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1Departamento de Física Téorica and BIFI, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
2Departamento de Ciencias de la Tierra, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain

Abstract. Using error diagrams, we quantify the forecast-
ing of characteristic-earthquake occurrence in a recently in-
troduced minimalist model. Initially we connect the earth-
quake alarm at a fixed time after the ocurrence of a charac-
teristic event. The evaluation of this strategy leads to a one-
dimensional numerical exploration of the loss function. This
first strategy is then refined by considering a classification of
the seismic cycles of the model according to the presence,
or not, of some factors related to the seismicity observed in
the cycle. These factors, statistically speaking, enlarge or
shorten the length of the cycles. The independent evaluation
of the impact of these factors in the forecast process leads
to two-dimensional numerical explorations. Finally, and as a
third gradual step in the process of refinement, we combine
these factors leading to a three-dimensional exploration. The
final improvement in the loss function is about 8.5%.

1 Introduction

The earthquake process in seismic faults is a very complex
natural phenomenon that present geophysics, in spite of its
considerable efforts, has not yet been able to put into a sound
and satisfactory status. However, in the crucial field of earth-
quake prediction, recent years have witnessed significant ad-
vances. For recent thorough reviews dealing with this issue,
see Keilis-Borok (2002); Keilis-Borok and Soloviev (2002),
and references therein, in particular chapter four by Kos-
sobokov and Shebalin. See also Lomnitz (1994). The in-
troduction of new concepts coming from modern statistical
physics seems to add some light and put some order into
the intrinsic complexity of the lithosphere and its dynamics.
Thus, for example, references to critical phenomena, dynam-
ical systems, hierarchical systems, fractals, self-organized
criticality and self-organized complexity are now found very
frequently in geophysical literature (Turcotte, 2000; Sor-
nette, 2000; Gabrielov et al., 1999, 2000). Hopefully, this

Correspondence to:A. F. Pacheco (amalio@unizar.es)

conceptual framework will prove its usefulness sooner better
than later.

We have recently presented a simple statistical model of
the cellular-automaton type which produces an earthquake
spectrum similar to the characteristic earthquake behaviour
of some seismic faults (V́azquez-Prada et al., 2002). The
largest earthquakes on a fault or fault segment (the events that
break its complete length) are usually termed characteristic
(Schwartz and Coppersmith, 1984; Wesnousky, 1994; Dah-
men et al., 1998). For this reason, in the minimalist model
the event of maximum size is called the characteristic one.
Our model is inspired by the concept of asperity, i.e. by
the presence of a particularly strong element in the system
which actually controls its relaxation. This model presents
some notable properties, some of which will be reviewed in
Sect. 2. In Sect. 3, an algebraic procedure for the exact cal-
culation of the probability distribution of the time of return
of the characteristic earthquake is presented. The purpose of
this paper is to quantify the forecasting of the characteristic
earthquake occurrence in this model, using seismicity func-
tions, which are observable, but not stress functions (Ben-
Zion et al., 2003), which are not. In Sect. 4, we construct an
error diagram (Molchan, 1997; Newman and Turcotte, 2002)
based on the time elapsed since the occurrence of the last
characteristic event. This permits a first assessment of the
degree of predictability. In Sect. 5, we propose a general
strategy of classification of the seismic cycles which, ade-
quately exploited in this model, allows a refinement of the
forecasts. Finally, in Sect. 6 we present the conclusions.

2 Some properties of the model

In the minimalist model (V́azquez-Prada et al., 2002), a one-
dimensional vertical array of lengthN is considered. The
ordered levels of the array are labelled by an integer index
i that runs upwards from 1 toN . This system performs two
basic functions: it is loaded by receiving stress particles in its
various levels and unloaded by emitting groups of particles
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through the first leveli = 1. These emissions that relax the
system are called earthquakes.

These two functions (loading and unloading) proceed us-
ing the following four rules:

i In each time unit, one particle arrives at the system.

ii All the positions in the array, fromi = 1 to i = N ,
have the same probability of receiving the new particle.
When a position receives a particle we say that it is oc-
cupied.

iii If a new particle comes to a level which is already occu-
pied, this particle has no effect on the system. Thus, a
given positioni can only be either non-occupied when
no particle has come to it, or occupied when one or more
particles have come to it.

iv The leveli = 1 is special. When a particle goes to this
first position a relaxation event occurs. Then, if all the
successive levels fromi = 1 up toi = k are occupied,
and the positionk + 1 is empty, the effect of the re-
laxation (or earthquake) is to unload all the levels from
i = 1 up toi = k. Hence, the size of this relaxation isk,
and the remaining levelsi > k maintain their occupancy
intact.

Therefore, the size of the earthquakes in this model range
from 1 up toN , being the event ofk = N the characteristic
one. Note that the three first rules of this model are exactly
those of the forest-fires model (Drossel and Schwabl, 1992).
Our model has no parameter and, at a given time, the state of
the system is specified by stating which of the(i > 1)N −

1 ordered levels are occupied. Each one of these possible
occupation states corresponds to a stable configuration of the
system, and therefore the total number of configurations is
2(N−1). These mentioned 2(N−1) stable configurations can be
considered as the states of a finite, irreducible and aperiodic
Markov chain with a unique stationary distribution (Durrett,
1999).

The evolution rules of the model produce an earthquake
size-frequency relation,pk, that is shown in Fig. 1a, where
the results forN = 10, N = 100, andN = 1000 are su-
perimposed. Note that this spectrum has a distribution of the
characteristic-earthquake type: it exhibits a power-law rela-
tionship for small events, an excess of maximal (characteris-
tic) events, and very few of the intermediate size. Besides,
the three superimposed curves of probability are coincident.

The result for the probability of return of the characteristic
earthquake,P(n), is shown in Fig. 1b forN = 20. Heren

represents the time elapsed since the last characteristic event.
During an initial time interval 1≤ n < N , P(n) is null, then
it grows to a maximum and then finally declines asymptot-
ically to 0. (In Sect. 4,P(n) for N = 20, will be usually
denoted as curvea.) In Sect. 3, we explain a general alge-
braic method for the exact computation ofP(n).

The configurations of the model are classified into groups
according to the number of levels,j , that are occupied

Fig. 1. (a)Probability of occurrence of earthquakes of sizek. Note
that the simulations corresponding toN equal to 10, 100, and 1000
are superimposed.(b) For N = 20, the probability of return of the
characteristic earthquake as a function of the time elapsed since the
last event,n. (c) Time evolution of the state of occupation in a sys-
tem of sizeN = 100. Note that after each characteristic event that
completely depletes the system, there follows the corresponding re-
covery up to a high level of occupancy, and then the system typically
presents a plateau previous to the next characteristic earthquake.
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(0 ≤ j ≤ N − 1). Using the Markov-chain theory or pro-
ducing simulations (V́azquez-Prada et al., 2002), one easily
observes that in this model the system resides often in the
configurations of maximum occupancy, i.e. inj = N − 2
andj = N − 1.

This last property can be observed in Fig. 1c, where we
have represented, forN = 100, the time evolution of the
level of occupancy,j , in an interval long enough to observe
the occurrence of several characteristic earthquakes. The typ-
ical pattern after a total depletion is a gradual recovery ofj

up to a new high level of occupancy. Once there, the sys-
tem typically presents a plateau before the next characteristic
earthquake. Especially during the ascending recoveries, the
level of occupancyj suffers small falls corresponding to the
occurrence of rather small earthquakes, that in this model are
abundant. Of course, one also observes that occasionallyj

falls in a significant way corresponding to the occurrence of
aN > k ≥ N/2 intermediate earthquake.

Due to the fact that this model is not critical, it is reason-
able to consider it as an example of self-organized complex-
ity (Gabrielov et al., 1999).

3 Algebraic approach toP(n)

The functionP(n), for a minimalist system of sizeN , is ob-
tained from the Markov matrix of the system,M , following
the following three steps: (i) The element of the last row and
first column ofM is changed by a 0. After this pruning, the
matrix will be calledM ′. (ii) The new matrixM ′ is multiplied
by itselfn− 1 times to obtainM ′(n−1) and the element of the
first row, last column of this matrix is identified. (iii)P(n) is
the product of this selected matrix element times 1/N .

The whys of this recipe are explained in Vázquez-Prada et
al. (2002), whereP(n) for N = 2 is explicitly obtained by
mere inspection. The result is

P(n) =
n − 1

2n
, N = 2. (1)

The explicit form ofP(n) for larger values ofN , can be
achieved by exploiting the Jordan decomposition ofM ′,

M ′
= Q J Q−1, (2)

and hence,

M ′n−1
= Q Jn−1 Q−1. (3)

The matrixJ is formed by “Jordan blocks” in the diag-
onal positions, i.e. by square matrices whose elements are
zero except for those on the principal diagonal, which are all
equal, and those on the first superdiagonal, which are equal
to unity. Thus, the task of obtaining an arbitrary power ofJ is
simple because, as said, each Jordan block is the sum of two
conmuting matrices: one is a constant times the unity ma-
trix, and the other is nilpotent. Therefore, in the computation
of any arbitrary power ofJ, each block is independent and
the corresponding Newton bynomial formula can be applied.

As an example, we now present the calculation of the case
N = 3. In this case,

3M ′
=


1 1 1 0
0 2 0 1
1 0 1 1
0 0 0 2

 , (4)

which is decomposed as


1 1 1 0
0 2 0 1
1 0 1 1
0 0 0 2

 =


−1 1 1 2

0 0 2−1
1 1 0 0
0 0 0 2




0 0 0 0
0 2 1 0
0 0 2 1
0 0 0 2




−1/2 1/4 1/2 −3/8
1/2 −1/4 1/2 3/8

0 1/2 0 1/4
0 0 0 1/2

 .(5)

Therefore,

Jn−1
=


0 0 0 0
0 2n−1 (n − 1)2n−2 1/2(n − 1)(n − 2)2n−3

0 0 2n−1 (n − 1)2n−2

0 0 0 2n−1

 (
1

3

)n−1

,(6)

and from Eq. (3)

M ′n−1
1,4 =

2n

32
(n − 2)(n + 5)

(
1

3

)n−1

. (7)

Thus, finally,

P(n) =

(
2

3

)n
(n − 2)(n + 5)

32
, N = 3. (8)

One could optimistically guess thatP(n), for an arbitrary
N , can be deduced from the systematics observed in the pre-
vious low-N cases. This is disproved by the following for-
mula, which is the result ofP(n) for N = 4.

P(n) =

(
1

4

)n
[
−

13

16
+

7n

4
−

n2

2
+

n3

32

+3n

[
−

3

16
+

7n

324
+

n2

108
+

n3

2599

]]
, N = 4. (9)

Although it is not apparent, this formula, as it should, van-
ishes forn = 3. As in Eqs. (1) and (8),P (n) in Eq. (9) is
adequately normalized:

∞∑
n=N

P(n) = 1. (10)

4 Error diagram for the forecasting of the characteris-
tic earthquake

In the following paragraphs, we will stick to a model of size
N = 20 to make the pertinent comparisons. This size is big
enough for our purposes here, and small enough to obtain
good statistics in the simulations.

Forn = 20 the mean value ofP(n) is

〈n〉 =

∞∑
i=20

P(i)i = 121.05, (11)
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the standard deviation is

σ =

[
∞∑

i=20

P(i)(i − 〈n〉)2

]1/2

= 55.21, (12)

and the skew of the distribution is

γ =
1

σ 3

∞∑
i=20

P (i) · (i − 〈n〉)3
= −0.10. (13)

Now we enter into the matter of forecasting. As in any
optimization strategy, we will try to achieve simultaneously
the most in a property called A and the least in a property
called B, these two purposes being contradictory in them-
selves. Here A is the (successful) forecast of the character-
istic earthquakes produced in the system. Our desire is to
forecast as many as possible, or ideally, all of them. B is the
total amount of time that the earthquake alarm is switched
on during the forecasting process. As is obvious, our desire
would be that this time were a minimum. The maximization
of A is equivalent to the minimization of an A′ that represents
the fraction of unsuccessful forecasts.

Thus, in practice, our goal in this paper is to obtain simul-
taneously a minimum value for the two following functions,
fe andfa . The first represents the fraction of unsuccessful
forecasts, or fraction of failures; the second represents the
fraction of alarm time. These two functions, in this first one-
dimensional strategy of forecasting, are dependent only on
the value ofn, that is, the time elapsed since the last main
event, and to which the alarm is connected. Using the func-
tion P(n) previously defined, they read as follows:

fe(n) =

n∑
n′=1

P(n′), (14)

fa(n) =

∑
∞

n′=n P(n′) (n′
− n)∑

∞

n′=0 P(n′) n′
. (15)

These two functions are plotted in Fig. 2a. By eliminat-
ing n betweenfe(n) and fa(n), we obtain Fig. 2b, which
is the standard form of representing the so-called error dia-
gram. The diagonal straight line would represent the result
of a random forecasting strategy. The curved line is the result
of this model.

Error diagrams were introduced in earthquake forecast-
ing by Molchan who contributed with rigorous mathemati-
cal analysis to the optimization of the earthquake prediction
strategies (Molchan, 1997). In his papers Molchan usedτ

andn to represent the alarm fraction and the error fraction
respectively; and putτ in the horizontal axis.

To fix ideas, it is convenient to define a so-called loss
function,L, which expresses the trade-off between costs and
benefits in the forecasting (Keilis-Borok, 2002). Among all
the possible loss functions, we will choose the simple linear
function

L = fa + fe. (16)

Fig. 2. For N = 20, (a) Fraction of failures to predict,fe, fraction
of alarm time,fa , and loss functionL = fa +fe as a function ofn.
(b) Error diagram for characteristic event forecasts based onn. The
diagonal line would correspond to a random strategy.

L(n) is also drawn if Fig. 2a. The positionna = 66 provides
the minimum value ofL(n). L(na) = 0.578. Note thatna

does not coincide either with then that maximizesP(n), or
with 〈n〉.

5 Improving the forecasts

In Sect. 4 we adopted the strategy of connecting the alarm at
a fixed time,n, after the occurrence of a characteristic event.
The evaluation of this strategy leads to the conclusion that
for n = na = 66, the loss function has a minimum value
L(na) = 0.578. The question now is: Can we think up other
strategies that render better results? To answer this question,
we now return to our previous comments on Fig. 1.
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If we define a medium-size earthquake as an event with a
size betweenN/2 andN − 1, i.e.N > k ≥ N/2, by observ-
ing the graphs in Fig. 1, one is led to the conclusion that in
this model the occurrence of a medium-size earthquake is not
frequent but when it actually takes place, the time of return
of the characteristic quake in that cycle is increased.

This qualitative perception can be substantiated by numer-
ically obtaining the probability of having cycles where no
medium-size earthquake occurs, i.e.k < N/2. This infor-
mation is completed by the distribution of cycles where the
conditionN > k ≥ N/2 does occur. These two distribu-
tions are shown in Fig. 3a as linesb andc respectively. Here,
line a represents the total distribution of the times of return
of the characteristic earthquake in this model (the same as
plotted in Fig. 1b). Note that, as it should, the distribution
a covers both distributionsb andc. The mean time〈n〉 for
the three distributions is〈n〉a = 121.05, 〈n〉b = 107.57 and
〈n〉c = 166.84. The fraction of cycles underb is 0.77 and the
fraction underc is 0.23. A splitting of this type, in which the
a distribution separates intob andc, will be denoted hence-
forth asa = b ⊕ c.

To check ifa = b⊕c is potentially useful for our purposes,
we will now analyze independently these two sets of cycles,
b andc, with the method used in Sect. 4 for curvea. The
result is the following: the best workingn for dealing with
the cycles under distributionb is nb = 60. And with respect
to the cycles belonging to the distribution underc, the bestn
is nc = 124.

Therefore, we will now study again the whole set of cy-
cles, i.e. those undera, by means of a retarding strategy,
which is based on the splittinga = b ⊕ c. We will adopt the
following steps: in any cycle, we will wait until ann, named
nret1 (which is near tonb), before taking any decision. If
no medium earthquake has occurred so far, then the alarm
is connected atnret1. If, on the contrary, a medium quake
has occurred beforenret1, then we move the alarm tonret2
(which is close tonc). This notationnret1 andnret2 comes
from the retarding strategy that we are exploring now. This
two-dimensional strategy is implemented by varyingnret1
andnret2 looking for the best value ofL. This is illustrated
in Fig. 4a. The best option isnret1 = 61 andnret2 = 101,
with L(nret1, nret2) = 0.549.

Now we look for a similar property that can classify the
cycles from another point of view. This new property con-
sists in identifying the cycles where the sum of the sizes of
all the earthquakes before the characteristic one is less than
N/2. This condition will be represented bySUM < N/2.
The reason for this choice is that ifSUM < N/2, the system,
statistically speaking, tends to reach more rapidly the config-
urations of maximum occupancy,j = N −2 andj = N −1,
and the time of return of the characteristic quake in that cycle
tends to be smaller (see Fig. 1c). In Fig. 3b, linea represents,
as in Fig. 3a, the distribution of return intervals of the char-
acteristic earthquake for all the cycles of the model. And
lines f andg represent, respectively, the separation of line
a according to the fulfilment, or not, of theSUM < N/2
condition,a = f ⊕ g. The mean value of thef andg dis-

Fig. 3. (a)ForN = 20. Linea is the distribution of return times of
the characteristic earthquake as a function of the time elapsed since
the last event,n. Line b corresponds to the distribution of cycles
where no medium-size earthquake occurs. Linec corresponds to
cycles with medium-size earthquakes. Curvesb and c constitute
the splitting of curvea according to whether this retarding effect is
fulfilled or not. (b) Linesf andg, represent the separation of thea

distribution according to whether the advancing effect is fulfilled or
not.

tributions is〈n〉f = 88.78 and〈n〉g = 151.69 respectively.
The fraction of events under thef andg lines is 36.96 and
63.04 respectively.

This second splitting of the whole set of cycles in the
model,a = f ⊕ g, can be used as an advancing strategy
in parallel to what we did with the retarding strategy. Thus
the independent analysis of curvef leads tonf = 60, and
the similar analysis of curveg leads tong = 90.

We will now study again the whole set of cycles (under
a) by means of the advancing strategy, which is based on
the splittinga = f ⊕ g. Therefore, we proceed as follows:
In any cycle, we wait untilnadv1 (which is close tonf ) be-
fore taking any decision. If the conditionSUM < N/2 has
been fulfilled, then the alarm is connected atn = nadv1. If,
on the contrary, this condition has not been fulfilled, then
we move the alarm tonadv2 (which is close tong). This
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Fig. 4. (a)For N = 20. Results of the two-dimensional strategy based on the splitting of curvea according to whether the retarding effect
is fulfilled or not. Values ofL varyingnret1 andnret2. Minimum value ofL = 0.549 fornret1 = 61 andnret2 = 101. (b) Results of the
two-dimensional strategy based on the splitting of curvea according to whether the advancing effect is fulfilled or not. Values ofL varying
nadv1 andnadv2. Minimum value ofL = 0.537 fornadv1 = 61 andnadv2 = 90.

two-dimensional strategy is implemented by varyingnadv1
and nadv2 looking for the lowestL. This is illustrated in
Fig. 4b. The search for the best option leads tonadv1 = 61
andnadv2 = 90, with L(nadv1, nadv2) = 0.537. This value
of L is slightly better than that obtained using the retarding
strategy.

Inspired by these results, we will now analize the possibil-
ities of a mixed strategy which contains conceptual elements
of the two partial strategies discussed so far. Here we will
explore a 3-dimensional grid of points(n1, n2, n3) looking
for the minimization ofL. The first coordinate,n1,will be
explored in the neighbourhood ofnadv1, the second coordi-
naten2 in the neighbourhood ofnadv2, and finallyn3 near
nret2. The two succesive key decisions to be taken are:

i In any cycle, we wait untiln = n1. If SUM < N/2 IS
fulfilled, we connect the alarm atn1 and leave it there.
If at n = n1, SUM < N/2 is NOT fulfilled, we move
the alarm ton2. And,

ii (We are now atn2). If no medium-size event has oc-
curred betweenn1 andn2, we leave the alarm connected
at n2. If, on the contrary, one or more medium-size
events have occurred in this interval, then we move the
alarm ton3.

The search for the triplet(n1, n2, n3) that makesL min-
imum is illustrated in Fig. 5. The result corresponds to
(n1 = 61, n2 = 84, n3 = 104), and there,L = 0.528. This
is the best result obtained in this work.

Thus, the improvement obtained inL, when passing from
L(na) to L(n1, n2, n3) is around' 8.5%.

Fig. 5. For N = 20. Illustration of the three-dimensional strategy.
For n1 = 61, L-constant level-curves are plotted. The minimum
value ofL is 0.528 forn1 = 61,n2 = 84 andn3 = 104.

6 Conclusions

In this paper, we have analyzed the behaviour of the min-
imalist model in relation to a quantitative assesment of the
forecasting of its successive characteristic earthquakes. We
have chosen a simple loss function,L = fa+fe. Our first try,
based on a one-dimensional search inn, produces a minimum
result ofL around 0.578. This was illustrated in Fig. 2a. With
the aim of improving the forecasts, we then explored two
modes of a common strategy that divides the probability dis-
tribution of the time of return of the characteristic earthquake
into two distinct distributions. The first mode consists in us-
ing the occurrence of intermediate-magnitude earthquakes as
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a sign that the characteristic earthquake would likely return
at a time later than usual in that cycle. This is based on the
fact that medium-size events significantly deplete the load in
the system and its recovery induces a retardation. This effect
takes place in any system of the sand-pile type. The exploita-
tion of this idea leads to a two-dimensional search that finally
renders anL value around 0.549 (Fig. 4a). The second idea
consists in using the fact that a significant absence of small
earthquakes during a sizeable lapse of time in the cycle is a
sign of imminence of the next characteristic event, or at least
of a shortening of its period of return. This strategy is similar
to the old wisdom in seismology that links a steady absence
of earthquakes in a fault with the increase in the risk of oc-
currence of a big event. The exploration of this idea proceeds
similarly to what we did with the retarding strategy: this also
leads to a two-dimensional search. It renders a minimumL

around 0.537. (Fig. 4b).
Finally, a mixed strategy that tries to incorporate the in-

formation acquired is implemented by means of a three-
dimensional search, and provides a value ofL = 0.528. The
identification of the three optimum parameters is illustrated
in Fig. 5.

It is important to remark that the information we have used
in our forecasts is based only in the observed systematics
of earthquake occurrence in the model, i.e. only seismicity
functions have been used. Thus, for example, in Sect. 5 we
have not used the state of occupancy of the systemj , which
would have given much more accurate predictions. In real
life, the use of this information would be equivalent to know-
ing, in real time, the value of the stress level and the failure
threshold at any point in a fault.
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