirror-type instabilities in the upstream
and downstream regions of the shock. Medvedev and Di-
amond (1996) modeled the kinetic resonant particle effects
of nonlinear Alfv́en waves by incorporating an additional
term representing dissipation akin to parallel heat conduc-
tion in a modified DNLS, which removes the singularity usu-
ally encountered in the nonlinear terms of DNLS and takes
into account nonlinear coupling of an Alfvénic mode to a ki-
netic ion-acoustic mode; damping of nonlinear Alfvén waves
appears via a strong Landau damping of the ion-acoustic
waves. Baumgartel (1999) applied the magnetically rarefac-
tive (dark) MHD soliton solution of DNLS to explain mag-
netic holes observed in solar wind, planetary magnetosheath
and cometary environment. Laveder et al. (2001) studied
the transverse collapse of dispersive Alfvén wave trains by
numerically solving a three-dimensional DNLS, which re-
sults in the formation of strong magnetic filaments along the
ambient magnetic field. Ruderman (2002) showed that the
oblique propagation of large-amplitude MHD solitons in a
high-beta Hall plasma is described by DNLS. Krishan and
Nocera (2003) studied the relaxed states of Alfvénic turbu-
lence based on the spatiotemporal solutions of DNLS; they
investigated the inverse energy cascade during four-wave in-
teractions and concluded that Alfvénic turbulence relaxes to
a state with soliton type structures which can become the
constant magnetic field force-free state. Passot and Sulem
(2003) obtained a criterion for filamentation instability of cir-
cularly polarized Alfv́en wave train described by a general-
ized kinetic DNLS which retains Landau damping, derived
from the Vlasov-Maxwell equations via long-wave reductive
perturbative expansion. Verheest et al. (2004) conducted a
comparative study of weakly nonlinear envelope soliton so-
lutions of DNLS and large-amplitude stationary whistler os-
cillitons, by considering the role of charge neutrality. Chen
and Lam (2004) and Lashkin (2005) applied the inverse scat-
tering transform to DNLS to study the generation of Alfvén
solitons.

In this paper, we adopt the low-dimensional model of non-
linear Alfvén waves (Hada et al., 1990; Chian et al., 1998;
Borotto et al., 2004) to investigate the stationary spatial wave
solutions of Eq. (1) withb=b(φ), whose first integral reduces
to a set of three coupled ordinary differential equations de-
scribing the transverse wave magnetic fields and the wave
phase of nonlinear Alfv́en waves

ḃy − νḃz =
∂H

∂bz

+ a cosθ, (2)

ḃz + νḃy = −
∂H

∂by

+ a sinθ, (3)

θ̇ = �, (4)

whereH=(b2−1)2/4−(λ/2)(b−ey)
2, b→b/b0 (whereb0 is

an integration constant),b=(by, bz), the normalized driver
amplitude parametera=A/αb2

0k, the normalized damping
parameterν=η/µ, the overdot denotes derivative with re-
spect to the wave phaseτ=αb2

0φ/µ, θ=�φ, �=µk/αb2
0,

andλ=−1+V/αb2
0.

Equation (1) allows certain arbitrariness for choosing the
signs of its various terms (Ghosh and Papadopoulos, 1987).
The sign of the cubic nonlinear term depends on the plasma
β. Here we assumeβ<1, henceα is positive. The sign of�
depends on the polarization of the driver. We assume nega-
tive � for a left-hand circularly polarized driver. In addition,
if the kinetic effects due to wave-particle interactions such as
cyclotron/Landau damping or growth are included, a damp-
ing/growth operator appears in Eq. (1), which introduces a
further flexibility with the sign. The inclusion of kinetic ef-
fects (e.g., nonlinear Landau damping), influences the sign
of α. It is no longer negative forβ>1 unless the electron
to ion temperature ratio is extremely large. Theη term in the
partial differential equation Eq. (1) has to be treated with cau-
tion. An initial value problem based on Eq. (1), defined with
exactly the same initial conditions but with different sign of
η, will yield completely different time evolutions. By con-
vention, the sign in front ofη in Eq. (1) should be negative if
it is treated as a dissipation term. On the other hand, once the
partial differential equation Eq. (1) is reduced to the set of
ordinary differential equations Eqs. (2–4) by assuming the
travelling wave solution (φ=x−V t), the phase variableφ
then includes both space and time, hence the physical mean-
ing above is lost. For example, the two opposite signs ofη

now merely correspond to integrating from one end to the
other inφ, or the other way around. In fact, by re-defining
b=by−ibz andφ=V t−x, we obtain Eqs. (2–4) with the sign
of η reversed. Thus, the solution ofb as a function ofφ
remains essentially unchanged by flipping the sign ofη. We
can regard Eqs. (2–4) as a nonlinear model of driven-damped
oscillator containing two control parametersa andν. The
sign of the control parameterν depends onη and the sign of
the dispersionµ. Here we assumeν is positive.

3 Alfv én chaos

In this paper, we analyze the roles played by unstable pe-
riodic orbits and chaotic saddles in driven Alfvén systems,
based on the low-dimensional model of Alfvén chaos de-
scribed by Eqs. (2–4).

A limit point diagram, which provides an overview of the
system dynamics and its sensitive dependence on small vari-
ations in a system parameter, can be constructed from the
numerical solutions of Eqs. (2–4) by varying the driver am-
plitude parametera while keeping other system parameters
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(b)

(a)

Fig. 1. Limit point diagram and maximum Lyapunov exponent:
global view. (a) Limit point diagram,bz as a function of the driver
amplitudea; (b) maximum Lyapunov exponentλmax as a function
of a. The arrow indicates a period-3 periodic window.ν=0.02,
�=−1, λ=1/4, µ=1/2.

fixed (ν=0.02, �=−1, λ=1/4, µ=1/2). We define a
Poincaŕe plane as

P : [by(τ ), bz(τ )] → [by(τ + T ), bz(τ + T )], (5)

whereT =2π/� is the driver period. Figure 1a displays a
global view of the limit point diagram of nonlinear Alfvén
waves. For a givena, Fig. 1a plots the asymptotic values of
the Poincaŕe points ofbz, where the initial transient is omit-
ted. Figure 1b shows the maximum Lyapunov exponent as
a function ofa, for the limit point diagram of Fig. 1a, cal-
culated by the Wolf algorithm (Wolf et al., 1985). Note that
there are two algorithms in the paper by Wolf et al. (1985).
The one based on the time series analysis has been improved
by Kantz (1994), and another based on the integration of the
Jacobian matrix of the flow which is a much more precise
way to compute the Lyapunov spectrum. Since in the present
paper we know the system equations, we adopt the second
algorithm.

An enlargement of a small region of the limit point dia-
gram indicated by the arrow in Fig. 1a is given in Fig. 2a,
which displays both attractor (black) and chaotic saddle

(blue) for a period-3 periodic window. Our choice of this
periodic window is motivated by the pioneer paper by Li and
York (1975) which states that period-3 implies chaos. Two
attractorsA1 andA2 are found within this periodic window.
For attractorA1, this periodic window begins with a saddle-
node bifurcation (SNB) ataSNB=0.321383, where a pair of
period-3 stable and unstable periodic orbits are created. The
period-3 stable periodic orbit undergoes a cascade of period-
doubling bifurcations asa increases and turns eventually into
a banded chaotic attractor with three bands. This periodic
window ends with an interior crisis (IC) ataIC=0.330248.
To plot the chaotic saddle, for each value ofa, we plot a
straddle trajectory close to the chaotic saddle using the PIM
triple algorithm with a precision of 10−6 (Nusse and York,
1989; Rempel and Chian, 2004; Rempel et al., 2004a). The
blue region inside the periodic window in Fig. 2a, denotes
the surrounding chaotic saddle (SCS) which acts as the tran-
sient preceding the convergence of the solutions to a periodic
or a chaotic attractor; the surrounding chaotic saddle extends
to the chaotic regions outside the periodic window, to the left
of SNB and to the right of IC, where it becomes a subset of
the chaotic attractor. After the interior crisis (IC), the banded
chaotic attractor is converted into a banded chaotic saddle
(red), as shown in Fig. 2b. In Fig. 2c, we plot the variation
of the maximum Lyapunov exponent of the attractorA1 as a
function ofa. Note that the value of the maximum Lyapunov
exponent jumps suddenly at SNB and IC, implying an abrupt
increase in the degree of chaoticity in the nonlinear Alfvén
system.

Figure 2a indicates that the attractorA2 appears in a nar-
row region within the p-3 periodic window. Figure 3 shows
an enlargement of the region ofA2. The attractorA2 be-
gins at aSNB=0.32935, where a pair of stable and unsta-
ble periodic orbits of period-9 are created due to a saddle-
node bifurcation (SNB). The p-9 stable periodic orbit under-
goes a cascade of period-doubling bifurcations, leading to
the formation of a banded chaotic attractor with nine bands.
This chaotic attractor is destroyed by a boundary crisis (BC)
at aBC=0.329437. After BC, the banded chaotic attractor
is converted into a banded chaotic saddle (red), as seen in
Fig. 3a. The variation of the maximum Lyapunov exponent
of the attractorA2 as a function ofa is plotted in Fig. 3b.

Unstable periodic orbits in a chaotic system have specific
functions in the system dynamics. For example, Fig. 4 shows
an example of the trajectory (solid line) and the Poincaré
points (cross) of the period-9 unstable periodic orbit (M) cre-
ated ataSNB=0.32935, which is responsible for mediating
the onset of a boundary crisis (BC) in Fig. 3a as well as the
onset of an interior crisis (IC) in Fig. 2a. The unstable peri-
odic orbit is found by the Newton method (Curry, 1979).

Following Green and Krauskopf (2002), the dynamical be-
havior of Alfvén boundary and interior crises under inves-
tigation can be clarified by a detailed bifurcation diagram
shown in Fig. 5. An attractorA1 exists in the entire range of
control parametera in Fig. 5a, which can be chaotic as well
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Fig. 2. Limit point diagram and maximum Lyapunov exponent:
period-3 periodic window.(a) Limit point diagram,bz as a function
of the driver amplitudea, for attractorsA1 andA2, superimposed by
the surrounding chaotic saddle (blue);(b) the same as (a), showing
the conversion of the pre-crisis banded chaotic attractor (black) into
the post-crisis banded chaotic saddle (red);(c) maximum Lyapunov
exponent,λmaxas a function ofa, for the attractorA1. SNB denotes
saddle-node bifurcation, and IC denotes interior crisis.

as periodic. A second attractor appears in a narrow range
of control parameter indicated byA2 in Fig. 5a. As seen in
Fig. 5a, a saddle-node bifurcation (SNB) creates a pair of

Fig. 3. Limit point diagram and maximum Lyapunov exponent: at-
tractorA2. (a) Limit point diagram,bz as a function of the driver
amplitudea, for the attractorA2, superimposed by the chaotic sad-
dle (red) converted from the chaotic attractorA2, after the boundary
crisis; (b) the variation of maximum Lyapunov exponentλmax as a
function ofa for the attractorA2. SNB denotes saddle-node bifur-
cation, and BC denotes boundary crisis.

stable (black solid line) and unstable periodic orbits (green
dashed line) of period-3. An enlargement of the red rect-
angular region of Fig. 5a is given in Fig. 5b, which shows
that a saddle-node bifurcation (SNB) creates a pair of sta-
ble (blue solid line) and unstable periodic orbits (red dashed
line) of period-9. Figure 5b also shows the first (PD-1) and
second (PD-2) period-doubling bifurcations and the unsta-
ble periodic orbits (black dashed line) resulting from the re-
spective bifurcations. At the boundary crisis (BC) indicated
in Fig. 5b, the p-9 mediating unstable periodic orbit collides
with the chaotic attractor evolved from the attractorA2, lead-
ing to the destruction ofA2. At the interior crisis (IC) indi-
cated in Fig. 5a, the same p-9 mediating unstable periodic
orbit collides with the banded chaotic attractor evolved from
the attractorA1, leading to the formation of a strong chaotic
attractor.

www.nonlin-processes-geophys.net/14/17/2007/ Nonlin. Processes Geophys., 14, 17–29, 2007
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Fig. 4. Mediating unstable periodic orbit of period-9 created by a
saddle-node bifurcation ataSNB = 0.32935. The solid line denotes
the state-space trajectory, and the cross denotes the Poincaré point.

4 Saddle-node bifurcation

As mentioned earlier, a local bifurcation known as saddle-
node bifurcation takes place ataSNB=0.321383 in Fig. 2a,
where a pair of period-3 stable and unstable periodic orbits
are created. As the Alfv́en system undergoes a transition
from order to chaos via a saddle-node bifurcation, the sur-
rounding chaotic saddle is converted into a chaotic attractor,
as shown in Fig. 2a. Figure 6a shows the surrounding chaotic
saddle (SCS) in the Poincaré plane foraSNB=0.321383,
right after the saddle-node bifurcation. Figure 6b shows the
chaotic attractor (CA) fora=0.321382.aSNB, just before
the saddle-node bifurcation. The surrounding chaotic saddle
(SCS) embedded in the chaotic attractor of Fig. 6b is shown
in Fig. 6c. Note from Figs. 6a and c that there are gaps in the
surrounding chaotic saddles. The conversion from a chaotic
saddle to a chaotic attractor, to the left ofaSNB, is due to the
creation of new unstable periodic orbits in the gap regions
via the phenomenon of explosion (Robert et al., 2000; Szabó
et al., 2000).

5 Boundary crisis

A global bifurcation known as boundary crisis (BC) takes
place ataBC=0.329437 in Fig. 3a. Figure 7a shows the 9-
band chaotic attractorA2 (CA, black) and the surrounding
chaotic saddle (SCS, blue) in the Poincaré plane. The occur-
rence of boundary crisis is due to the collision of the chaotic
attractor with the p-9 mediating unstable periodic orbit (M)
created via a saddle-node bifurcation ataSNB=0.321383.
Figure 7b shows an enlargement of the rectangular region
of Fig. 7a, indicating the collision of the chaotic attractorA2
with the mediating unstable periodic orbit, its stable manifold
(SM, thin line), and the surrounding chaotic saddle (SCS,

Fig. 5. Detailed bifurcation diagram of the period-3 periodic win-
dow. (a) Bifurcation diagram,bz as a function of the driver ampli-
tudea, for attractorsA1 (balck) andA2 (blue), p-3 unstable peri-
odic orbit (green dashed line) and p-9 unstable periodic orbit (red
dashed line) created by saddle-node bifurcations (SNB);(b) an en-
largement of the red rectangular region indicated in panel (a). BC
denotes boundary crisis and IC denotes interior crisis; PD-1/PD-2
denotes first/second period-doubling bifurcation of attractorA1, re-
spectively.

blue). Note that before the boundary crisis, two attractorsA1
andA2 co-exist (see Fig. 2a), each with its own basin of at-
traction (Borotto et al., 2004); the stable manifold of the me-
diating unstable periodic orbit in Fig. 7b forms the boundary
between the two basins of attraction.

As the consequence of the chaotic attractor-chaotic sad-
dle collision, after the onset of boundary crisis the chaotic
attractorA2 and its basin of attraction are destroyed, and
the system converges to the attractorA1, as seen in Fig. 2a.
In Fig. 8a we plot the surrounding (SCS, blue) and banded
(BCS, red) chaotic saddles after the boundary crisis at
a=0.329438&aBC. After the boundary crisis, the pre-crisis
9-band chaotic attractor (CA) of Fig. 7a is converted into a
9-band chaotic saddle (BCS) of Fig. 8a. Figure 8b shows an
enlargement of the rectangular region of Fig. 8a, indicating
gaps in the banded chaotic saddle (BCS).

Nonlin. Processes Geophys., 14, 17–29, 2007 www.nonlin-processes-geophys.net/14/17/2007/



A. C.-L. Chian et al.: Chaos in driven Alfvén systems 23

Fig. 6. Transition from a chaotic saddle to a chaotic at-
tractor via a saddle-node bifurcation.(a) Post-SNB chaotic
saddle at aSNB=0.321383; (b) pre-SNB chaotic attractor at
a=0.321382.aSNB; (c) pre-SNB chaotic saddle embedded in the
chaotic attractor ata=0.321382.aSNB.

6 Interior crisis

A global bifurcation known as interior crisis (IC) takes place
at aIC=0.330248 in Fig. 2a. Figure 9a shows the weak
chaotic attractor (WCA, black) and the surrounding chaotic

Fig. 7. Chaotic attractor-chaotic saddle collision at boundary crisis
(BC) for aBC=0.329437. (a) Pre-BC surrounding chaotic saddle
SCS (blue) and banded chaotic attractor CA (black);(b) a zoom of
(a). The cross denotes a fixed point of thep − 9 mediating unstable
periodic orbit (M) and the thin line denotes its stable manifold (SM).

saddle (SCS) foraIC in the Poincaŕe plane. The occur-
rence of interior crisis is due to the collision of the weak
chaotic attractor (WCA) with the p-9 mediating unstable
periodic orbit (M) created via a saddle-node bifurcation at
aSNB=0.321383. Figures 9b–c are enlargements of the rect-
angular region in Fig. 9a.

Figure 9b shows the Poincaré points (cross) and the sta-
ble manifold (SM, light line) of the mediating unstable pe-
riodic orbit, the weak chaotic attractor (WCA), and the sur-
rounding chaotic saddle (SCS, blue). It follows from Fig. 9b
that the stable manifold of the mediating unstable periodic
orbit forms the boundary between the banded and surround-
ing regions. Figure 9c shows the stable manifold (green) of
the surrounding chaotic saddle and the weak chaotic attractor
(WCA). Figures 9b and c reveal that at the onset of crisis the
chaotic attractor (WCA) collides head-on with the mediating
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Fig. 8. Transition from a chaotic attractor to a chaotic saddle via a
boundary crisis (BC).(a)Post-BC surrounding chaotic saddle (SCS,
blue) and banded chaotic saddle (BCS, red) ata=0.329438&aBC;
(b) a zoom of (a), the thin line denotes the stable manifold (SM) of
the mediating unstable periodic orbit.

unstable periodic orbit and its associated stable manifold, as
well as the surrounding chaotic saddle and its associated sta-
ble manifold.

As the result of the chaotic attractor-chaotic saddle
collision, after the onset of interior crisis the pre-crisis
weak chaotic attractor (WCA) turns into a post-crisis
strong chaotic attractor (SCA), as shown by Fig. 10a for
a=0.330249&aIC. Two chaotic saddles (surrounding and
banded) are embedded in the strong chaotic attractor. In ad-
dition, the strong chaotic attractor contains a set of coupling
unstable periodic orbits created by explosions after the on-
set of crisis. Figure 10b shows the numerically found sur-
rounding chaotic saddle (SCS, blue) and banded chaotic sad-
dle (BCS, red). An enlargement of the rectangular region of
Fig. 10b is plotted in Fig. 10c, where we also plot the sta-
ble manifold (SM, thin line) of the p-9 mediating unstable

Fig. 9. Chaotic attractor-chaotic saddle collision at the Alfvén inte-
rior crisis foraIC=0.330248.(a) Pre-IC surrounding chaotic saddle
(SCS) and weak chaotic attractor (WCA, black);(b) a zoom of (a)
showing the collision of the weak chaotic attractor (WCA) with the
mediating unstable periodic orbit (cross), its stable manifold (SM)
and the surrounding chaotic saddle (SCS);(c) same as (b) showing
the collision of the weak chaotic attractor (WCA) with the stable
manifold (green) of the surrounding chaotic saddle.
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periodic orbit, which divides the surrounding and banded re-
gions.

Evidently, Figs. 10b and c show that there are gaps inside
the surrounding and banded chaotic saddles. These gaps are
densely filled by uncountably many coupling unstable peri-
odic orbits (C), created by explosions after the onset of inte-
rior crisis (Robert et al., 2000; Szabó et al., 2000), which
have components in both surrounding and banded regions
and are responsible for coupling the two regions. We find
numerically one example of the coupling unstable periodic
orbit. Figure 11a shows a coupling unstable periodic orbit
of period-23 ata=0.331>aIC, which is created via an ex-
plosion at this value ofa. Note that right after a crisis, the
coupling unstable periodic orbits created by explosion in the
gap regions have very long period with the period approach-
ing infinity asa approachesaIC (Szab́o et al., 2000). Since
the control parameter in Fig. 11 is close toaIC, we were able
to numerically find a coupling unstable periodic orbit with a
long period-23.

An enlargement of the rectangular region of Fig. 11a is
given in Fig. 11b. Figure 11 shows that the fixed points of
the p-23 coupling unstable periodic orbit are located in the
gap regions of both surrounding and banded chaotic saddles.

7 Discussion and conclusion

In this paper, we demonstrated that dynamical systems
such as space plasmas are composed by unstable structures,
namely, unstable periodic orbits and chaotic saddles. Within
a periodic window, the chaotic saddle is responsible for the
transient motion before the system converges to an attrac-
tor. In the chaotic regime, chaotic saddles are embedded in
chaotic attractors. The transition from a chaotic saddle into a
chaotic attractor occurs in both local bifurcation (e.g., saddle-
node bifurcation) and global bifurcation (e.g., boundary cri-
sis and interior crisis). For the saddle-node bifurcation and
interior crisis, this transition is accompanied by explosions
inside the gap regions of chaotic saddles which lead to the
creation of new gap-filling unstable periodic orbits. Explo-
sion only occurs for boundary crisis if the basin boundary
is fractal, but do not occur for boundary crisis if the basin
boundary is smooth (Robert et al., 2000). Due to the limi-
tation of space, in this paper we only focused on the study
of explosion and creation of gap-filling unstable periodic or-
bits for an interior crisis. In a future work, we will perform
a detailed analysis of the system dynamics for a boundary
crisis.

In this work, we applied both forward and backward time
integrations to perform numerical analysis of unstable struc-
tures. In Figs. 7–11, chaotic attractors (CA, WCA, SCA) and
chaotic saddles (SCS, BSC) are computed by forward time
integrations, whereas the stable manifold (SM) of the medi-
ating unstable periodic orbit is computed by backward time
integrations based on the high-precision You-Kostelich-York

Fig. 10. Chaotic attractor and chaotic saddle after the Alfvén in-
terior crisis ata=0.330249&aIC. (a) Poincaŕe map of the strong
chaotic attractor (SCA);(b) the surrounding chaotic saddle (SCS,
blue) and the banded chaotic saddle (BCS, red) embedded in the
chaotic attractor of (a);(c) enlargement of the rectangular region
of (b). SM (thin line) denotes the stable manifold of the mediating
unstable periodic orbit of period-9.
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Fig. 11. Gap-filling unstable periodic orbit linking the banded
and surrounding chaotic saddles after the Alfvén interior crisis at
a=0.3310. (a) A coupling unstable periodic orbit of period-23
(cross) created via explosion ata=0.3310>aIC; (b) enlargement
of the rectangular region of (a). The surrounding chaotic saddle
(SCS) is indicated by blue, the banded chaotic saddle (BCS) is indi-
cated by red, and SM (thin line) denotes the stable manifold of the
mediating unstable periodic orbit of period-9.

algorithm (You et al., 1991), where the computed curve lies
no further than a distanceε from the true image curve. We
setε=10−4. The You-Kostelich-York algorithm is useful for
computing one-dimensional manifolds such as the present
work. For two-dimensional stable and unstable manifolds,
the efficient algorithm of Krauskopf and Osinga (1999) can
be used.

The study of unstable structures in space plasmas can
deepen our understanding of chaos in space plasmas such as
the Alfvén intermittent turbulence in the solar wind (Chian
et al., 1998; Bruno and Carbone, 2005). Nonlinear, inter-
mittent Alfvén waves of solar and interplanetary origin can
cause intense geomagnetic storms. The present work elu-
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Fig. 12. Alfv én crisis-induced intermittency.(a) Time seriesbz as
a function ofτ for a=0.3310,(b) same time series as (a) plotted as
a function of driver cycles,(c) power spectrum of (a). SCS denotes
surrounding chaotic saddle and BCS denotes banded chaotic saddle.

cidates the fundamental dynamics and structures of Alfvén
intermittency driven by chaos. Alfv́en intermittency can be
driven by a saddle-node bifurcation or by a global bifurca-
tion such as interior crisis (Chian et al., 1998). For exam-
ple, Figs. 12a and b show the time-series of Alfvén inter-
mittency induced by the interior crisis studied in Sect. 6,
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whereby random regime switchings between laminar and
bursty phases of the magnetic field fluctuations are observed.
The corresponding power spectrum is given in Fig. 12c.
This intermittent regime switching and power-law behavior
of the power spectrum reproduce quite well the observation
of Alfv én intermittent turbulence detected by the spacecraft
in the solar wind (Bruno and Carbone, 2005). Figure 12b
shows that the chaotic trajectory hops alternatively between
the surrounding chaotic saddle (SCS) and the banded chaotic
saddle (BCS) via the coupling unstable periodic orbits, as in-
dicated by Figs. 10 and 11. In addition, it is evident from
Figs. 12a and b that during the laminar/bursty phases of the
Alfv én intermittency, the chaotic trajectory is traversing the
regions of the banded/surrounding chaotic saddle, respec-
tively. The abrupt increase in the degree of chaoticity near the
SNB and IC transitions in Fig. 2c implies that the interplan-
etary magnetic field fluctuations can change from periodic to
aperiodic temporal patterns due to a saddle-node bifurcation,
and change from low-amplitude to large-amplitude aperiodic
temporal patterns due to an interior crisis.

The present work is based on the stationary solutions of
the three-dimensional system Eqs. (2–4), which are a par-
ticular solution of the DNLS Eq. (1). This low-dimensional
chaos approach enables us to perform a detailed analysis of
the unstable structures of dynamical systems, which provides
a valuable guide for studying high-dimensional chaos present
in the spatiotemporal solutions of Eq. (1). Moreover, the
methodology developed in this paper may serve as a guide
for finding the unstable periodic orbit embedded in a well-
developed fluid turbulence (Kawahara and Kida, 2001) and
for understanding the role of chaotic saddles in the transition
from laminar to turbulent flows in a pipe (Faisst and Eckhard,
2003).

In addition to space plasma applications, unstable struc-
tures are relevant to applications of chaos in the Earth’s atmo-
sphere and oceans such as the local predictability of the El-
Niño Southern Oscillation (ENSO) (Samelson and Tziper-
man, 2001), the model of the thermolialine ocean circula-
tion of the Atlantic (Titz et al., 2002) and barotropic waves
(Kazantsev, 2001; Samelson, 2001a,b; Samelson and Wolfe,
2003; Selten and Branstator, 2004; Eccles et al., 2006). In
conclusion, unstable periodic orbits and chaotic saddles are
the key for monitoring and controlling the complex dynamics
of the earth-ocean-space environment.
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Alfv én systems, Phys. Fluids B, 2, 2581–2590, 1990.

Harrison, P. K., Tattersall, J. E. H., and Clement R. A.: Periodic
orbit analysis reveals subtle effects of atropine on epileptiform
activity in the guinea-pig hippocampal slice, Neuroscience Lett.,
357, 183–186, 2004.

Ishiyama, K. and Saiki, Y.: Unstable periodic orbits and chaotic
economic growth, Chaos, Solitons & Fractals, 26, 33–42, 2005.

Kantz, H.: A robust method to estimate the maximal Lyapunov ex-
ponent of a time-series, Phys. Lett. A, 185, 77–87, 1994.

Kato, S. and Yamada, M.: Unstable periodic solutions embedded
in a shell turbulence, Phys. Rev. E., 68, 025302(R), doi:10.1103,
2003.

Kawahara, G. and Kida, S.: Periodic motion embedded in plane
Couette turbulence: regeneration cycle, J. Fluid Mech., 449,
291–300, 2001.

Kawahara, G.: Laminarization of minimal plane Couette flow: go-
ing beyond the basin of attraction of turbulence, Phys. Fluids, 17,
041702, doi:10.1063, 2005.

Kazantsev, E.: Sensitivity of the attractor of the barotropic ocean
model to external influences, Nonlin. Processes Geophys., 8,
281–300, 2001,
http://www.nonlin-processes-geophys.net/8/281/2001/.

Kennel, C. F., Buti, B., Hada, T., and Pellat, R.: Nonlinear, disper-
sive, elliptically polarized Alfv́en waves, Phys. Fluids, 31, 1949–
1961, 1988.

Khabibrakhmanov, I. K., Galeev, A. A., and Galinsky, V. L.: Colli-
sionless parallel shocks, J. Geophys. Res., 98, 1293–1301, 1993.

Krauskopf, B. and Osinga, H.: Two-dimensional global manifolds
of vector fields, Chaos, 9, 768–774, 1999.

Krishan, V. and Nocera, L.: Relaxed states of Alfvénic turbulence,
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