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Abstract. The chaotic dynamics of Alen waves in space lasers (Green and Krauskopf, 2002), and neuroscience (Har-
plasmas governed by the derivative nonlinear 8dimger  rison et al., 2004).

equation, in the low-dimensional limit described by station-
ary spatial solutions, is studied. A bifurcation diagram is
constructed, by varying the driver amplitude, to identify a
number of nonlinear dynamical processes including saddle

node bifurcation, boundary CrIsIS, aqd Interior CIISIS. Thethereby all trajectories initiated from any point in the state
roles played b.y.unstable periodic orbits and ChaOt'C. Saddle%pace within its basin of attraction are attracted to a stable
in these_ transitions are analyzed, and t_he conversion fr_o;Eeriodic orbit, in a chaotic attractor all periodic orbits are un-

a chaotic saddle 10 a chaofic attractor in these dynamic table. Chaotic sets are not necessarily attracting sets. A set

p;ocesi_(lal_s IS _det?]"nonsr;cratte_zd.t In ptgrtlcfular, the lr()hehnometno(r)]f unstable periodic orbits can be chaotic and nonattracting
of gap-filing In the chaotic transition from weak chaos 10 ¢, 1nat the orbits in the neighborhood of this set are even-

strong chaos via an interior crisis is investigated. Acouplingtually repelled from it: nonetheless, this set can contain a

unstab:cethpemr)]dlct.orblt d%lrleated Ey d%n g)fplosmr)]n, r”thltrt] thf:“chaotic orbit with at least one positive Lyapunov exponent;
?alllps otthe ¢ ?0.'0 saddies efm ed edina (|:| ao_l_'ﬁ attraclQf e chaotic orbit has also one negative Lyapunov exponent
0llowing an Interior crisis, 1S found numerically. The gap- ., nonattracting set is known as a chaotic saddle (Grebogi

filling unstable periodic orbits are responsible for coupling etal.. 1983 Nusse and Yorke. 1989 Szand Tl 1994a b
the banded chaotic saddle (BCS) to the surrounding chaotic e ' ' ' :b).

saddle (SCS), leading to crisis-induced intermittency. The Recently, there has been a remarkable advance in the study
physical relevance of chaos for Aln intermittent turbu-  Of unstable periodic orbits and chaotic saddles in fluid turbu-

lence observed in the solar wind is discussed. lence. Christiansen et al. (1997) and Zoldi and Greenside
(1998) showed that the periodic orbit theory of dynamical
systems formulated by Auerbach et al. (1987) and Cvitanovi
(1988) can determine the global averages of a chaotic attrac-
1 Introduction tor or a chaotic saddle in the Kuramoto-Sivashinsky equa-
tion, based on a finite ensemble of fundamental unstable peri-
Unstable structures such as unstable periodic orbits an@dic orbits. Kawahara and Kida (2001) numerically found an
chaotic saddles play a fundamental role in nonlinear dynamunstable periodic orbit in a three-dimensional plane Couette
ics of the earth-ocean-space environment (Samelson, 2001&rbulence described by the incompressible Navier-Stokes
Chian et al., 2003; Selten and Branstator, 2004), economicgquation. (Chian et al., 2002) and Rempel et al. (2004a)
(Ishiyama and Saiki, 2005; Chian et al., 2006), fluid mechan-showed that unstable periodic orbits and chaotic saddles can
ics (Kawahara and Kida, 2001; Faisst and Eckhard, 2003)¢characterize an interior crisis and the intermittency induced
by an interior crisis in the Kuramoto-Sivashinsky equation.
Correspondenceto: A. C.-L. Chian Faisst and Eckhard (2003) identified a family of unstable tra-
(achian@dge.inpe.br) veling waves originating from saddle-node bifurcations in a

Unstable periodic orbits are the skeleton of a chaotic at-
tractor since its chaotic trajectory is the closure of an infinite
set of unstable periodic orbits (Ott, 1993; Auerbach et al.,
1987; Cvitanowt, 1988). In contrast to a periodic attractor
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18 A. C.-L. Chian et al.: Chaos in driven Alén systems

numerical experiment of flow through a pipe, and showed2 Derivative nonlinear Schrodinger equation

that these unstable structures provide a skeleton for the for-

mation of a chaotic saddle responsible for the transition toNonlinear spatiotemporal evolution of A#n waves can be
turbulence. Kato and Yamada (2003) detected an unstablgodeled by the derivative nonlinear Satimger equation
periodic orbit in the Gledzer-Ohkitani-Yamada shell model (DNLS) (Hada et al., 1990; Chian et al., 1998; Borotto et al.,
turbulence, and showed that an intermittent turbulence is de2004):

scribed by this unstable periodic orbit. Kawahara (2005) ap- 2 . R

plied the method of controlling chaos to stabilize an unsta—a’b +adu(bI°) =i +imdib = S, x. 1), @)
ble periodic orbit in a plane Couette turbulent flow and suc-where the wave is propagating along an ambient magnetic
ceeded in driving the system to a regime of laminar flow. field Bg in the x-directionb=>b,+ib, is the complex trans-
Rempel and Chian (2005) showed that unstable periodic orverse wave magnetic field normalized to the constant ambient
bits and chaotic saddles are the origin of the intermittencymagnetic fieldu is the dispersive parameter,is a charac-
induced by an attractor merging crisis in the Kuramoto-Siva-teristic scale length, time is normalized to the inverse of
shinsky equation. Van Veen et al. (2006) extracted unstabl¢he ion cyclotron frequencyw.;=eBg/m;, spacex is nor-
periodic orbits from a forced box turbulence with high sym- malized toc s /w.i, ca=Bo/(opo)Y/? is the Alfvén velocity,
metry and compared the statistical properties of these peries=(y Po/p0)Y/? is the acoustic velocityp=1/[4(1—p)],

odic flows with those of turbulent flow. andB=c2/c%. The external forcings (b, x, 1)=A explike$)

) ) ] ) ] is a monochromatic left-hand circularly polarized wave with
The aim of this paper is to investigate the roles of unstable, \\4ve phasé—x— V', whereV is a constant wave velocity,

periodic orbits and chaotic saddles in nonlinear processes iy is the driver amplitude, anklis the driver wave number.
space plasmas. B:?\s.ed on a low-dimensional model of driven Equation () has been extensively used to study the non-
Alfv én systems originally formulated by Hada et al. (1990), linear evolution of Alf\en waves and MHD phenomena.

Chian et al. (1998) showed that a nonlinear &ffvwave in  \igihys (1976) used DNLS to examine the modulational in-

the solar wind can evolve from order to chaos via a Saddle'stability of circularly polarized MHD waves of finite am-

node bifurcation and evolve from weak chaos to strong chaog,iyde propagating parallel to the ambient magnetic field.
via an interior crisis. Borotto et al. (2004) identified nu- Spangler and Sheerin (1982) derived DNLS from two-fluid
merically a period-9 unstable periodic orbit responsible forequations using the reductive perturbation method and an-
the Alfvén chaos studied by Chian et al. (1998), leading toalyzed the properties of an envelope Adfv soliton based
the_onset of a boundary crisis and an inte_rior crisis. Fol-51 the pseudo-potential formalism. Machida et al. (1987)
lowing the works of Hada et al. (1990), Chian et al. (1998) .ompared the temporal behavior of the electromagnetic hy-
and Borotto et al. ,(2004)’ we show in this paper that localprig simulation with the numerical solution of DNLS, which
and global bifurcations such as saddle-node bifurcation and, s that a left-hand circularly polarized Adfv mode
boundary/interior crises involve the conversion of a chaotiCq,qves into a shocklike structure due to the modulational
saddle into a chaotic attractor. This conversion may res““instability; for the right-hand mode, the formation of shock
from g.ap-filling due 'Fo the creation of.new unstable periodic does not take place. Kennel et al. (1988) derived DNLS by
orbits in the gap regions of the chaotic saddles. An examplgneang of Lagrangian variables and obtained solitary and pe-
of gap_—fllllng unstaple periodic orbit in an interior crisis is riodic solutions of elliptically polarized quasiparallel A&
numerically determined. waves. Hada et al. (1989) used a pseudo-potential method

Crisis results from a global bifurcation whereby a chaotic ©© classify the stationary solutions of DNLS, which con-

attractor suddenly widens or disappears (Grebogi et al.Sist of @ rich family of nonlinear Alfén waves and soli-

1983). The former is known as an interior crisis and the latteri®ns With parallel and oblique propagations. Dawson and

a boundary crisis. Both types of crisis involve the collision of Fontan (1990) compared two statistical models of Affv

a chaotic attractor with an unstable periodic orbit or its stableSClitons described by DNLS and applied the resulting power

manifold. We will demonstrate in this paper that at the onsetSPeCtra to solar wind observations. Buti (1991) showed
of both boundary crisis and interior crisis, a chaotic attractorin@t nonlinear Alfén waves in inhomogeneous plasmas are
collides with a chaotic saddle. governed by a modified DNLS; the inhomogeneity leads to

acceleration/deceleration of ABwn solitons. Spangler and

Section 2 of this paper formulates the derivative nonlinearPlapp (1992) performed numerical investigations of DNLS,
Schibdinger equation that models the propagation of a nonwhich indicate that for circularly polarized wave packets
linear Alfvén wave. Section 3 analyzes chaos in Alivsys-  close to parallel propagation there is little change in its wave
tems based on bifurcation diagrams, unstable periodic orbitsform; however, for oblique propagation the wave steepens
chaotic attractors and chaotic saddles. Section 4 discussesd undergoes polarization changes, and can generate high-
the saddle-node bifurcation. Section 5 treats the boundaryrequency wavelets similar to the observed large-amplitude
crisis. Section 6 studies the interior crisis. Discussion andVIHD waves upstream of the Earth’s bow shock. Verheest
conclusion are given in Sect. 7. and Buti (1992) used the reductive perturbation analysis to

Nonlin. Processes Geophys., 14, 17-29, 2007 www.nonlin-processes-geophys.net/14/17/2007/
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derive DNLS for parallel Alfén waves in warm, streaming, =9, 4)
multispecies plasmas. Khabibrakhmanov et al. (1993) devel-

oped a model of collisionless parallel shock based on a modwhereH =(b?—1)?/4—(x/2)(b—ey)?, b—b/bg (Wherebg is
ified DNLS by including the anisotropy of the plasma dis- an integration constanth=(b,, b,), the normalized driver
tribution function and higher-order dispersion; the numberamplitude parametenz:A/abék, the normalized damping
of adiabatically reflected ions define the threshold conditionsparameten=n/u, the overdot denotes derivative with re-
of the fire-hose and mirror-type instabilities in the upstreamspect to the wave phase:ab%qﬁ/u, 0=Q¢, Q=uk/ab?,
and downstream regions of the shock. Medvedev and Diandk=—1+V/oeb§.

amond (1996) modeled the kinetic resonant particle effects gqation (1) allows certain arbitrariness for choosing the

of nonlinear Alfien waves by incorporating an additional gigns of its various terms (Ghosh and Papadopoulos, 1987).

term representing dissipation akin to parallel heat conduc—pq sign of the cubic nonlinear term depends on the plasma
tion in a modified DNLS, which removes the singularity usu- B. Here we assum@<1, hencex is positive. The sign of2

ally encountered in the nonlinear terms of DNLS and takeSgepends on the polarization of the driver. We assume nega-
into account nonlinear coupling of an Alimic mode to aki-  jye  for a left-hand circularly polarized driver. In addition,

netic ion-acoustic mode; damping of nonlinear Afwaves it yhe kinetic effects due to wave-particle interactions such as

appears via a strong Landau damping of the ion-acoustiyc|otron/Landau damping or growth are included, a damp-
waves. Baumgartel (1999) applied the magnetically rarefacing/growth operator appears in Eq. (1), which introduces a

tive_ (dark) MHD solitqn SOIUtiO':‘ of DNLS to explain mag- further flexibility with the sign. The inclusion of kinetic ef-
netic holes observgd in solar wind, planetary magnetos;he.atﬁectS (e.g., nonlinear Landau damping), influences the sign
and cometary envwonment.' Lave'der et al. (2001) studiedyt ,, It is no longer negative fop>1 unless the electron
the transverse collapse of dispersive &livwave trains by 4 jon temperature ratio is extremely large. Therm in the
numerically solving a three-dimensional DNLS, which re- 4 i) gifferential equation Eq. (1) has to be treated with cau-
sults_ in the forma_ltlo_n of strong magnetic filaments along they 1, An initial value problem based on Eq. (1), defined with
amplent magnetic field. Ruderman (2002) showgd tha_‘t the‘exactly the same initial conditions but with different sign of
oblique propagation of large-amplitude MHD solitons in @ ,, il yield completely different time evolutions. By con-
high-beta Hall plasma is described by DNLS. Krishan andyention; the sign in front off in Eq. (1) should be negative if
Nocera (2003) studied the relaxed states of &ific turbLf' itis treated as a dissipation term. On the other hand, once the
lence based on the spatiotemporal solutions of DNLS; they,, i) differential equation Eq. (1) is reduced to the set of

invest_igated the inverse energy ca_scade during four-wave i”()rdinary differential equations Eqs. (2—4) by assuming the
teractions and concluded that Atfiwic turbulence relaxes to travelling wave solutiondg=x— V1), the phase variable

a state with soliton type structures which can become th&hean includes both space and time, hence the physical mean-

constant magnetic field force-free state. Passot and Sulerl’fp]g above is lost. For example, the two opposite signs of
(2003) obtained a criterion for filamentation instability of cir- 4, merely correspond to inte‘grating from one end to the

cularly polarized Alfien wave train described by a general- oinar ing, or the other way around. In fact, by re-defining
ized kinetic DNLS which retains Landau damping, derived ,_, _;, and¢=V1—x, we obtain Egs. (2—4) with the sign
from the Vlasov-Maxwell equations via long-wave reductive ¢ nyrevehrsed. Thus t’he solution éfas a function ofp

perturbative expansion. Verheest et al. (2004) conducted 3 mains essentially unchanged by flipping the sign.ofVe

comparative study of weakly nonlinear envelope soliton so-.,,, regard Egs. (2—4) as a nonlinear model of driven-damped
lutions of DNLS and large-amplitude stationary whistler 0s- o q.jjjator containing two control parametersandv. The

cillitons, by considering the role of charge neutrality. Chen sign of the control parameterdepends om and the sign of
and Lam (2004) and Lashkin (2005) applied the inverse scats, dispersiont. Here we assumeis positive.

tering transform to DNLS to study the generation of Afv
solitons.
In this paper, we adopt the low-dimensional model of non- .
linear Alfvén waves (Hada et al., 1990; Chian et al., 1998;3 Alfvén chaos
Borotto et al., 2004) to investigate the stationary spatial wave
solutions of Eq. (1) wittb=b(¢), whose first integral reduces In this paper, we analyze the roles played by unstable pe-
to a set of three coupled ordinary differential equations de-fiodic orbits and chaotic saddles in driven Adfv systems,
scribing the transverse wave magnetic fields and the wav&ased on the low-dimensional model of Adv chaos de-

phase of nonlinear Alfén waves scribed by Egs. (2-4).
A limit point diagram, which provides an overview of the
by — vb, = M L cost, (2)  system dynamics and its sensitive dependence on small vari-
ab; ations in a system parameter, can be constructed from the
. . oH . numerical solutions of Eqgs. (2-4) by varying the driver am-
b: +vby = _% +asing, C) plitude parametes while keeping other system parameters

www.nonlin-processes-geophys.net/14/17/2007/ Nonlin. Processes Geophys., 14, 17-29, 2007



20 A. C.-L. Chian et al.: Chaos in driven Alén systems

@) 2 (blue) for a period-3 periodic window. Our choice of this
periodic window is motivated by the pioneer paper by Li and
York (1975) which states that period-3 implies chaos. Two
attractorsA; and A, are found within this periodic window.
For attractorA,, this periodic window begins with a saddle-
node bifurcation (SNB) atsng=0.321383, where a pair of
period-3 stable and unstable periodic orbits are created. The
period-3 stable periodic orbit undergoes a cascade of period-
doubling bifurcations ag increases and turns eventually into

a banded chaotic attractor with three bands. This periodic
window ends with an interior crisis (IC) ajc=0.330248.

To plot the chaotic saddle, for each valueafwe plot a
straddle trajectory close to the chaotic saddle using the PIM
(b) 03 triple algorithm with a precision of 1@ (Nusse and York,

: 1989; Rempel and Chian, 2004; Rempel et al., 2004a). The
blue region inside the periodic window in Fig. 2a, denotes
the surrounding chaotic saddle (SCS) which acts as the tran-
sient preceding the convergence of the solutions to a periodic
}\, 0.1F or a chaotic attractor; the surrounding chaotic saddle extends

T to the chaotic regions outside the periodic window, to the left

0____|_mj' L/\” U VU MV L of SNB and to the right of IC, where it becomes a subset of

- CHAOS 1
021

the chaotic attractor. After the interior crisis (IC), the banded

ORDER chaotic attractor is converted into a banded chaotic saddle
0 2_ T T (red), as shown in Fig. 2b. In Fig. 2c, we plot the variation
“0 0.1 02 03 04 05 06 of the maximum Lyapunov exponent of the attractaras a
a function ofa. Note that the value of the maximum Lyapunov

exponent jumps suddenly at SNB and IC, implying an abrupt
Fig. 1. Limit point diagram and maximum Lyapunov exponent: increase in the degree of chaoticity in the nonlinear &ifv
global view. (a) Limit point diagram b, as a function of the driver  system.

amplitudea; (b) maximum Lyapunov exponeninax as a function Figure 2a indicates that the attractés appears in a nar-
of a. The arrow indicates a period-3 periodic window=0.02, row region within the p-3 periodic window. Figure 3 shows
Q=-1,1=1/4, u=1/2. an enlargement of the region df,. The attractord, be-

gins atasng=0.32935, where a pair of stable and unsta-
ble periodic orbits of period-9 are created due to a saddle-
node bifurcation (SNB). The p-9 stable periodic orbit under-
goes a cascade of period-doubling bifurcations, leading to
P : [by(v), b:(t)] = [by(r + T), b.(t + T)], (5)  theformation of a banded chaotic attractor with nine bands.
This chaotic attractor is destroyed by a boundary crisis (BC)
whereT=27/Q is the driver period. Figure la displays a at agc=0.329437. After BC, the banded chaotic attractor
global view of the limit point diagram of nonlinear Aén is converted into a banded chaotic saddle (red), as seen in
waves. For a given, Fig. 1a plots the asymptotic values of Fig. 3a. The variation of the maximum Lyapunov exponent
the Poincag points ofb,, where the initial transient is omit-  of the attractord, as a function of: is plotted in Fig. 3b.
ted. Figure 1b shows the maximum Lyapunov exponent as Unstable periodic orbits in a chaotic system have specific
a function ofq, for the limit point diagram of Fig. 1a, cal- functions in the system dynamics. For example, Fig. 4 shows
culated by the Wolf algorithm (Wolf et al., 1985). Note that an example of the trajectory (solid line) and the Poiécar
there are two algorithms in the paper by Wolf et al. (1985). points (cross) of the period-9 unstable periodic orbit (M) cre-
The one based on the time series analysis has been improveded atasnyg=0.32935, which is responsible for mediating
by Kantz (1994), and another based on the integration of thehe onset of a boundary crisis (BC) in Fig. 3a as well as the
Jacobian matrix of the flow which is a much more preciseonset of an interior crisis (IC) in Fig. 2a. The unstable peri-
way to compute the Lyapunov spectrum. Since in the presenddic orbit is found by the Newton method (Curry, 1979).
paper we know the system equations, we adopt the second Following Green and Krauskopf (2002), the dynamical be-
algorithm. havior of Alfvén boundary and interior crises under inves-
An enlargement of a small region of the limit point dia- tigation can be clarified by a detailed bifurcation diagram
gram indicated by the arrow in Fig. 1la is given in Fig. 2a, shown in Fig. 5. An attractoA exists in the entire range of
which displays both attractor (black) and chaotic saddlecontrol parametes in Fig. 5a, which can be chaotic as well

fixed v=0.02, Q=-1, r=1/4, u=1/2). We define a
Poincae plane as

Nonlin. Processes Geophys., 14, 17-29, 2007 www.nonlin-processes-geophys.net/14/17/2007/



A. C.-L. Chian et al.: Chaos in driven Alén systems
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Fig. 2. Limit point diagram and maximum Lyapunov exponent:
period-3 periodic window(a) Limit point diagram /. as a function
of the driver amplitude, for attractorsA, andA», superimposed by

21

(@)
1.0F SNB BC
! !
0.0
b
Z
-1.0F

2.0 . | . | . I .
0.32934  0.32937 0.32940 0.32942  0.32945
a

(b)
0.05- SNB

l

\/\/W

-0.10 ‘ : :
0.32934  0.32937 0.32940 0.32942  0.32945
a

BC

Fig. 3. Limit point diagram and maximum Lyapunov exponent: at-
tractor Ao. (a) Limit point diagram,b; as a function of the driver
amplitudeq, for the attractord,, superimposed by the chaotic sad-
dle (red) converted from the chaotic attractor, after the boundary
crisis; (b) the variation of maximum Lyapunov exponeérax as a
function ofa for the attractordA,. SNB denotes saddle-node bifur-
cation, and BC denotes boundary crisis.

stable (black solid line) and unstable periodic orbits (green
dashed line) of period-3. An enlargement of the red rect-
angular region of Fig. 5a is given in Fig. 5b, which shows
that a saddle-node bifurcation (SNB) creates a pair of sta-
ble (blue solid line) and unstable periodic orbits (red dashed
line) of period-9. Figure 5b also shows the first (PD-1) and

the surrounding chaotic saddle (blu@)) the same as (a), showing second. (ED'Z) _period—doubling bi.furcations' and the unsta-
the conversion of the pre-crisis banded chaotic attractor (black) intd?le periodic orbits (black dashed line) resulting from the re-

the post-crisis banded chaotic saddle (réc))maximum Lyapunov
exponentimaxas a function ofi, for the attractor 1. SNB denotes
saddle-node bifurcation, and IC denotes interior crisis.

spective bifurcations. At the boundary crisis (BC) indicated
in Fig. 5b, the p-9 mediating unstable periodic orbit collides
with the chaotic attractor evolved from the attractor lead-

ing to the destruction ofi,. At the interior crisis (IC) indi-
cated in Fig. 5a, the same p-9 mediating unstable periodic

as periodic. A second attractor appears in a narrow rangerbit collides with the banded chaotic attractor evolved from

of control parameter indicated by, in Fig. 5a. As seen in

the attractorA,, leading to the formation of a strong chaotic

Fig. 5a, a saddle-node bifurcation (SNB) creates a pair ofattractor.

www.nonlin-processes-geophys.net/14/17/2007/
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25
| agy = 0.329350 (a)

1.5+
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bZ b,

05-
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_28 . 1 . 1 . 1 . 1 .
25 ‘ ‘ ‘ ) .32 0.3225 0.325 0.3275 0.33 0.3325
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b (b) ¥

Fig. 4. Mediating unstable periodic orbit of period-9 created by a
saddle-node bifurcation ag g = 0.32935. The solid line denotes b I S S,
the state-space trajectory, and the cross denotes the Ropuiat.

4 Saddle-node bifurcation

\ | . B R e
0.3285 0.329 0.3295 .33 0.3305

As mentioned earlier, a local bifurcation known as saddle- a

node bifurcation takes place agng=0.321383 in Fig. 2a,

where a pair of period-3 stable and unstable periodic OrbltsI:ig. 5. Detailed bifurcation diagram of the period-3 periodic win-

are created. As the Alén system undergoes a transition dow. (a) Bifurcation diagramp, as a function of the driver ampli-
from order to chaos via a saddle-node bifurcation, the SUrydeq, for attractorsAy (balck) andA» (blue), p-3 unstable peri-

rounding chaotic saddle is converted into a chaotic attractorggic orbit (green dashed line) and p-9 unstable periodic orbit (red
as shown in Fig. 2a. Figure 6a shows the surrounding chaotigashed line) created by saddle-node bifurcations (SKB)an en-
saddle (SCS) in the Poin@mplane forasng=0.321383,  largement of the red rectangular region indicated in panel (a). BC
right after the saddle-node bifurcation. Figure 6b shows thedenotes boundary crisis and IC denotes interior crisis; PD-1/PD-2
chaotic attractor (CA) fow=0.321382asng, just before  denotes first/second period-doubling bifurcation of attragtgrre-

the saddle-node bifurcation. The surrounding chaotic saddlgpectively.

(SCS) embedded in the chaotic attractor of Fig. 6b is shown

in Fig. 6¢. Note from Figs. 6a and c that there are gaps in the

surrounding chaotic saddles. The conversion from a chaotic

saddle to a chaotic attractor, to the leftagig, is due to the

creation of new unstable periodic orbits in the gap regions .
via the phenomenon of explosion (Robert et al., 2000; 6zab blue). Note that before the boundary crisis, two attractars
et al., 2000) ’ ' and A, co-exist (see Fig. 2a), each with its own basin of at-

traction (Borotto et al., 2004); the stable manifold of the me-
diating unstable periodic orbit in Fig. 7b forms the boundary

- between the two basins of attraction.
5 Boundary crisis

A global bifurcation known as boundary crisis (BC) takes As the consequence of the chaotic attractor-chaotic sad-
place atagc=0.329437 in Fig. 3a. Figure 7a shows the 9- dle collision, after the onset of boundary crisis the chaotic
band chaotic attractad, (CA, black) and the surrounding attractor A, and its basin of attraction are destroyed, and
chaotic saddle (SCS, blue) in the Poireeatane. The occur- the system converges to the attractqr, as seen in Fig. 2a.
rence of boundary crisis is due to the collision of the chaoticln Fig. 8a we plot the surrounding (SCS, blue) and banded
attractor with the p-9 mediating unstable periodic orbit (M) (BCS, red) chaotic saddles after the boundary crisis at
created via a saddle-node bifurcation aaing=0.321383. a=0.32943&apc. After the boundary crisis, the pre-crisis
Figure 7b shows an enlargement of the rectangular regio®-band chaotic attractor (CA) of Fig. 7a is converted into a
of Fig. 7a, indicating the collision of the chaotic attractgr ~ 9-band chaotic saddle (BCS) of Fig. 8a. Figure 8b shows an
with the mediating unstable periodic orbit, its stable manifold enlargement of the rectangular region of Fig. 8a, indicating
(SM, thin line), and the surrounding chaotic saddle (SCS,gaps in the banded chaotic saddle (BCS).
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Fig. 7. Chaotic attractor-chaotic saddle collision at boundary crisis
(BC) for agc=0.329437. (a) Pre-BC surrounding chaotic saddle
b L SCS (blue) and banded chaotic attractor CA (bla¢k)a zoom of
(a). The cross denotes a fixed point of the- 9 mediating unstable

g
n
T

0.5

periodic orbit (M) and the thin line denotes its stable manifold (SM).
-1.5F
sl saddle (SCS) fomc in the Poincae plane. The occur-

D5 15 05 0.5 1.5 | 25 rence of interior crisis is due to the collision of the weak
chaotic attractor (WCA) with the p-9 mediating unstable
periodic orbit (M) created via a saddle-node bifurcation at

=0.321383. Figures 9b—c are enlargements of the rect-
Fig. 6. Transition from a chaotic saddle to a chaotic at- “4SNB g g

tractor via a saddle-node bifurcation.(a) Post-SNB chaotic ang.ular region in Fig. 9a. L )
saddle atagng=0.321383; (b) pre-SNB chaotic attractor at Figure 9b shows the Poiné@apoints (cross) and the sta-

a=0.32138%asgng; (C) pre-SNB chaotic saddle embedded in the ble manifold (SM, light line) of the mediating unstable pe-
chaotic attractor at=0.32138Xagnp. riodic orbit, the weak chaotic attractor (WCA), and the sur-

rounding chaotic saddle (SCS, blue). It follows from Fig. 9b

that the stable manifold of the mediating unstable periodic
6 Interior crisis orbit forms the boundary between the banded and surround-

ing regions. Figure 9c shows the stable manifold (green) of
A global bifurcation known as interior crisis (IC) takes place the surrounding chaotic saddle and the weak chaotic attractor
at ¢c=0.330248 in Fig. 2a. Figure 9a shows the weak (WCA). Figures 9b and c reveal that at the onset of crisis the
chaotic attractor (WCA, black) and the surrounding chaoticchaotic attractor (WCA) collides head-on with the mediating

y
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Fig. 8. Transition from a chaotic attractor to a chaotic saddle via a 0430

boundary crisis (BC)a) Post-BC surrounding chaotic saddle (SCS, '

blue) and banded chaotic saddle (BCS, red)-a0.32943& agc;

(b) a zoom of (a), the thin line denotes the stable manifold (SM) of 0.36 -

the mediating unstable periodic orbit. . WCA
029

unstable periodic orbit and its associated stable manifold, as 022k

well as the surrounding chaotic saddle and its associated sta-

ble manifold. 0.15 . !

As the result of the chaotic attractor-chaotic saddle TR0.8 -0.75 0.7 -0.65
collision, after the onset of interior crisis the pre-crisis by

weak chaotic attractor (WCA) turns into a post-crisis
strong chaotic attractor (SCA), as shown by Fig. 10a for
a=0.33024%aic. Two chaotic saddles (surrounding and
banded) are embedded in the strong chaotic attractor. In a

Fig. 9. Chaotic attractor-chaotic saddle collision at the &lfvinte-
ior crisis fora;c=0.330248.(a) Pre-IC surrounding chaotic saddle
SCS) and weak chaotic attractor (WCA, blaci)) a zoom of (a)

dition, the strong chaotic attractor contains a set of couplingsyqying the collision of the weak chaotic attractor (WCA) with the
unstable periodic orbits created by explosions after the oNmediating unstable periodic orbit (cross), its stable manifold (SM)
set of crisis. Figure 10b shows the numerically found sur-and the surrounding chaotic saddle (SQ8)same as (b) showing
rounding chaotic saddle (SCS, blue) and banded chaotic sadre collision of the weak chaotic attractor (WCA) with the stable
dle (BCS, red). An enlargement of the rectangular region ofmanifold (green) of the surrounding chaotic saddle.

Fig. 10b is plotted in Fig. 10c, where we also plot the sta-

ble manifold (SM, thin line) of the p-9 mediating unstable
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periodic orbit, which divides the surrounding and banded re-

gions.

Evidently, Figs. 10b and ¢ show that there are gaps inside (Q)
the surrounding and banded chaotic saddles. These gaps are 23 1 0.350299 .1
densely filled by uncountably many coupling unstable peri- | o
odic orbits (C), created by explosions after the onset of inte- L5y
rior crisis (Robert et al., 2000; Szatet al., 2000), which
have components in both surrounding and banded regions b 05
and are responsible for coupling the two regions. We find z
numerically one example of the coupling unstable periodic 05r
orbit. Figure 11a shows a coupling unstable periodic orbit
of period-23 ata=0.331>¢c, which is created via an ex- -15F
plosion at this value ofi. Note that right after a crisis, the
coupling unstable periodic orbits created by explosion in the . S
gap regions have very long period with the period approach- 25 -15 05 0.5 1.5 25
ing infinity asa approacheg c (Szat et al., 2000). Since by
the control parameter in Fig. 11 is closedig, we were able (b)
to numerically find a coupling unstable periodic orbit with a 25
long period-23. I @=03302492 0,

An enlargement of the rectangular region of Fig. 11a is L5k SCS
given in Fig. 11b. Figure 11 shows that the fixed points of
the p-23 coupling unstable periodic orbit are located in the 05k
gap regions of both surrounding and banded chaotic saddles. b | BCS— (I

Z—O.S B h

7 Discussion and conclusion sl /
In this paper, we demonstrated that dynamical systems
such as space plasmas are composed by unstable structures, -2.§2 5 _l' 5 -()I 5 O' 5 ll 5 25
namely, unstable periodic orbits and chaotic saddles. Within ’ ' ' b
a periodic window, the chaotic saddle is responsible for the y
transient motion before the system converges to an attrac- (C)
tor. In the chaotic regime, chaotic saddles are embedded in 0.5

chaotic attractors. The transition from a chaotic saddle into a @=0330249 > 6,

chaotic attractor occurs in both local bifurcation (e.g., saddle- 0.43

node bifurcation) and global bifurcation (e.g., boundary cri- SCS
sis and interior crisis). For the saddle-node bifurcation and 036 -

interior crisis, this transition is accompanied by explosions bZ

creation of new gap-filling unstable periodic orbits. Explo-

sion only occurs for boundary crisis if the basin boundary 022 L
is fractal, but do not occur for boundary crisis if the basin ' =
boundary is smooth (Robert et al., 2000). Due to the limi- 015 \ .

inside the gap regions of chaotic saddles which lead to the 029 L-BCS _,(

tation of space, in this paper we only focused on the study 0.8 _0J75 _d_7 065

of explosion and creation of gap-filling unstable periodic or-

bits for an interior crisis. In a future work, we will perform Y

a detailed analysis of the system dynamics for a boundary

crisis. Fig. 10. Chaotic attractor and chaotic saddle after the &tfin-

terior crisis ata=0.33024%>qa\c. (a) Poincaé map of the strong

: . . . chaotic attractor (SCA)(b) the surrounding chaotic saddle (SCS,
integrations to perform numerical analysis of unstable struc blue) and the banded chaotic saddle (BCS, red) embedded in the

tures. In Figs. 7-11, chaotic attractors (CA, WCA, SCA) and chaotic attractor of (a)(c) enlargement of the rectangular region

_ChaOﬁC _Saddles (SCS, BSC) are computed by forward tim_%f (b). SM (thin line) denotes the stable manifold of the mediating
integrations, whereas the stable manifold (SM) of the medi-ngtapie periodic orbit of period-9.

ating unstable periodic orbit is computed by backward time
integrations based on the high-precision You-Kostelich-York

In this work, we applied both forward and backward time
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(cross) created via explosion @=0.3310>qc; (b) enlargement 3
of the rectangular region of (a). The surrounding chaotic saddle 107
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cated by red, and SM (thin line) denotes the stable manifold of the
mediating unstable periodic orbit of period-9. 5 ‘ ‘
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f

algorithm (You et al., 1991), where the computed curve lies

no further than a distancefrom the true image curve. We Fig. 12. Alfv én crisis-induced intermittencya) Time seriesh, as
sete=10"*. The You-Kostelich-York algorithm is useful for a function ofr for a=0.3310,(b) same time series as (a) plotted as
computing one-dimensional manifolds such as the present function of driver cycles(c) power spectrum of (a). SCS denotes
work. For two-dimensional stable and unstable manifo|dsysurrounding chaotic saddle and BCS denotes banded chaotic saddle.
the efficient algorithm of Krauskopf and Osinga (1999) can

be used.

The study of unstable structures in space plasmas canidates the fundamental dynamics and structures oféhlfv
deepen our understanding of chaos in space plasmas such mermittency driven by chaos. Alén intermittency can be
the Alfvén intermittent turbulence in the solar wind (Chian driven by a saddle-node bifurcation or by a global bifurca-
et al., 1998; Bruno and Carbone, 2005). Nonlinear, inter-tion such as interior crisis (Chian et al., 1998). For exam-
mittent Alfvén waves of solar and interplanetary origin can ple, Figs. 12a and b show the time-series of AHvinter-
cause intense geomagnetic storms. The present work elumittency induced by the interior crisis studied in Sect. 6,
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