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Abstract. We report here further results from the three-
dimensional particle-in-cell simulations of the electron-beam
driven electron holes. We focus here on (i) the transformation
of oscillatory waves driven by the electron-beam instability
into electron holes, (ii) the continued evolution and propaga-
tion of electron holes after their formation, including merg-
ing of electron holes, and (iii) the effects of the evolution
on the plasma density and ion velocity distribution function.
We find that initially electron-beam modes with perpendicu-
lar wave numbersk⊥ = 0 and as well ask⊥ 6= 0 are driven
resonantly below the electron plasma frequency of the tar-
get plasma. The modes interact nonlinearly and modulate
each other both in space and time, producing wave structures
with finite perpendicular scale lengths. Nonlinear evolution
of such wave structures generates the electron holes in the
simulations. Initially, a large number of electron holes form
in the plasma. Their merging yields continuously a decreas-
ing number of electron holes. The propagation velocity of the
electron holes evolves dynamically and is affected by their
merging. At late times only a few electron holes are left in the
simulation and they decay by emitting low-frequency elec-
trostatic whistler waves just above the lower hybrid (LH) fre-
quencyω`h. These waves, which are long structures parallel
to the ambient magnetic fieldB0 and quite short transverse to
B0, are associated with similar structures in the plasma den-
sity, producing density filaments. It turns out that electron-
beam driven plasmas, in general, develop such filaments at
some stage of the evolution of the beam-driven waves. In
view of the excitation of the LH waves nearω`h, which could
resonate with the ions, an analysis shows that it is possible to
heat transversely the ions in a time scale of a few seconds in
the auroral return current plasma, in which electron holes and
transversely heated ions have been simultaneously observed.

1 Introduction

Electron holes are fast propagating positive potential pulses.
In a magnetized plasma, they propagate along the ambi-
ent magnetic fieldB0. Although such structures have been
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known in plasma physics since the early simulations of non-
linear stage of the electron-electron (e-e) two-stream insta-
bility (e.g. see Berk and Roberts, 1967), they were recently
detected by several satellites ranging from FAST in the auro-
ral plasma (e.g. Ergun et al., 1998a, b), Polar in the distant
magnetosphere (Mozer et al., 1997), Geotail in the magneto-
tail (Matsumotto et al., 1994) and Wind in the bowshock and
the solar wind plasmas. Following their detection in space,
there is a spurt of theoretical and simulation studies on the
formation of multi-dimensional structures and the stability
of electron holes (Omura et al., 1996, 1999, Goldman et al.,
1999; Miyake et al., 1998; Oppenheim et al., 1999; Singh,
2000; Singh et al., 2001a, b; Muschietti et al., 1999, 2000).
Before the detection and following the spurt of these theo-
retical studies, there have been experimental (Saieki et al.,
1979), as well as theoretical studies (Schamell, 1982). The
experimental results of Saieki et al. were simulated by Lynov
et al. (1979) using a 1-D PIC code. Turikov (1984) studied
the stability of electron holes. Formation and propagation
of electron holes were studied by simulations of double lay-
ers (Hubbard and Joyce, 1979; Singh 1980, 1982). Singh and
Schunk (1984) showed that electron holes are a common fea-
ture of the high-potential side of a double layer. This feature
was further demonstrated by 1-D Vlasov simulations of dou-
ble layers, and the properties of the electron holes were com-
pared with those detected from FAST (Ergun et al., 1998a, b;
Singh, 2000).

Recently, we have performed 3-D PIC simulations of
electron-beam driven instabilities and found that for rela-
tively slow beams the nonlinear stage of the instability-driven
waves consists of electron holes, which could be long lasting,
but ultimately decay by emitting low-frequency electrostatic
whistler waves just above the lower hybrid frequency (Singh
et al., 2000, 2001a, b). The purpose of this paper is to further
study the following issues: (i) emergence of electron holes
from oscillating waves generated by electron-beam driven
instability, (ii) evolution and propagation of electron holes
including merging when electron holes come in close prox-
imity, and (iii) effects of the electron holes on the plasma
including generation of low-frequency LH waves, associated
density structure in the plasma, and transverse acceleration
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Fig. 1. Temporal evolution of the waves driven by the electron beam
with nb = 0.1no andVb = 4Vte. (a) Early time evolution of the
parallel fieldEz(32, 32, 9) leading to the formation of a bipolar soli-
tary structure at̄t ∼ 140. Prior to this time the waves are oscillatory
and are undergoing temporal modulation.(b) Temporal evolution
of the potentialφ(32, 32, 9) over the entire simulation time show-
ing oscillatory waves being transformed into solitary pulses, which
periodically appear at the point (32, 32, 9). The pulse marked with
the∗ is the bipolar pulse in (a) neart̄ ∼ 140. (c) Frequency spec-
trum of the data plotted in (b) showing a broad band spectrum.

of ions.
The rest of the paper is organized as follows. The simu-

lation model is briefly described in Sect. 2. In Sect. 3, we
describe the numerical results; the discussion here includes
the formation of electron holes of finite transverse sizes, their
propagation and merging. We also discuss here wave and
plasma structure in the late stage of the evolution and trans-
verse ion heating. The conclusion is given in Sect. 4.

2 Simulation model

The simulation model has been described previously by
Singh et al. (2000, 2001a–c). Here we describe briefly the
method, giving sufficient information to follow the rest of
the paper. Simulations were preformed using a fully 3-D
electrostatic parallel PIC code (Loo et al., 1999). Periodic
boundary conditions on both particles and fields were used.
We performed several simulations by varying (1) the param-
eters of the electron beam, (2) the size of the 3-D simula-
tion volume given byLx × Ly × Lz, and (3) the ratio of the

Fig. 2. Temporal evolution of the wave structure. Equipotential
contours are plotted at(a) t̄ = 30 and(b) t̄ = 50 in thex − z plane
at ȳ = 32. The contours withφ = 0 are labeled; other contours are
1φ = 0.2 apart. The wave structures consist of waves withk⊥ = 0
as well ask 6= 0, wherek⊥ is the perpendicular wave number. Note
the progressive breaking of the waves in the transverse directionx.
A similar behavior occurs in they − z planes.

electron plasma (ωpe) to cyclotron (�e) frequency. We note
that thez direction is parallel to the ambient magnetic field
B0, and thatx andy are transverse toB0. In the simula-
tions performed so far, the beam velocity alongz (‖ B0) was
assumed to beVb = 4Vte or 8Vte, whereVte is the initial
electron thermal velocity. The initial electron and ion tem-
peratures were assumed to be equal, i.e.Te = Ti = To and
Vte = (kBTo/me)

1/2, wherekB is the Boltzmann constant
andme is the electron mass. Beam temperature was varied
in different simulations, but as long asVb � Vte > Vtb,
the beam thermal velocity, the actual value ofVtb did not
matter much. In the runs we used 36 pairs of electrons and
ions in each cell of sizeλ3

do. In the simulations described
here, the electron beam densitynb was 10%,Vb/Vte = 4 and
Vtb/Vte = 0.1. For the larger velocity quoted above, long-
lasting electron-holes did not form, even though well-formed
vortexes occurred in the phase space at very early times
(Singh et al., 2001c). The simulations were performed for ion
to electron mass ratioM/me = 1836,Lx = Ly = 64λdo and
Lz = 256λdo. In our discussions, we have used the follow-
ing normalizations and definitions: distancex̄ = x/λdo, time
t̄ = tωpo, velocity V̄ = V/Vte, potentialφ̄ = eφ/kBTo,
electric fieldĒ = E/kBTo/eλdo, andλdo = Vte/ωpo, where
ωpo is the electron plasma frequency with the total plasma
densityno.

3 Numerical results

We have performed several simulations in which the electron
magnetization (�e/ωpe) was varied. We have reported pre-
viously the results from these simulations (Singh et al., 2000,
2001a, b). Here we study some specific issues in greater de-
tail than in previously work; specifically, these issues deal
with the formation and motion of electron holes and their
mutual interaction. We also discuss the formation of density
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Fig. 3. Fourier spectrum of the wave structures like that shown in
Figs. 2a and b at several times:(a) t̄ = 20, (b) t̄ = 30, (c) t̄ = 40,
and(d) t̄ = 50. The vertical and horizontal axes are labeled with
mode numbersn andm, respectively. Contours are 100 units apart
and show relative power. Note the dominance of wave power in
modes with 6≤ n ≤ 16 andm < 2.

striations in association with the low-frequency (LF) electro-
static whistler-waves emitted by the electron holes as they
decay. Furthermore, here we examine the transverse heat-
ing of ions; despite substantial perpendicular electric fields
in the electron hole structures and also in the LF waves, we
find that ion velocity distribution is affected only by the trap-
ping in the waves without a significant transverse heating.
Most of the discussion in this paper is based on a simulation
with �e/ωpe = 2. The effects of the variation in�e/ωpe on
the formation and stability of electron holes is discussed in
Singh et al. (2001b).

3.1 Early time behavior consisting of linear waves

It is now commonly believed that the electron holes could
emerge from high-frequency waves driven by the electron-
electron (e-e) two-stream instability (e.g. see Omura et al.,
1999; Goldman et al., 1999; Singh et al., 2000; Oppenheim
et al., 1999). However, the process involved in the evolu-

tion of the high-frequency (HF) waves into electron holes of
finite transverse dimensions at a very early stage, as seen in
our 3-D simulations, has not been fully explored. We explore
here this issue as revealed by our simulations in combination
with the linear analysis of the e-e instability. We examine the
processes which occur successively after the electron beam
is switched in a simulation with�e/ωpe = 2. Figure 1a
shows the temporal evolution of the parallel electric fieldEz

over the early time interval showing (i) growth of the oscilla-
tions inEz(t), and (ii) modulation in the oscillation followed
by the appearance of a bipolar pulse at aboutt̄ ∼140. This
bipolar pulse is a fast moving, positive pulse and it is a vor-
tex structure in thez − Vz phase space. Figure 1b gives the
time history of this pulse, as discussed later in more detail.
Figure 1c shows the frequency spectrum of the time-series
data in Fig. 1b. Note the broad spectrum associated with the
high frequency waves generated by the electron beam and its
evolution at later times.

The spatial structure of the evolving waves is shown in
Figs. 2a and b, in which the equipotential contours of the
wave potential are plotted in thex − z (ȳ = 32) plane at
t̄ = 30 and 50. The structures in they − z plane are sim-
ilar and are not shown here. These figures show that the
wave structure consists of waves with perpendicular wave
numberk⊥, as well ask⊥ 6= 0; the latter feature is revealed
by the perpendicular modulations of the equipotential struc-
tures. We find that perpendicular modulations appear as the
waves grow (Fig. 1a). In order to understand these features
of the growing waves, we first examine the structures in the
kz − kx plane at times̄t = 20− 50, as plotted in Figs. 3a–d.
The plots are the FFTs of the potential structures in thex − z

planes. In Figs. 3a–d, the horizontal and vertical axes are la-
beled with mode numbersn andm, respectively. The mode
numbers are defined bykz = n2π/Lz andkx = m2π/Lx .
We see from Figs. 3a–d that from a very early timet̄ = 20,
the dominantly driven modes havem = 0 andm = 1 and
8 < n < 16. Let us see if such modes are linearly driven
by the beam withnb = 0.1no andVb = 4Vte used in the
simulation.

The electrostatic linear dispersion relation is given by

k2
⊥
ε⊥ + k2

‖
ε‖ = 0, (1)

where under the cold-plasma approximation

ε⊥ = 1 −
ω2

pt

ω2 − �2
e

−
ω2

pb

(ω − k‖Vb)2 − �2
e

, (2)

ε‖ = 1 −
ω2

pt

ω2
−

ω2
pb

(ω − k‖Vb)2
, (3)

k⊥(k‖) is the component of the wave vectork perpendic-
ular (parallel) toBo, ωpt (ωpb) is the target (beam) elec-
tron plasma frequency corresponding to the plasma density
nt (nb), so thatnt + nb = no. We look for waves over
ω`h < ω < ωpt , whereω`h is the lower hybrid frequency.
Forω`h � ω < ωpt � �e, Eq. (1) can be written as

αt/ω̄
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(1 + ω2
po/�2

e), (4)
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Fig. 4. Phase space structure in thez−Vz plane at̄t = 100 showing
vortex formation. Such vortexes are the signature of electron holes.
The potential structure corresponding to this phase space is plotted
in Fig. 5a.

whereω̄ = ω/ωpo, αt = nt/no andαb = nb/no.
Performing a marginal stability analysis for the beam pa-

rametersαb = 0.1, α1 = 0.9 andVb = 4Vte, we find that
Eq. (4) shows roots ofω for m < 3 and over a broad range
of values ofn. Table 1 lists the real (ωr ) and imaginary (γ )
parts ofω for several modes determined bym, n; we list
here the values ofωr andγ asωr/γ . The symbolS repre-
sents stable modes. This table shows that significant growth
rates are possible for 6≤ n < 14 andm ≤ 3, but the growth
is the largest for 10̃<n<̃12 andm = 0, and the growth rate
for m = 1 is quite close to the growth rates form = 0.
These features of the linear instability are well reflected in
Figs. 3a–d, both them = 0 andm = 1 modes seem to be
equally strong for 6≤ n ≤ 14. As these modes grow they
interact nonlinearly with each other and thereby the spatial
and temporal modulation of the waves occur. As the waves
grow, the depth of modulation grows and the waves continue
to break into segments, revealed by the wave structures in
Figs. 2a–b.

As the processes of breaking the longλ⊥ waves and their
growth continue, the electron trapping occurs, forming vor-
texes in the phase-space. Figure 4 shows the vortex forma-
tion at t̄ = 100. Corresponding to the vortexes in Fig. 4, the
potential structure at̄t = 100 is shown in Fig. 5a.

3.2 Space-time behavior of electron holes

Figures 5a–e show the evolution of the potential structure in
thex − z plane atȳ = 32 and the corresponding evolution in
they − z plane(x̄ = 32) is shown in Figs. 5f–j. Together, in
thesex − z andy − z planes, we show nearly all the electron
hole structures in the volume of the simulated plasma, some
of which are numbered. Some of the electron holes are com-
mon to thex−z andy−z planes, while others are seen only in
one of the two planes shown. As shown in Fig. 1a, the oscil-
latory behavior of the waves continues until aboutt ∼= 140,
after which solitary behavior dominates. This later behavior
is seen clearly from Fig. 1b in which the time history of the
potential at the point P1(32, 32, 9) is plotted, showing quite
regular appearances of solitary potential pulses. The bipo-
lar electric field pulse att ∼= 140 in Fig. 1a corresponds to

the passage of the positive potential pulse through the point
P1(32, 32, 9) marked with a star in Fig. 1b. This pulse and
some others appear periodically at point P1, because our sim-
ulation system is periodic; the pulse exiting atz = Lz reap-
pears atz = 0. In other words, the pulse train appearing
in Fig. 1b represents an infinite chain of pulses. The fre-
quency spectrum of this periodic chain of pulses, along with
the initial oscillations for̄t < 140, is shown in Fig. 1c. The
spectrum is quite broad band.

We now discuss the structural change in the wave pattern
as the transition occurs from oscillatory to solitary behavior.
The panels (a) and (f) in Fig. 5 show that att̄ = 100, the
initially dominant modes have interacted nonlinearly, greatly
modifying the potential distribution seen earlier att̄ = 30
and 50 in Figs. 2a and b. The waves have broken into
shorter structures in the transverse direction and have devel-
oped strongly peaked features. The wave structure att̄ = 100
involves nearly equally strong negative and positive values
of the peaks inφ(x, y, z) (also see Figs. 1a and b). Even
though the waves are oscillatory, there are structured vor-
texes in thez − Vz phase space, as we saw in Fig. 4. The
vortexes correspond to the positive peaks in the potential dis-
tribution. Panels (b) and (g) for̄t = 200 show that the num-
ber of positive peaks in the potential distribution have dimin-
ished and at the same time the value of the negative potential
is also diminished (also see Fig. 1b). Thus, the initially os-
cillatory potential distribution in the plasma has transformed
into highly structured potential pulses, which are the electron
holes. Some of the pulses are numbered for further reference.
We note that nearly half of the structure of # 1 is located near
z = 0, while the other half is nearz = 256. This is the
effect of periodic boundary condition; likewise, # 4 and # 5
also appear divided. Panels (b) and (g) show that # 1 and # 2
are common to both̄x = 32 andȳ = 32 planes. There are
other electron holes in thēx = 32 plane numbered as # 6–9.
The electron holes shown in panels (b) and (g) further evolve
and the main feature of the evolution consists of the merging
of the weaker electron holes with stronger ones, until about
t̄ ∼= 500. Panels (c)–(e) and (h)–(j) show that by the time
t̄ = 500 there are fewer structures as numbered.

We wish to highlight an interesting situation involving the
merging of several electron holes. In Fig. 5g, we notice the
presence of electron holes # 1, 2, 6, 7, 8 and 9 att̄ = 200.
We can see most of these structures att̄ = 300 and 400,
and also at 500 in panels (h), (i,) and (j), respectively; # 7 has
merged with # 6 as noted by 6/7. Of course the surviving ones
undergo some structural changes as they circulate around the
simulation plasma with a velocity nearVH ∼ 4. They also
differ in their velocity somewhat. By the timēt = 500, the
electron holes # 2, 8 in they − z plane and # 3, which earlier
appeared only in thex − z plane and now appears iny − z

plane (x = 32), are in close proximity to each other and they
share some of their equipotential contours.

Like Figs. 5a–j, Figs. 6a–j show the evolutions in thex −z

andy − z planes fromt̄ = 600 to 1000. The merging at
t̄ ∼ 500 discussed above, continues as seen from Figs. 6a
and f. Panel (a) shows that # 2 and 3 (see Fig. 5e) have
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Table 1. Real (ωr ) and imaginary (γ ) parts ofω for the modes (m, n) are listed asωr/γ

m/n 6 7 8 9 10 11 12 13 14

0 0.50/0.18 0.57/0.20 0.63/0.23 0.69/0.24 0.76/0.26 0.81/0.26 0.87/0.26 0.92/0.26 0.97/0.24
1 0.48/0.17 0.55/0.19 0.62/0.22 0.68/0.23 0.74/0.24 0.80/0.24 0.85/0.24 0.91/0.23 0.96/0.21
2 0.44/0.15 0.51/0.16 0.58/0.17 0.64/0.18 0.70/0.19 0.76/0.18 0.82/0.17 0.88/0.15 0.94/0.11
3 0.41/0.09 0.48/0.09 0.54/0.098 0.61/0.09 0.67/0.075 0.72/0.02 S S S
4 S S S S S S S S S

Fig. 5. Temporal evolution of the electron holes:(a)–(e)in thex − z plane fromt̄ = 100− 500 and(f)–(j) in they − z plane for the same
times. Equipotential contours are plotted; the zero potential contour is labeled and the contour intervals are1φ̄ = 0.2. Some of the potential
pulses, which are electron holes, are numbered.

merged into one structure, which has a larger amplitude
(∼ 1.4kBTo/e) compared to the amplitudes 0.6 for # 2 and
1.2kBTo/e for # 3 before merging. After merging, we refer
to the merged structure as # 2 at later times. This is an ex-
ample of merging of electron holes moving along the same
magnetic field line. The structure # 1 appears in Fig. 6a, but

it is already developing undulations and perturbations in the
equipotentials. The plots in they − z plane in panels (f) to
(j) provide examples of interactions when transversely dis-
placed electron holes come in close proximity to each other.
Figure 6f shows that in they − z plane the merged structure
# 2 and # 3 has pulled slightly ahead of # 8 (see Fig. 5j). The
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Fig. 6. Same as Fig. 5, but at later times fromt̄ = 600− 1000. Note the decay of electron holes by emitting “fingers” of positive potential
perturbations into the plasma.

merged structure # 2 appears weaker in this plane compared
to its amplitude in Fig. 5j. In this figure, we also see that # 1
and 6 are quite close together. The panels (g) to (j) for later
times show that # 1 and 6 never merge together to become
one structure; instead, we see that fort̄ = 800 and 1000
structure # 1 pulls ahead of # 6. In contrast to this behavior
of # 1 and 6, we find that # 8 and 2 merge and become one
structure at̄t = 700, and they remain so until the resulting
structure decays. As a result of the merging, the amplitude
of # 2 increases from 0.6 att̄ = 600 to 1.2 at̄t = 800. This
example shows that electron holes, which are displaced in di-
rections transverse toBo, could merge when they come close
to each other while moving parallel to the magnetic field. The
evolution of the merging of the electron holes # 2 and # 8 in
thex −y plane is shown in Fig. 7. Figures 7a and b show the
electron holes # 8 and 2̄t = 600. # 8 is centered atz̄ = 31
and ȳ = 0 or 64, and it occupies the region 32< x̄ < 64
(Fig. 7a), while # 2 is centered atz̄ = 52 andȳ = 32 and
occupies 0≤ x̄ ≤ 32 (Fig. 7b). The merged structures ap-
pear centered at̄z = 229 and 155 at̄t = 700 and 800, as

shown in Figs. 7c and d, respectively. The merged structures
appear quite enlarged in thex − y plane and are turbulent
with undulations in the equipotential contours.

3.3 Propagation velocity

We find from the simulations that the velocity of an electron
hole is not constant; it changes dynamically with the evolving
plasma and other electron holes in its vicinity. The repeated
appearances of the solitary pulses # 1 and # 2 in Fig. 1b yield
their velocities as a function of time. Furthermore, the dis-
tances traveled over each interval of time of duration 100ω−1

po

determined from Figs. 5a–j and 6a–j could also yield the ve-
locities. Table 2 shows the velocities determined by the latter
method; these velocities agree well with the velocities deter-
mined by the repeated appearances. Initially, when the elec-
tron holes emerge from the oscillatory waves, the velocity of
electron hole # 1 is≤ 4Vte and it remains so untilt ∼ 200.
We recall that initial electron beam velocity is 4Vte.

Table 2 shows the changes in the velocities of electron
hole # 1 (VH1) and # 2 (VH2). A noteworthy feature is that
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Fig. 7. Equipotential contours of electron holes # 2 and # 8 in thex − y plane:(a)–(b) before merging at̄t = 600 and(c)–(d) after merging
at t̄ = 700 and 800, respectively.

Table 2. Velocity of electron holes # 1 and # 2 (VH2) over intervals of time, each of 100ω−1
po

t̄/100 1–2 2–3 3–4 4–5 5–6 6–7 7–8 8–9 9–10
VH1/Vte 3·9 4·1 4·2 4·3 4·4 4·4 4·6 4·6 4·6
VH2/Vte 4·2 4·0 4·2 4·2 4·8 4·3 4·4 4·5 4·6

when electron holes # 2 and # 3 merge during the time in-
terval 500− 600ω−1

po , the velocity of the merged electron
hole jumps to 4Vte. Since electron holes are structures sup-
ported by a “hole” in phase space, the velocity of the poten-
tial structure is determined by the location of the hole in ve-
locity space. Figures 8a and c show the phase space (z − Vz)
of the electron holes # 2 and # 1 att̄ = 600, respectively.
The + signs show the holes in the phase space; their veloc-
ity location in phase space matches with the velocity of the
potential structure given in Table 2. As expected, the hole
corresponds to a minimum in the velocity distribution func-
tion F(Vz). Figures 8b and d show the corresponding distri-
bution functions revealing the minima. The arrows point to
the velocities of the electron holes tabulated in Table 2 for
the time interval 500−600ω−1

po . These figures also show that
the electron holes are situated in the plateaued initial electron
beam. The electron hole velocities evolve with the plateau.
It is worth pointing out that in the process of the plateau for-
mation, some of the beam electrons are accelerated beyond
initial cold beam velocity, making it possible to have electron
hole velocities larger than that for the initial beam.

Effects of electron holes on the plasma.We saw that by the
time t̄ = 500 in the simulations, the electron-hole potential
structure begins to develop undulations and later on the undu-
lations develop into long, thin “fingers” extending from the
electron holes. This process leads to the decay of the electron
holes (Singh et al., 2000, 2001a, b). A better way to further
examine this decay process and its consequences is to look
at the spatial structure of the transverse electric fields. Fig-
ures 9a and b show the structures inEx in thex −z andx −y

planes, respectively, att̄ = 1000. The shades from dark to
light in the gray scale plots represent from large, negative to
large, positive values.Ey shows similar structures. The note-
worthy feature of the structure inEx in thex − z andx − y

planes is that it has a long scale length alongz parallel toBo

and quite a short perpendicular wavelengthλ⊥ ∼ λx ∼ λy

along thex andy directions. It is found thatλ⊥ ≤ 10λd .
For comparison, we note that in the simulation the average
ion Larmor radiusρ ∼= 20λd . We have shown previously
that such structures belong to the lower hybrid waves emit-
ted by the fast moving electron holes (Singh et al., 2001a, b).
These waves occur above the lower hybrid frequency given
by ω`h

∼= ωpt/(1 + �2
e/ω

2
pe)

1/2 ∼= 0.021ωpo. Since the
waves are electrostatic, they consist of density perturbations
having structure similar to the structure inEx andEy . Fig-
ure 10 shows the evolution in the density structure starting at
t̄ = 200 until the end of the simulation att̄ = 1000.

Figure 10a fort̄ = 200 shows that there are randomly
distributed fluctuations in the plasma which are quite faint.
Formation of structures in the density begins to appear at
t̄ = 400 (Fig. 10b). However, the structures are still quite
faint. For t̄ > 400, as shown in Figs. 10c–e, there are well-
developed structures corresponding to the developing fingers
in the equipotential surfaces shown in Figs. 6a–e. These
structures in the density distributions are like filaments that
are long parallel toBo and thin across it.

We have previously reported that when an initially fast
filamentary electron beam drives a plasma, no electron
hole structure forms. Instead, large-amplitude lower-hybrid
waves and their decay into Alfvén resonance-cone waves
at frequencies below the ion cyclotron frequency dominate
the plasma (Singh et al., 2001c). Even in this case, the
low-frequency waves below the ion cyclotron frequency ac-
company a filamentary density structure like that shown in
Fig. 10. Therefore, we draw a larger conclusion here that
whenever an electron beam drives a magnetized plasma the
late-time behavior of the plasma results in the development
of density structures, which are filamentary in nature.

Since the late time behavior in our simulation shows ex-
citation of lower hybrid waves at frequenciesω ∼ ω`h, it is
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Fig. 8. Example of vortexes associated with the electron holes:(a) electron hole # 2 at 600,(b) the electron velocity distribution associated
with electron hole # 2,(c) same as (a), but # 1, and(d) same as (b), but for # 1.

Fig. 9. (a)Wave structure ofEx (x, z) at t̄ = 1000 in thex − z plane and(b) same as (a) but in thex − y plane at̄z = 128. Note the long
structures parallel toz and they are periodic inx andy with periodicity lengthλ ∼ 10λd .

natural to ask whether or not these waves accelerate the ions
transverse toBo. Figure 11a shows a typical example of the
temporal behavior of the perpendicular electric field in the
simulation box. The temporal features consist of the unipolar
fields, as expected, from the passage of the electron holes and
a relatively slow variation with a time period of the lower hy-
brid oscillations. The frequency spectrum of the fluctuations
in Fig. 11a is plotted in Fig. 11b, showing that there is an en-
hanced power level in the spectrum for 0.02<̃ω/ωpe ≤ 0.04.
What is the effect of such fluctuations on the ions?

Figure 12 shows the comparison of the ion velocity dis-
tribution functionF(Vx) at t̄ = 100 and 1000. We see that

there is hardly any heating of the ions.F(Vy) shows a sim-
ilar feature asF(Vx). The noteworthy modification in the
transverse velocity distribution function, although not very
dramatic, is nearVx = Vy = 0, where the distribution is
flattened somewhat. This is an indication of trapping of the
low velocity ions in the potential structure associated with
the electric fields shown in Figs. 9a and 11a. We calculated
the average transverse energy of the ions att̄ = 1000 and
found thatW⊥

∼= 1.01kBTo compared to the initial energy
of 1kBTo. What is the reason for the lack of the ion heating
in the simulations?

The spatial structure of the waves shown in Fig. 9 showed
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Fig. 10. Evolution of the density structure in thex − z plane. The
gray scale plots are at(a) t̄ = 200, (b) t̄ = 400, (c) t̄ = 600,
(d) t̄ = 800, and(e) t̄ = 1000. Note the formation of filamentary
structures corresponding to the electric field structure in Figs. 9a
and b.

that λ⊥
∼= 10λd , which is nearly half of the average ion

Larmor radius. The corresponding perpendicular phase ve-
locity of the LH waves peaking aboveω ∼= ω`h is V⊥p =

ω`h/k⊥
∼= 0.02ωpe × 10λd/2π ∼= 0.03Vte

∼= Vt i . This
shows that the short wavelength fluctuations could be in Lan-
dau resonance with the ions. This yields the trapping as men-
tioned above. Does the Landau resonance lead to transverse
ion heating? If we assume that the heating is a random pro-
cess, the heating rate could be shown to be

∂W⊥

∂t
= 1/2(e2/M) | E⊥ |

2 τcr , (5)

whereτcr is the correlation time of the fluctuations, and it
is given asτcr = 1/1ω, where1ω is the bandwidth of the
fluctuations. The Fourier spectrum in Fig. 11b shows that
for the waves just aboveω`h, 1ω is a few timesω`h, i.e.
1ω = αω`h, whereα is a factor of the order of unity. In
terms ofW⊥ normalized in units ofkBTo and time inω−1

po ,
the heating rate becomes

∂W̄⊥/∂t̄ =
1

2

(me

M

)1/2 1

α
| Ē⊥ |

2 . (6)

Fig. 11. (a) Temporal evolution of the transverse electric field
Ex(32, 48, 128) and(b) frequency spectrum of the data plotted in
(a). Unipolar pulses belong to the electron hole # 1 while the slow
modulation is caused by the waves atω ∼ ω`h

∼= 0.021ωpo.

For the typical amplitude| Ē⊥ |∼ 0.1, the normalized heat-
ing rate is∼ 6 × 10−5 for α = 2. Therefore, in order to see
transverse ion heating by as small askBTo, the simulation
should run to about 16 000ω−1

pe ; it is difficult computation-
ally to run the simulation for such a long time. We have run
the simulation to only 1000ω−1

pe , thereby explaining the lack
of transverse ion heating.

Let us apply these results of the simulations to estimate
the time scale for ion heating in the auroral return current as
reported by Ergun et al. (1998a, b) and Carlson et al. (1998a,
b). If we assumeTo = 100 eV andλd ∼ 100 m in a
low density plasma,| Ē⊥ |∼ 0.1 implies a strong field of
∼100 mV/m, which is within the range of observed values.
The heating time ofT > 16 000ω−1

po implies a real time of
∼1 s. This implies that the ion heating could be possible by
the electron holes and associated plasma waves, if the ions
interact over a time scale of a second or so, with a sustained
high amplitude level of waves. This is possible only in the
close vicinity of the diverging shocks in which electrons are
accelerated upward, forming the beam. Fresh acceleration
of electrons by double layers in the diverging shock main-
tains the high turbulence level needed for the heating (Singh,
2000).

In contrast to the lack of heating seen here, we have shown
that when a filamentary electron beam drives large-amplitude
lower hybrid waves, the ions are significantly heated by
nonlinearly-driven stochasticity (Singh et al., 2001c). We
also point out that, even though the electron holes have sig-
nificant perpendicular electric fields in their structure, they
do not affect the ions.
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Fig. 12. Comparison of ion velocity distribution functionF(Vx) at
t̄ = 100 and 1000. The plot att̄ = 100 is identical to the initial
distribution. Note only a slight modification in the distribution near
Vx ∼ 0 due to the trapping of the ions in the wave field shown
in Fig. 9. The parallel distributionF(Vz) remains the same as the
initial distribution and not shown here. The distributionF(Vy) is
identical toF(Vx) shown here.

4 Conclusion and discussion

The main aim of this paper is to further examine some spe-
cific issues regarding the formation and dynamics of electron
holes and their effects on the plasma when they are gener-
ated by electron-beam driven instabilities. For the first issue
we have examined the emergence of electron holes of finite
transverse sizes from oscillatory waves generated by the in-
stability. Our conclusion here is that the beam generates res-
onantly high-frequency waves at frequenciesω < ωpt , with
k⊥ < kcrit , wherekcrit depends on the marginal stability
criterion. In our simulation, the linearly generated waves
havek⊥ ≤ m2π/L⊥ for m ≤ 3 andk‖

∼= n × 2π/Lz for
6 ≤ n ≤ 12. We find that several of the modes have signif-
icant growth rates (see Table 1) in order to grow along with
the dominant modes withn ∼ 11 − 12 andm = 0. The
nonlinear interaction between the modes withk⊥ = 0 and
k⊥ 6= 0 leads to mutual modulation, resulting in the wave
structure with finite transverse sizes. The nonlinear trapping
of electrons in the crest of such a wave structure generates the
electron holes having significant parallel(E‖) and perpen-
dicular (E⊥) electric fields from a very early stage of their
formation and subsequent evolution.

In our simulations here, we have usedLx = Ly = 64λd .
Therefore, the modes withm ≤ 3 have transverse sizes
`>̃20λd . In the return-current region of the auroral plasma
λd ∼100 m, yielding̀ ⊥ ∼2 km, which is an estimate for the
perpendicular size of an electron hole. Our results here could
be relevant to narrow diverging electrostatic shocks associ-
ated with return currents in which large-amplitude, nearly
spheroidal electron holes were detected (Ergun et al., 1998a,

b). The transverse scale of the shock structure affects the
selection ofk⊥ spectrum.

The second issue we have discussed here is the evolution
of electron holes from their birth from oscillatory waves until
they nearly decay by emitting LH waves just above the lower
hybrid frequency. We have shown the merging of electron
holes, where merging occurs even when transversely dis-
placed electron holes come into close proximity while prop-
agating along the magnetic field. We have also examined the
propagation velocity of the electron holes as the plasma and
the electron holes evolve. We found that during the initial
stage when electron holes have large amplitudes and a nearly
laminar structure, their propagation velocity is slower than
when the electron holes are highly perturbed and have grown
weaker. This result is in contrast to the steady-state theory of
Muschietti et al. (1999) in which the larger the amplitude of
the electron holes is, the faster they move. Simulations show
that the dynamic evolution of the plateaued electron beam
determines the propagation of the electron holes.

The third issue we have examined here is that when elec-
tron holes decay by emitting LH or low-frequency electro-
static whistler (Singh et al., 2001a) waves, they cause per-
turbation in the plasma density. The perturbations are long
structures parallel to the magnetic field, while they are quite
narrow across it. This feature is quite similar to the density
structure produced by parametric decay of large-amplitude
lower hybrid waves (Singh et al., 1998, 2001c). In the simu-
lation reported by Singh et al. (2001c), a fast electron beam
of finite size across the ambient magnetic field did not gen-
erate electron holes; instead, large amplitude LH waves were
generated. These waves decayed into Alfvén resonance-cone
waves at frequencies below the ion cyclotron frequency. The
density structures generated by these low-frequency waves
were analogous to those reported here. Therefore, we draw a
broader conclusion that when a magnetized plasma is driven
by an electron beam which is slow or fast and has a small
or large cross section acrossBo, the late stage of the evolu-
tion consists of density structures which are long filamentary
structures.

We have also examined the question of transverse ion heat-
ing by the plasma waves emitted by the electron holes. In the
simulations, we did not see any significant ion heating, but
ion trapping in the waves by Landau resonances with the LH
wave is apparent. The lack of significant heating is attributed
to the length of time of the simulation. Estimates of the heat-
ing time is given, and it is pointed out that in the context of
auroral return current plasma, the heating time is of the order
of a few seconds.
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