
HAL Id: hal-00303033
https://hal.science/hal-00303033

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Balloon-borne radiometer measurement of Northern
Hemisphere mid-latitude stratospheric HNO3 profiles

spanning 12 years
M. Toohey, B. M. Quine, K. Strong, P. F. Bernath, C. D. Boone, A. I.

Jonsson, C. T. Mcelroy, K. A. Walker, D. Wunch

To cite this version:
M. Toohey, B. M. Quine, K. Strong, P. F. Bernath, C. D. Boone, et al.. Balloon-borne radiometer
measurement of Northern Hemisphere mid-latitude stratospheric HNO3 profiles spanning 12 years.
Atmospheric Chemistry and Physics Discussions, 2007, 7 (4), pp.11561-11586. �hal-00303033�

https://hal.science/hal-00303033
https://hal.archives-ouvertes.fr


ACPD

7, 11561–11586, 2007

Radiometer

measurements of

HNO3

M. Toohey et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Atmos. Chem. Phys. Discuss., 7, 11561–11586, 2007

www.atmos-chem-phys-discuss.net/7/11561/2007/

© Author(s) 2007. This work is licensed

under a Creative Commons License.

Atmospheric
Chemistry

and Physics
Discussions

Balloon-borne radiometer measurement

of Northern Hemisphere mid-latitude

stratospheric HNO3 profiles spanning

12 years

M. Toohey
1
, B. M. Quine

2
, K. Strong

1
, P. F. Bernath

3,4
, C. D. Boone

4
,

A. I. Jonsson
1
, C. T. McElroy

6
, K. A. Walker

1,4
, and D. Wunch

1,5

1
Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada

2
School of Engineering, York University, Toronto, ON, M3J 1P3, Canada

3
Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK

4
Department of Chemistry, Waterloo University, Waterloo, ON, N2L 3G1, Canada

5
California Institute of Technology, Pasadena, CA, 91125, USA

6
Environment Canada, Downsview, ON, M3H 5T4, Canada

Received: 2 July 2007 – Accepted: 27 July 2007 – Published: 6 August 2007

Correspondence to: M. Toohey (mtoohey@atmosp.physics.utoronto.ca)

11561

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/11561/2007/acpd-7-11561-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/11561/2007/acpd-7-11561-2007-discussion.html
http://www.egu.eu


ACPD

7, 11561–11586, 2007

Radiometer

measurements of

HNO3

M. Toohey et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Abstract

Low-resolution atmospheric thermal emission spectra collected by balloon-borne ra-

diometers over the time span of 1990–2002 are used to retrieve vertical profiles of

HNO3, CFC-11 and CFC-12 volume mixing ratios between approximately 10 and 35 km

altitude. All of the data analyzed have been collected from launches from a Northern5

Hemisphere mid-latitude site, during late summer, when stratospheric dynamic vari-

ability is at a minimum. The retrieval technique incorporates detailed forward modeling

of the instrument and the radiative properties of the atmosphere, and obtains a best fit

between modeled and measured spectra through a combination of onion-peeling and

global optimization steps. The retrieved HNO3 profiles are consistent over the 12-year10

period, and are consistent with recent measurements by the Atmospheric Chemistry

Experiment-Fourier transform spectrometer satellite instrument. This suggests that, to

within the errors of the 1990 measurements, there has been no significant change in

the HNO3 summer mid-latitude profile.

1 Introduction15

One of the central aims of the Middle Atmosphere Nitrogen TRend Assessment

(MANTRA) mission is to evaluate observational evidence for changes in the compo-

nents of stratospheric total reactive nitrogen (NOy). Towards this aim, two emission

radiometer instruments have played an important and unique role in MANTRA balloon

campaigns, due largely to the substantial flight heritage of the instrument design. The20

instruments measure atmospheric thermal emission in the 8–14 µm (715–1250 cm
−1

)

range, measuring the spectral emission features of many trace gas species, including

emission at 11.3– µm due to nitric acid (HNO3).

HNO3 was first detected in the stratosphere though the use of balloon-borne filter

radiometer instruments by Murcray et al. (1968), who soon afterwards identified the25

11.3– µm spectral band as ideal for the measurement of HNO3 due to minimal inter-
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ference by other gases (Murcray et al., 1973). Balloon measurements led to a greater

understanding of the vertical, latitudinal, and seasonal distribution of HNO3 (Murcray

et al., 1975) and the partitioning of active nitrogen between HNO3, NO2 and NO (e.g.

Evans et al., 1977; Evans et al., 1982). Subsequent measurements by space-based

(see Santee et al., 2004, and references therein), and balloon-borne instruments have5

led to a wealth of retrieved HNO3 profiles.

Unfortunately, deriving a picture of the long-term behaviour of HNO3 using the his-

torical archive of retrieved profiles is complicated by inconsistencies in the spectro-

scopic parameters used to retrieve profiles from radiance measurements. Laboratory

measurements of the line intensities in the 11.3– µm band, in particular, have yielded10

results which differ by as much as 30% (Flaud et al., 2006). Retrieved volume mixing

ratio (VMR) magnitudes have been seen to be directly proportional to scaling of the

line intensities (e.g. Irion et al., 2002), thus it is fair to say that there exist systematic

discrepancies between the various retrieved profiles, with magnitudes up to 30%.

Furthermore, modern computational resources have allowed the improvement of the15

algorithms used to retrieve trace gas profiles from radiance observations. The earliest

retrievals were based upon an onion-peeling technique (e.g. Evans et al., 1976) which

required smoothing of the raw data. Quine et al. (2005) have shown that the resulting

profiles can be greatly affected by the somewhat arbitrary choice of smoothing param-

eters. Also, the ability of modern retrieval algorithms to perform global fits can also20

greatly improve results (Irion et al., 2002).

In this work, we have collected data recorded by emission radiometer instruments

during three MANTRA balloon flights (1998, 2000, and 2002), and during two flights

in 1990. All data was collected through launches from a northern mid-latitude site

(Vanscoy, Saskatchewan, 52
◦
N, 107

◦
W) during late summer when dynamical variabil-25

ity is minimal (Wunch et al., 2005). By analyzing the data with a consistent retrieval al-

gorithm and spectroscopic line intensities, we connect modern measurements of HNO3

with historical ones, and in so doing, develop a semi-quantitative picture of long-term

HNO3 profile changes.
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2 HNO3 in a changing atmosphere

HNO3 is the principal component of NOy in the lower stratosphere, where it acts as a

reservoir for the active nitrogen species NO and NO2 involved in catalytic ozone loss

cycles.

Changes in the abundance of HNO3 are related to changes in the abundance of NOy5

and its partitioning. The source of stratospheric NOy is the transport of N2O from the

troposphere. Tropospheric N2O has steadily increased by 3% per decade due to an-

thropogenic activities. McLinden et al. (2001) estimate that this increase in N2O should

lead to a 2.3% per decade increase in NOy, with the difference due to nonlinear NOy

loss processes in the upper atmosphere. Meanwhile, the partitioning of NOy has been10

modified by the increase of stratospheric chlorine. Modelling studies by Prather et al.

(1984) have shown that as stratospheric concentrations of inorganic chlorine increase,

ClONO2 becomes more important as a NOy reservoir, leading to possible declines

in HNO3. HNO3 is also highly sensitive to stratospheric aerosol loading through the

heterogeneous reaction:15

N2O5+H2O → HNO3+HNO3, (R1)

which converts N2O5 to HNO3 in the presence of aerosols.

Long-term changes in HNO3 have been studied by use of ground-based observa-

tions of total columns, and space based, vertically resolved HNO3 profiles. In an

analysis of data comprised of solar spectra recorded with a grating spectrometer in20

June 1951 and a set of observations obtained with a Fourier transform spectrometer

between June 1986 and June 1990, all from the International Scientific Station of the

Jungfraujoch in Swiss Alps, Rinsland et al. (1991) found no significant change in the

June HNO3 total column over this time span. Randel et al. (1999) report statistically sig-

nificant decreases of order 2% per year in lower stratospheric, extra-tropical HNO3 be-25

tween 1993 and 1997 based on analysis of observations made by the Microwave Limb

Sounder (MLS) on board the Upper Atmosphere Research Satellite (UARS). While
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the trend analysis excluded from consideration the MLS data from 1991–1992 in an at-

tempt to remove the effects of elevated aerosol loading due to the Mt. Pinatubo eruption

of 1991, ground-based measurements of HNO3 total columns, and model results indi-

cate NOy partitioning may have been significantly perturbed until 1996 (Rinsland et al.,

2003). To the authors’ knowledge, no study has yet addressed long-term changes5

in HNO3, apart from those due to aerosol loading from Mt. Pinatubo, by comparing

consistent measurements from before and after the eruption.

The detection of trends in data is dependent upon the variability of the measured

quantity (Weatherhead et al., 1998). In order to better understand the variability to be

expected in HNO3 profiles, we have studied simulated fields from the Canadian Middle10

Atmosphere Model. CMAM is an extended version of the Canadian Centre for Climate

Modeling and Analysis spectral General Circulation Model. The dynamical core and

chemistry scheme are described by Beagley et al. (1997) and de Grandpré et al. (1997)

respectively. The current version of the model is discussed by Eyring et al. (2006),

while the model results shown here are from a transient run described by Eyring et al.15

(2007). Chemical species have been saved every 18 h. Monthly mean CMAM HNO3,

at the vertical level of peak VMR (∼24 km) and the model gridpoint closest to Vanscoy,

Saskatchewan, are shown in Fig. (1) for ten years of the transient run. The seasonal

cycle is apparent in the model output, with maximum HNO3 in winter, and minimum

in summer. The 2σ monthly variability of the 18-hourly data is shown by the shaded20

region. The average standard deviation of August HNO3 values is approximately 6%

of the mean, while in winter the same metric is 16%. Summer measurements are

therefore the most useful measurements for assessing long-term changes in HNO3.

3 Instrument design and history

The emission radiometer instruments used in this study were originally designed and25

fabricated by the Canadian Atmospheric Environment Service (AES) in the early 1970’s

based on a design first developed by Pick and Houghton (1969). The main design fea-
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tures include (see Quine et al., 2005, Fig. 2): a mechanical chopper at the entrance

slit, a spectral band-pass filter, a mercury-cadmium-telluride detector, amplifying elec-

tronics, and an insulated liquid-nitrogen dewar surrounding the detector and optics,

maintaining a temperature of approximately 77 K. The instrument design also includes

a blackbody calibration flap that is automatically lowered to cover the field-of-view pe-5

riodically. The flap, mounted externally to maintain a temperature above that of liquid

nitrogen, has an embedded platinum resistance thermometer to provide temperature

information necessary for performing in-flight radiometric calibration.

The radiometer measures the cumulative spectroscopic gas emission along an

upward-looking slant path. Vertical atmospheric information is made available by10

mounting the instrument, typically with a 20
◦

elevation angle, on a balloon platform,

and taking measurements while the balloon ascends. At the beginning of the balloon

ascent, the instrument views a slant path through the whole atmosphere, and the radi-

ance measurements are at a maximum. As the instrument ascends, the atmosphere

below the instrument is excluded from the slant path, and the collected radiance de-15

creases. A radiosonde is flown with the instrument in order to measure temperature

and pressure, from which altitude is deduced via the hydrostatic relation.

When first fabricated, these instruments were furnished with five discrete band-pass

filters to sample sections of the HNO3 emission band at 11.3– µm. Radiance esti-

mates were derived from these band-pass measurements and a careful filter calibra-20

tion. Later instrument designs replaced the discrete filters with circular variable filter

(CVF) segments. With two segments mounted on a constantly turning wheel, the in-

struments are able to scan a wavelength region from 8–14 µm (715–1250 cm
−1

) with a

band-pass varying between 1% and 4% of the center wavelength. A number of these

scanning emission radiometers were flown on a series of AES test flights from Vanscoy,25

Saskatchewan from 1989–1991 before being used in non-recovered Arctic flights. Two

surviving instruments, code-named MX-31 and MX-36 were refurbished with minimal

modifications and used in the biennial MANTRA flights of 1998–2004.
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4 Retrieval

Vertical profiles of HNO3 were originally retrieved from data measured by the emis-

sion radiometer instrument through an onion-peeling algorithm, wherein the amount

of HNO3 between two measurement altitudes was assumed to be proportional to the

change in radiance between the measurements (Evans et al., 1976). Instrument pa-5

rameters were determined through pre- and post-flight calibration.

Quine et al. (2005) introduced an updated retrieval algorithm for the emission ra-

diometer, based on detailed forward modelling of the atmosphere and instrument.

Given atmospheric temperature and pressure information, expected trace gas abun-

dances, and some instrument calibration parameters, these models simulate the spec-10

tral scans recorded by the instrument during flight. An optimization routine is used to

obtain a best fit between the simulated and measured spectra by adjusting the instru-

ment parameters and trace gas amounts. The main advantage of this technique is the

incorporation of instrument parameters into the retrieved state vector, which allows the

analysis of flight data without pre- and post- calibration data. We summarize the main15

points of the retrieval algorithm below, with special emphasis on modifications made

since the work of Quine et al. (2005).

4.1 Atmospheric forward model

The atmosphere is modelled as a set of discrete 2-km-thick cells on a vertical grid. For

each cell, a density-weighted effective mean temperature and pressure are determined20

using the Curtis-Godson approximation (Houghton, 1986), based on sonde measure-

ments. Spectral absorption coefficients for each cell and for eight principal emitting gas

species (H2O, CO2, O3, N2O, CH4, HNO3, CFC-11 and CFC-12) are calculated using

the GENSPECT line-by-line code (Quine and Drummond, 2002) with HITRAN 2004

data (Rothman et al., 2005). HITRAN line parameter updates for HNO3 are included25

(Flaud et al., 2006), based on work that went into the MIPAS (Michelson Interferometer

for Passive Atmospheric Sounding) database. Radiative transfer code included in the
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GENSPECT package is used to calculate the radiance at each cell boundary based on

the blackbody emission and transmission of each cell. This simulated spectral radiance

profile is linearly interpolated to the radiometer measurement heights, and passed as

the main input into the instrument forward model.

4.2 Instrument forward model5

The aim of the instrument forward model is to accurately simulate the true mapping

between input radiance and detector response. While it is assumed that the individual

instruments are for the most part functionally identical, a few instrument parameters

defining unique properties of the instruments are necessary, and are included in the

forward model.10

Two parameters define the mapping between CVF angular position and wavenum-

ber. A linear relationship between CVF position and wavelength is reported by the CVF

manufacturer and assumed here. Initial estimates for the two parameters are produced

manually by finding the angular position of the O3 and HNO3 peaks in the raw data.

These instrument parameters are then included in the retrieval, and serve to shift and15

stretch the data in order to match the simulated spectra.

A third instrument parameter is used in the construction of the instruments’ slit func-

tion. The shape of the slit function, and the relationship between width and center

wavelength is based upon Fourier transform spectrometer measurements of the band-

pass of a sample CVF. A retrieved instrument parameter specifies the width of a boxcar20

function convolved with this experimental slit function, accounting for the finite angular

width of the focussed light passing through the CVF in each particular instrument.

The instrument is modelled so as to assume a relationship between detector re-

sponse S at a given wavenumber ν
′
and incident radiance spectrum I for a given effec-

tive viewing angle θ̂ as follows:25

S(ν′, z) = R(ν′, z)

∫
∞

0

I(ν, θ̂, z)F (ν − ν′)dν + ε (1)
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where R is the instrument responsivity as a function of altitude, F is the slit function,

and ε is a dark current level.

Dark current noise is defined for each scan by the average signal measured as an

opaque section of the CVF attenuates the input radiation.

The effective viewing angle θ̂ is an approximate quantity describing the mean ele-5

vation angle of light collected by the instrument. It is a function of the mounting angle

of the instrument on the balloon payload, the field-of-view (FOV) function of the instru-

ment describing the angular dependence of the instrument’s ability to collect radiation,

and the radiation field as a function of angle. In order to define a constant θ̂ for any

measurement set, we assume a plane parallel atmosphere with homogeneous emis-10

sion. The radiation field is then given by the cosecant function describing the variation

of atmospheric slant path with elevation angle, and θ̂ is given by the mean of the prod-

uct of the FOV and cosecant functions. The FOV, as determined by laboratory tests,

is roughly toroidal, with sensitivity extending to ±16
◦

and maximum sensitivity at ±9
◦
.

The effective viewing angle for an instrument mounted at 20
◦

elevation angle is approx-15

imately 17
◦
.

In-flight blackbody calibration scans, performed every fifth scan at altitudes z
′
, are

used to define instrument responsivity function R. The responsivity of the instrument

changes as a function of altitude, due to changes in atmospheric pressure and tem-

perature. The responsivity function is calculated as the ratio of detector output S (with20

dark current ǫ subtracted) to the theoretical blackbody radiance curve (based on the

temperature measured by the flap thermometer) convolved by the instrument slit func-

tion:

R(ν′, z′) =
S(ν

′
, z

′
) − ε∫

∞

0
Bν(ν, T )F (ν − ν′)dν

. (2)

The responsivity function is then interpolated to the atmospheric measurement heights25

(z) in order to calculate the simulated spectra via Eq. (1).
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4.3 Optimization

The objective function is defined as the sum of squares of the difference between the

simulated and measured spectral scans. The optimal retrieval is that which minimizes

this objective function.

Prior work (Quine et al., 2005) introduced the use of a non-linear global optimization5

algorithm used to search for a global minimum by iteratively perturbing the full state

vector of instrument parameters and trace gas species on the full vertical grid. While

this technique produced reasonable results, it required large amounts of computing

resources, and time. In order to produce results on a faster time scale we have modified

this approach.10

In the latest approach, a first stage retrieval defines a state vector of instrument

parameters and scale factors which multiply a priori trace gas profiles. The objec-

tive function to be minimized is based solely on spectral scans within the lowermost

atmospheric cell. These low-altitude scans provide the most information regarding

the instrument parameters, since they contain significant radiance contributions from15

HNO3, CFC-11 and CFC-12. The Direct global optimization routine (Jones et al., 1993)

is used.

A second stage performs onion-peeling while keeping the instrument parameters

fixed. Starting at the uppermost atmospheric cell and moving down, trace gas amounts

are adjusted in order to minimize the measurement residual within that cell in the local20

spectral neighbourhood of the emission peak for each of the three species. The onion-

peeling proceeds by the method of steepest descent, with the local gradient defined

by first perturbing the cell VMR by 1%, and using the forward model to calculate the

corresponding change in radiance. This process is repeated iteratively until the differ-

ence between the measured and simulated radiances reaches a preset convergence25

criterion. Weighting functions and averaging kernels for the onion-peeling algorithm

are given in Quine et al. (2005).

The global fit – onion-peeling sequence outlined above is then repeated, with the only
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difference being that the global optimization in step one is performed with the objective

function defined using scans over the full altitude range. Comparison of simulated and

measured spectral scans for a sample instrument and year are shown in Fig. (2).

4.4 Error analysis

Within the final onion peeling step of the retrieval, a root-mean-square (RMS) residual5

is calculated between the simulated and measured spectra in the neighbourhood of

the emission peak for each gas species fit. This RMS is divided by the local change

in radiance for a given change in trace gas VMR in order to estimate the retrieval error

based on radiance noise.

The recorded temperature of the blackbody flaps is another major source of uncer-10

tainty. Laboratory tests have produced calibration coefficients for the two instruments

used in MANTRA flights. Based on these tests, we conservatively estimate the tem-

perature error of the MANTRA blackbody flaps as 2 K. Corresponding VMR errors have

been calculated by simply performing the retrieval on raw data perturbed by the tem-

perature uncertainty estimate. A 2 K error in temperature leads to a HNO3 VMR error15

of approximately 10% at 24 km.

Lastly, the uncertainty in the effective elevation angle is estimated to be ±0.5
◦
, which

corresponds to an error of approximately 2.5% at 24 km.

Radiance error, blackbody temperature error, and viewing angle error are added in

quadrature to obtain the total error as a function of altitude.20

5 Data

Each MANTRA mission has included on the instrument payload two radiometers, MX-

31 and MX-36. The two instruments were mounted with different elevation angles,

with one at 20
◦

and the other at 30–40
◦
. Raw data of good quality was collected

by both instruments during the flights of 1998 and 2000. One instrument failed in25
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2002, and both instruments failed in 2004, likely due to the effect of ice build-up on the

mechanically rotating CVF.

The AES test flights of 1990 suffered from a variety of fatal and non-fatal failures,

making the raw data difficult to process. All flights suffered from poor data quality due

to transponder drop-outs. Many flights also suffered from obvious mis-calibration of the5

blackbody flap temperatures.

We include in this work results from two radiometer flights of August 1990. Of all data

from the AES test flights, that from MX-19 on 30 August is of the highest quality. The

ubiquitous transponder drop-outs and a higher-than-expected spectral noise are the

data’s only significant faults. Data from MX-13, flown on 20 August 1990, suffered some10

more critical non-fatal effects. Time synchronization between the radiometer clock and

the radiosonde clock (in order to achieve proper altitude registration) was produced by

defining a time offset that minimized the residual between the time derivatives of the

sonde-measured air temperature and the instrument flap temperature. Furthermore,

the flap temperature was bias corrected in order to bring the difference between flap15

temperature and air temperature into a range comparable to the other flights. Due to

these necessary pre-processing steps, we have estimated the temperature error of the

blackbody flaps for this flight at 5 K.

We will compare our retrieved profiles of HNO3, CFC-11 and CFC-12 with results

from the Atmospheric Chemistry Experiment – Fourier transform spectrometer (here-20

inafter ACE) satellite instrument, launched in August 2003. We compare with ACE

since it simultaneously retrieves all three species measured by the radiometers, and

since ACE data has previously been used in a trend analysis of many species, including

CFC-11 and CFC-12 (Rinsland et al., 2005). ACE is a Fourier transform spectrometer

operating at high spectral resolution in the infrared, measuring atmospheric extinction25

by solar occultation, from which profiles of temperature, pressure and dozens of con-

stituents are retrieved through a global fitting algorithm (Bernath et al., 2005; Boone

et al., 2005). ACE results are from the version 2.2 data set. HNO3 retrievals from

ACE employ a set of microwindows near 900 cm
−1

(11.3– µm), and another set near
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1700 cm
−1

, and use the HITRAN 2004 spectral database. ACE retrievals do not use

the Flaud et al. (2006) HNO3 update, but the impact of the update to HITRAN 2004

in the 11.3– µm spectral range is small: the percent change in integrated line inten-

sity over this band is on the order of 2% (Flaud et al., 2006). ACE retrievals have

been shown to have good (relative differences of 5–10% below 30 km) agreement with5

MIPAS operational retrievals (Wang et al., 2007a), and the MIPAS IMK-IAA research

product (Wang et al., 2007b). Due to the orbit and solar occultation technique used

by the ACE platform, the latitudinal distribution of measurements is highly dependant

upon the time of year. ACE samples the Northern mid-latitudes in late summer briefly

at the beginning of September (see Fig. 3), in close proximity to the window of past10

MANTRA flights (24 August–3 September). For the comparison, we take averages of

these late summer ACE measurements from 2004–2006 over the 10
◦

latitude band

centered on the latitude of Vanscoy, Saskatchewan.

6 Results

The retrieved profiles of HNO3 are shown in Fig. (4). The mean profile for the MANTRA15

missions (1998–2002) is shown on each panel for comparison. The retrieved profiles

are remarkably consistent. The two retrieved profiles for the flights with simultaneous

measurements (1998 and 2000) are equivalent at almost all altitudes. Small differ-

ences between the simultaneous measurements are likely due to differences in hori-

zontal sampling by the two instruments mounted with differing elevation angles, and the20

local horizontal gradient in the HNO3 field. The error in the 1990 profiles is large, due

to uncertainties in the blackbody flap temperature and the measured radiance noise.

Despite this, the profiles are not inconsistent with the MANTRA mean profile.

The MANTRA-mean profiles of HNO3, CFC-11 and CFC-12 are compared to mean

Northern Hemisphere mid-latitude late summer retrieved profiles from the ACE satel-25

lite instrument in Fig. (5). The comparison shows excellent agreement for HNO3: the

MANTRA-mean HNO3 profiles lie within the ACE 2σ variability for all but the very high-
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est altitudes. CFC profiles retrieved from the radiometers exibit a larger degree of

scatter and inter-instrument bias, as shown by the 1σ error bars. The individual re-

trieved profiles have errors between 20 and 100% between 12 and 24 km (not shown).

Despite this, the mean radiometer CFC profiles are comparable in shape to the ACE

measurements, although somewhat larger in magnitude. In a comparison of measure-5

ments by the Atmospheric Trace Molecule Spectroscopy Experiment (ATMOS) in 1985

and 1994 and by ACE in 2004, Rinsland et al. (2005) find very little difference between

CFC-11 and CFC-12 stratospheric mixing ratios between 1994 and 2004. Given this

result, we suggest the differences between ACE and MANTRA-mean CFC profiles are

due to the large random error in the MANTRA radiometer measurements and the small10

sample size.

Are the MANTRA HNO3 measurements consistent with the variability of the CMAM?

Figure (6) addresses this question by plotting the percent standard deviation of the

MANTRA retrieved profiles and that from the 18-hourly data from the final week of Au-

gust over 10 CMAM years. The two profiles show similar structure, with larger values15

in the lower stratosphere, and a broad minimum between 20 and 30 km. This com-

parison is somewhat unfair as the MANTRA HNO3 measurements represent a very

sparse sampling of the true HNO3 late-summer time series, with only three indepen-

dent samples. We address the issue of sparse sampling by MANTRA by calculating

the standard deviation of the model profiles using only three random samples. By it-20

erating this procedure a large number of times, we produce a probability distribution

function of the calculated standard deviation for the given MANTRA sampling, and de-

fine a 99% confidence interval, shown in grey shading in Fig. (6). By repeating the

same procedure, but adding a 10% random error onto the sampled CMAM profiles, we

get an even better sense of the variability expected in the MANTRA measurements.25

Between 15 and 30 km height, the variability of the MANTRA measurements is seen

to be consistent with the variability of the model, given the sparsity and uncertainty

of the measurements. Above 30 km and below 15 km, the variance of the MANTRA

measurements is apparently adversely affected by instrument error.
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The variance of ACE HNO3 measurements is in excellent agreement with that of the

CMAM (Fig. 6). On the one hand, this close agreement validates our use of the model

to explore the sampling issues inherent in the MANTRA measurements. On the other

hand, under the assumption that the CMAM gives a good estimate of the variability of

the true atmosphere, any difference between the CMAM and ACE variances should5

be due to the random error of the ACE retrievals. The close agreement between the

measured and modelled variance is then evidence that ACE measurements display a

high degree of precision.

7 Conclusions

We have analyzed raw data recorded by low-resolution scanning infrared radiometers10

from balloon flights in 1990, 1998, 2000, and 2002, and retrieved vertical profiles of

HNO3 using current spectroscopic line parameters and an efficient retrieval technique

making use of both global-fitting and onion-peeling routines. The retrieved HNO3 pro-

files show excellent agreement, in profile shape and magnitude, with measurements

made by the ACE satellite instrument at a similar season and latitude region over the15

years 2004–2006. The measurements were taken over a mid-latitude Northern Hemi-

sphere site in late summer, when stratospheric dynamical and chemical variability is

minimal. The variance of the HNO3 profiles measured over the MANTRA era (1998–

2002) is in good agreement with the variability estimated by the CMAM, when the lim-

ited sampling and error of the measurements are taken into account. The radiometer20

measurements represent a consistent data set with samples before and after the Mt.

Pinatubo eruption. While the error on the measurements from 1990 is large, and the

data set is small, we see no significant change in the vertical profile of HNO3 over this

time span. This result may be taken as direct evidence that the –2% per year HNO3

trend measured by the UARS-MLS instrument over the time span 1993–1997 (Randel25

et al., 1999) represents a slow relaxation of the NOy partitioning from the perturbed

conditions after the Mt. Pinatubo eruption of 1991, as is suggested by the modelling
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component of work by Rinsland et al. (2003), rather than any underlying long-term

trend.
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Table 1. Balloon flights of the radiometer dataset.

Flight Date Instruments

AES Aug 20, 1990 MX13

AES Aug 30, 1990 MX19

MANTRA Aug 24, 1998 MX31, MX36

MANTRA Aug 29, 2000 MX31, MX36

MANTRA Sep 03, 2002 MX31

11580

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/11561/2007/acpd-7-11561-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/11561/2007/acpd-7-11561-2007-discussion.html
http://www.egu.eu


ACPD

7, 11561–11586, 2007

Radiometer

measurements of

HNO3

M. Toohey et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004
2

4

6

8

10

12

14

CMAM year

pe
ak

 H
N

O
3 (

pp
b)

Fig. 1. Time series of monthly mean HNO3 volume mixing ratio (VMR) at ∼24 km from the

Canadian Middle Atmosphere Model (CMAM). Monthly variability (2σ) is represented by shad-

ing, and August variability values are highlighted by vertical lines.
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Fig. 2. An example selection of spectral fits and residuals, approximately equally spaced

between 12 and 30 km height, from the emission radiometer fitting routine. Results shown are

for MANTRA 2000, MX-36. Plotted points represent the measurement scans, while lines show

the simulated spectra.
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Fig. 3. Time-latitude coordinates of Northern Hemisphere mid-latitude ACE occultations in late

summer, over three years.
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Fig. 4. Retrieved HNO3 profiles for the years shown. Instrument code names, specifying the

source of the radiance data used in each retrieval, are given in the legend (see Table 1). Error

bars show the estimated uncertainty in the retrievals. The mean profile over MANTRA missions

(1998–2002) is shown by the dashed line. 11584
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Fig. 5. Mean profiles of HNO3, CFC-11 and CFC-12 VMR from the MANTRA flights (1998–

2002) and from observations by the ACE satellite instrument (2004–2006). Shading represents

the 2σ variability of the ACE profile, while the error bars on the MANTRA radiometer profiles

represent 1σ variability in the retrieved profiles.
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Fig. 6. Percent standard deviations of HNO3 VMR profiles from ACE measurements, MANTRA

measurements, and simulated fields from CMAM. Grey shading represents the 99% confidence

interval of values given by CMAM when only three independent samples are used (dark grey),

and with an added 10% error on each sample (light grey).
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