

Predicting diurnal variability of fine inorganic aerosols and their gas-phase precursors near downtown Mexico City

M. Moya, C. Fountoukis, A. Nenes, E. Matías, M. Grutter

▶ To cite this version:

M. Moya, C. Fountoukis, A. Nenes, E. Matías, M. Grutter. Predicting diurnal variability of fine inorganic aerosols and their gas-phase precursors near downtown Mexico City. Atmospheric Chemistry and Physics Discussions, 2007, 7 (4), pp.11257-11294. hal-00303023

HAL Id: hal-00303023 https://hal.science/hal-00303023

Submitted on 18 Jun 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Atmos. Chem. Phys. Discuss., 7, 11257–11294, 2007 www.atmos-chem-phys-discuss.net/7/11257/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License.

Predicting diurnal variability of fine inorganic aerosols and their gas-phase precursors near downtown Mexico City

M. Moya¹, C. Fountoukis², A. Nenes^{2,3}, E. Matías⁴, and M. Grutter¹

¹Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, Mexico ²School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311

Ferst Drive, Atlanta, GA 30332-0100, USA

³School of Earth and Atmospheric Sciences Georgia Institute of Technology, 311 Ferst Drive, Atlanta, GA 30332-0100, USA

⁴Posgrado en Ciencias Químicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, Mexico City, Mexico

Received: 19 June 2007 - Accepted: 27 June 2007 - Published: 2 August 2007

Correspondence to: M. Moya (mmoya@servidor.unam.mx)

Abstract

Partitioning of semi-volatile nitrate and ammonium between the gas and particulate phases is studied combining two thermodynamic models that explicitly include crustal elements and simulate both branches (deliquescence, efflorescence) of aerosol be-

- ⁵ havior and measurements taken near downtown Mexico City during a field campaign conducted in February–March, 2005. Overall, no significant differences between model predictions (within 30% of error) are observed for particulate ammonium (PM_{2.5}, PM₁). In cases of moderate to high RH (40–70%), mostly occurring during the 1st and 2nd daily sampling periods (06:00–10:00 h, 10:00–14:00 h, LST), 4 h PM_{2.5} nitrate mea ¹⁰ surements are predicted within 30%. When RH drops below 30%, characteristic of the afternoon sampling periods (14:00-18:00 h), the efflorescence branch is most consistent with observed PM nitrate. Residual error analysis of these low RH cases suggest that aerosol nitrate loading or sulfate-to-nitrate molar ratio control phase behavior, hence the partitioning of semi-volatile PM_{2.5} nitrate in gas and particulate phases. Finally, inclusion of crustal elements in the modeling framework reduces the error in
- predicted $PM_{2.5}$ ammonium by 25%. These findings, if generally applicable, can help improve air quality modeling in nitrate deficient environments.

1 Introduction

Atmospheric aerosols reduce visibility, affect climate and air quality, and adversely im-²⁰ pact human health. It is now recognized that smaller sizes (PM_{2.5}, PM₁) of atmospheric particles as penetrating deeper into the lung exacerbate chronic respiratory and pulmonary diseases (Nikasinovich et al., 2006). A strong link has also been established between high aerosol concentrations and cardiovascular effects (Peters, 2005; Schulz et al., 2005; Englert, 2004). Particulate air pollution has also been associated with ²⁵ neurodegenerative effects and premature death (Peters et al., 2006).

The ability to simulate the aerosol size distribution and composition is key for deter-

ACPD

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

mining its role in atmospheric processes and impacts on public health. This is a challenging problem, as particulate matter is a complex mixture of chemical constituents that evolve rapidly over space and time. Airborne PM is composed of inorganic salts, organic material, crustal elements and trace metals (Seinfeld and Pandis, 1998). In-

- ⁵ organics may account for 50% or more of total fine particulate matter, a significant fraction of which can be salts of ammonium with sulfate, nitrate and chloride. Crustal species from mineral dust, such as Ca, K, and Mg, are often present in large quantities in the coarse fraction of PM (particles with diameter larger than $2.5 \,\mu$ m) as dust (Ansari and Pandis, 1999a). Measurements of the chemical composition of aerosols and their gas-phase precursors (especially in polluted areas) are essential for understanding the
- partitioning of semivolatile species (such as ammonia and nitrate) between the gas and particulate phases and to validate aerosol models.

The high levels of ozone (O_3) and aerosols (particulate matter, PM) in the Mexico City Basin (MC) has become a significant issue for its nearly 20 million of inhabitants

- ¹⁵ (Molina and Molina, 2002). PM₁₀ levels (PM with diameter less than 10 μ m) exceed the 24-h standard almost every day of the year (Edgerton et al., 1999). PM_{2.5} levels have been recorded above the recently introduced standard of 65 μ g m⁻³ as well (Moya and Huey, 2007). The scarcity of information about Mexico City aerosols, particularly in the fine fraction (PM₁, PM_{2.5}) and their gas-phase precursors, has motivated a num-
- ²⁰ ber of field campaigns. The first was IMADA-AVER (Edgerton et al., 1999), in which a complete dataset of PM_{2.5} constituents and their gas-phase precursors were obtained at a site near downtown Mexico City (Merced, MER) and evaluated with four thermo-dynamic equilibrium models by Moya et al. (2001). An important issue that came out of the analysis was the effect of long integration time (6-h) of the PM and gas-phase
- measurements; the large T and RH variability over the sampling period (T's: 10–27°C; RH's: 20–70%) was a major source of uncertainty in comparing the observations with predictions.

Since IMADA-AVER, measurements in and around the metropolitan area of MC were carried out during the months of February and/or March of 2003 and 2005 at

ACPD 7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

the Merced (MER) site downtown Mexico City (MER 2003 and MER 2005, respectively), as well as other international initiatives during 2003 and 2006 (MCMA-2003, and MILAGRO, respectively). Among the objectives pursued in these investigations are (1) chemically characterize the fine fraction of aerosols along with the gas-phase
⁵ precursors in this megacity (e.g. Moya et al., 2004; Moya and Huey, 2007), and, (2) to evaluate the ability of bulk equilibrium models to describe semivolatile partitioning of inorganics, which is the focus of this study.

Predicting the equilibrium composition of the complex MC aerosol is a stringent test for aerosol thermodynamic models. In addition to the large degree of external mixing, there are large amounts of crustal material present which has been shown to strongly affect partitioning of semi-volatile inorganics in this polluted area (e.g. Moya et al, 2002b). Another important aspect in aerosol modeling is to know the real phase state of atmospheric aerosol behavior as they can follow either the deliquescence branch (in which solids precipitate) or the efflorescence branch (in which solids are

- not allowed to precipitate and the particle is an aqueous phase solution). Depending on the RH history, solids or aqueous phase may be present in the system. As RH increases the deliquescence behavior, occurring naturally, is characteristic of aerosol behavior. As RH decreases, the particle may follow a different path in which does not crystallize at its initial deliquescence point but instead holds water until a much lower
- ²⁰ RH forming a supersaturated solution. Ansari and Pandis (2000) highlighted the importance of considering both branches of aerosol behavior, particularly when nitrate concentrations were low ($<8 \mu g m^{-3}$). For high ($>8 \mu g m^{-3}$) nitrate PM loading no significant difference between efflorescence and deliquescence branches was observed for Southern California ambient conditions. For the same area, Moya et al. (2002a)
- illustrated that the assumption of metastable state when RH <60% might introduce unacceptable errors in predicting aerosol behavior. In this context, diurnal variability of ambient parameters (Temperature: 10–27°C; RH: 20–70%) measured at downtown MC during the 2005 winter-dry season as well as other aspects of chemical composition (e.g. low-to-moderate nitrate particle loading) of heterogeneous aerosols in this

ACPD

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

area represent a singular case of study to evaluate the ability of bulk thermodynamic equilibrium models in representing inorganic aerosol behavior.

In the present work, using 4-h average aerosol and inorganic gas phase precursors (NH₃, HNO₃) measured during the MER 2005 study, and by applying two thermodynamic models: SCAPE2 (Kim et al., 1993a, b; Kim and Seinfeld, 1995; Meng et al., 1995) and ISORROPIA-II (Fountoukis and Nenes, 2007), we attempt to evaluate the ability of thermodynamic models to capture the observed partitioning of semi-volatile inorganics. Both thermodynamic models were chosen as they explicitly include crustal species, which has been shown to be important for understanding the partitioning behavior. The aforementioned models are able to simulate both branches (deliquescence and officiaragenes) of increased behavior and water untake of acreased of acreased of the species.

havior. The aforementioned models are able to simulate both branches (deliquescence and efflorescence) of inorganic aerosol behavior and water uptake of aerosol, a relevant aspect in defining the real phase state of MC aerosol.

2 Field campaign

- 2.1 Sampling site description
- ¹⁵ During the 2005 MER study, measurements were carried out at a site near downtown Mexico City (the MER: 19.38° N, 99.12° W) from 7 February to 4 March 2005. A detailed description of the site is given by Moya et al. (2004). Briefly, MER is a characteristic urban-site surrounded by near heavily traveled paved streets with light-duty vehicles and heavy-duty diesel buses (Edgerton et al., 1999) located in an area with ~14 000
 ²⁰ inhabitants per km² (INEGI, 2000). The Mexico City International Airport is ~3 km to the east and the dry-salt lake of Texcoco covering an area of ~12 km² and located 15 km NE from the MER site, has been suggested in previous studies as an important source of sodium and crustal species.

ACPD 7, 11257-11294, 2007 Thermodynamic partitioning of inorganics in downtown Mexico M. Moya et al. **Title Page** Introduction Abstract Conclusions References Tables **Figures** Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

2.2 Atmospheric conditions

The Valley of Mexico elevation is 2240 m above mean sea level. In spite of its altitude, latitude of 19° N ensures a temperate climate throughout the year. Over the winter-dry period, when the study was conducted, the temperature and relative humidity averaged 18°C and 42%, respectively. Figure 1 shows the average diurnal pattern of these parameters, measured at the MER site (operated by the RAMA, Gobierno del Distrito Federal, Mexico City) throughout the period of study. The ranges of temperature (T) and relative humidity (RH) registered during the sampling periods of study were as follows: 10–14°C and 39–72% (06:00–10:00 h LST), 17–22°C and 29–47% (10:00–14:00 h LST), and 23–26°C and 23–35% (14:00–18:00 h LST). This variability will be one of the key issues to be analyzed when model simulations are discussed.

2.3 Particulate matter measurements

Bulk PM₁, PM₂₅ and size-differentiated PM₁₀ (0.18–10 μ m, 50% cutoff aerodynamic diameter) were measured from 7 February through 4 March 2005 over the aforementioned sampling periods: 1st: 06:00-10:00 h LST, 2nd: 10:00-14:00 h LST, and 3rd: 15 14:00–18:00 h LST. Inorganic particulate species measured include sulfate, nitrate, chloride, ammonium, sodium, potassium, calcium and magnesium. The procedure for collection of size-resolved inorganics in MER 2005 field study was identical to the MER 2003 field campaign (described in Moya et al., 2004). All measurements were performed at ambient temperature and RH. Bulk PM1 and PM25 measurements were 20 filter-based (using URG systems and Teflon/Nylon substrates). Details of the collection of bulk chemical species are presented by Matías (2007). Based on physical and chemical consistency tests (data validation) between our PM₁₀ size-resolved and "bulk" PM_{2.5} systems versus PM₁₀, PM_{2.5} EPA referenced systems from the RAMA-MER site, validated data corresponded to our bulk PM systems and these measurements were 25

ACPD

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

employed for the chemical analyses of the inorganic fraction of particles using highperformance liquid chromatography and atomic absorption spectrometry is presented by Moya et al. (2004).

2.4 Gas-phase measurements

Real-time gas-phase (NH₃, HNO₃) was measured with an open-path FTIR spectrometer. Briefly, an infrared beam is sent 426 m across the atmosphere using a bistatic telescope system. The IR radiation is modulated with a Nicolet® interferometer with 0.5 cm⁻¹ resolution and captured with a HgCdTe detector at 77 K. The concentrations are retrieved from the 5 min co-added interferograms by performing a non-linear CLS regression using a synthetic background and references generated from the HITRAN spectroscopic database (Rothman et al., 1998). Details of the experiment are presented elsewhere (Grutter et al., 2003). For the quantitative analysis of NH₃ and HNO₃, the spectral bands of 920–1090 cm⁻¹ and 875–900 cm⁻¹ are used, respectively. Diurnal pattern of gas-phase NH₃ is shown in Fig. 2; very high mixing ratios of ammonia
 were observed up to 62 ppb, average 1-h peak values around 33 ppb, mostly occurred during the early morning sampling periods (08:00 a.m.). Overall, these high values and the dimensional pattern of the periods for the periods (08:00 a.m.).

the diurnal profile observed for gas-phase NH_3 during 2005 are very similar in trends to those first observed in downtown Mexico City in 2003 (Moya et al., 2004).

The uncertainty in measured nitric acid is large (~40%) due to its small absorption cross-section in the infrared. Moya et al. (2004) suggested to determine gas-phase HNO₃ by another analytical technique. This was performed by the denuder difference method (DDM, Shaw et al., 1982; Chow et al., 1993) to further constrain the uncertainty associated with the HNO₃ measurement. Measurements were performed (Fig. 3) in diurnal four-hour sampling periods in accord with the collection of airborne fine particulate method.

ticulate matter at the MER site. An analysis of HNO₃ levels measured at the MER 2005 study versus those recorded during the IMADA-AVER campaign (Edgerton et al., 1999) was performed and suggested nitric acid measurements from the denuder system (DDM-HNO₃) were more reliable to be used in thermodynamic calculations than

those from the FTIR system (FTIR- HNO₃).

Figure 4 shows gas-particle diurnal behavior and Tables 1 and 2 show the average and maximum values of 4 h PM_1 , $PM_{2.5}$ measurements as well as gas- and particle-phase mass fractions (where applicable) for total (sum of gas and particulate phase) ammonium, nitrate, sulfate and crustal species. Ammonium and nitrate occurred mainly during the 2nd (10:00–14:00 h) once the precursors have been emitted during the first hours in the early morning (06:00–10:00 h). Ammonia remained mainly in the gas phase (around 60% of diurnal average, 75% in the early morning period), while $PM_{2.5}$ nitrate remained in the particulate phase (around 70% diurnal average).

¹⁰ The same pattern is seen in the PM_1 fraction as well (not shown).

3 Modeling aerosol thermodynamic equilibrium

Several atmospheric models based on thermodynamic equilibrium have been developed to predict the partitioning of inorganic species between the gas and particulate phases, as SEQUILIB (Pilinis and Seinfeld, 1987), AIM2 (Wexler and Seinfeld, 1991; Clegg et al., 1992, 1994, 1995, 1998a, b, 2003; Wexler and Clegg, 2002), SCAPE2 (Kim and Seinfeld, 1995; Meng et al., 1995), EQUISOLV-II (Jacobson et al., 1996; Jacobson 1999), GFEMN (Ansari and Pandis, 1999a), EQSAM (Metzger et al., 2002; Trebs et al., 2005), MESA (Zaveri et al., 2005), ADDEM (Topping et al., 2005), ISORROPIA-II (Fountoukis and Nenes, 2007), UHAERO (Amundson et al., 2006). These models require knowledge of total ammonium, nitrate, sulfate, chloride and, in some cases, crustal species such as Ca²⁺, K⁺, Mg²⁺ to predict the concentration of the species in the gas and aerosol phases, and within the aerosol phase, between the solid and aqueous phases.

SCAPE2 and ISORROPIA II were chosen for this study as models that can comprehensively treat crustals and can predict for both deliquescence and efflorescence paths of aerosol behavior. "Deliquescence path" is when solids are allowed to precipitate out of solution upon saturation; under this assumption, single-component aerosol

ACPD 7, 11257–11294, 2007 Thermodynamic partitioning of inorganics in downtown Mexico M. Moya et al. **Title Page** Abstract Introduction Conclusions References Tables **Figures** Close Back Full Screen / Esc **Printer-friendly Version** Interactive Discussion

FGU

transitions to a saturated aqueous solution at a characteristic "relative humidity of deliquescence" (which is when the ambient relative humidity is equal to the water activity of the saturated solution). The "metastable path" is when solids do not precipitate out of the solution regardless of its saturation state. In agreement with Ansari and Pandis (2000), Moya et al. (2002a, b) found that for conditions typical of dry-winter

- ⁵ Pandis (2000), Moya et al. (2002a, b) found that for conditions typical of dry-winter Mexico City, both branches may be required when predicting aerosol behavior. Both SCAPE2 and ISORROPIA II treat the equilibrium problem by solving a set of nonlinear algebraic equations (reaction equations) simultaneously with electroneutrality and mass conservation equations for each species. ISORROPIA-II explicitly treats the mu-
- tual deliquescence region (MDRH, Wexler and Seinfeld, 1991, Nenes et al., 1998) for which the multicomponent salts are saturated with respect to their aqueous phase solution. In both models, Kussik-Meissner (Kussik and Meissner, 1978) binary and the Bromley (Bromley, 1973) multicomponent activity coefficient methods are used. The two models differ in the deliquescence behavior, as ISORROPIA II uses the concept of "compositional invariance with PH evaluat" (Founteukic and Nance, 2007).

¹⁵ "compositional invariance with RH cycling" (Fountoukis and Nenes, 2007).

4 Results and discussion

4.1 Attributes of simulations

The ensuing analysis focuses on the behavior of PM₁, PM_{2.5} in Mexico City. Henceforth, fine particulate concentrations refer either to particles with aerodynamic diam-²⁰ eters ≤ 2.5 micrometers (PM_{2.5}) or ≤1 micrometer (PM₁). Overall, 39 (PM₁, PM_{2.5}) cases corresponding to the winter sampling period of 17 through 23 February, and 4 March 2005 at the MER site were analyzed. Each data point corresponds to 4 h averaged measurements of aerosol components and gas-phase precursors (NH₃-FTIR, HNO₃-DDM) which are then summed up to calculate the total concentrations of nitrate and ammonia.

Calculation of activity of aqueous species in SCAPE2 and ISORROPIA-II is per-

formed using Kussik-Meissner and Bromley's binary and multicomponent activity coefficients methods. For consistency, both models share the same water activity database, which was obtained from the AIM model (http://www.hplc.uea.ac.uk/~e770/aim.html) and recent water activity data from Ha and Chan (1999) and Kelly and Wexler (2006).

Following proposed formulas of Lurmann et al. (1997), the prediction skill of each

model was quantified in terms of the mean normalized error (MNE), $MNE = \frac{\sum_{i}^{n} |P_i - O_i|}{\sum_{i}^{n} O_i}$, and

mean normalized bias (MNB), MNB= $\frac{\sum_{i=1}^{n} (P_i - O_i)}{\sum_{i=1}^{n} O_i}$, where P_i and O_i represent predictions

and observations of data point *i*, respectively, and *n* is the total number of data points. MNE is related to the overall discrepancy between predictions and observations, while MNB gives information on systematic errors.

4.2 Aerosol phase transitions: stable or metastable?

5

10

Tables 3–6 show statistics of SCAPE2 and ISORROPIA-II performance considering deliquescence (stable) branch. Tables 7–10 show same analysis considering the efflorescence (metastable) path of aerosol behavior. Overall, no significant differences between model predictions were observed by applying any of the branches for cases where RH >40% (1st and 2nd sampling periods). For these cases, particulate (PM₁, PM_{2.5}) ammonium and PM_{2.5} nitrate is predicted within 20–40% of error while PM₁ nitrate is not adequately predicted for the 1st sampling periods (MNE around 60%). For low RH values (afternoon sampling periods), by applying the efflorescence path, PM_{2.5}

²⁰ nitrate predictions significantly improves (~20% and ~50% for SCAPE2 and ISOR-ROPIA II, respectively). Nevertheless, mean normalized errors for these low RH cases are still significant (~50%) as well as PM₁ nitrate during the early morning sampling periods (~60%). For these particular cases, a further analysis is provided below.

ACPD 7, 11257–11294, 2007 Thermodynamic partitioning of inorganics in downtown Mexico M. Moya et al. **Title Page** Introduction Abstract Conclusions References **Figures** Tables Back Close Full Screen / Esc **Printer-friendly Version** Interactive Discussion

FGU

Ansari and Pandis (2000) stressed the importance of considering metastable equilibrium states in thermodynamic modeling. Based on this, Moya et al. (2001) postulated that assuming a metastable aerosol for winter-dry ambient conditions would improve Mexico City $PM_{2.5}$ nitrate predictions; the validity of this postulation is assessed. By applying the efflorescence branch of the equilibrium approach for low RH, Table 11 5 presents the concentration range of particulate nitrate (PM_1, PM_{25}) measurements, stratified by sampling period. For low RH cases (3rd sampling periods) where greater differences between both branches were observed, low aerosol nitrate concentrations $(<3 \,\mu g \, m^{-3})$ were recorded at the MER site. Also, PM₁ nitrate concentration during the early morning sampling periods was relatively low ($<8 \mu g m^{-3}$). Extending our anal-10 vsis by calculating sulfate-to-nitrate molar ratios on these low nitrate loading cases (see Table 12) it is seen that when the ratio is greater than 1, predicted particulate nitrate significantly improves if the aerosol follows the efflorescence path. Furthermore, Fountoukis et al. (2007) have shown that when the sulfate-to-nitrate molar ratio is less than 1, predictions improve substantially if the aerosol follows the deliquescent path. 15 Together, both analyses suggest that aerosol nitrate loading and sulfate-to-nitrate molar ratio profoundly impacts the phase behavior at low RH, hence the partitioning of

4.3 Importance of including crustal species

semi-volatile PM_{2.5} nitrate in gas and particulate phases.

- It has been known that crustal and dust-related chemical species can play an important role in the partitioning of semi-volatile inorganics (e.g. Seinfeld and Pandis, 1998; Lee et al., 2003; Kline et al., 2004; Maxwell-Meier et al., 2004). We examine the role of crustals by applying ISORROPIA-II (efflorescence branch) on the current dataset. Tables 9–10 and 13–14 show results for PM₁, PM_{2.5} model simulations, including (Ta-
- ²⁵ bles 9–10) and no including (Tables 13–14) crustal species. Table 15 presents concentration of anions and cations stratified by sampling period for the system under study. As seen in Tables 9–10 and 13–14, no significant improvement is observed for PM₁, PM_{2.5} nitrate considering crustals in simulations. However, for ammonium PM_{2.5} an

improvement of 25% in MNE is observed for 1st sampling periods when considering crustals in simulations. As seen in Table 15, the presence of crustals (particularly Ca^{2+}) in this case is substantial with regards to the other sampling periods (2nd and 3rd). The sulfate and crustals-rich environment of the 1st sampling period cases ($PM_{2.5}$) allows

- the preferred formation of CaSO₄ in the system, which is translated to an improvement in predicted PM_{2.5} ammonium. For PM₁, where overall concentration of crustals is significantly less, this improvement in predicted ammonium is not observed. On the other hand, during the 3rd sampling periods, when the system is not enough in concentration of anions (Table 15) to fully neutralize the cations (ammonium and crustals), the
 effect of adding crustals to the system may be complex and counterintuitive. However, the study of these afternoon sampling period cases deserves further investigation, as
- the study of these afternoon sampling period cases deserves further investigation, as nitrate volatilization of the system may be occurring (see Sect. 4.4).

4.4 Other important issues

Whether or not bulk aerosol approach is a good approximation of aerosol composition and partitioning has been extensively discussed in the literature (Jacobson, 1999; Wexler and Seinfeld, 1990, 1992; Ansari and Pandis, 1999b) our measurements based on bulk filter sampling which can mix acidic with alkaline particles, address this issue quite effectively; error in predicted partitioning in part reflects this mixing across particle sizes. The extent of "bulk" vs. "size-resolved" partitioning on prediction error cannot be

fully assessed, as our measurement contains no information regarding the change in alkalinity/acidity of particles with size. However, the error is likely accounts for approximately 10% or so of the overall MNE. Results discussed in the present work show that the equilibrium assumption, when applied to timescales of 4 h, gives a prediction error of ~30% MNE for particulate ammonium and ~30–50% MNE for particulate nitrate (when considering all ranges, i.e., low-high ranges of aerosol nitrate loading).

Another issue is the effect of long sampling times, as discussed in previous modeling work under Mexico City conditions (Moya et al., 2001). In spite of the reduction of PM sampling periods (4 h) in the MER 2005 study versus previous ones (e.g. 6 h, IMADA-

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

AVER field study; Edgerton et al., 1999), results presented here suggest that under periods of high variability of T and RH (Fig. 1), a faster time resolution in measurements is required for thermodynamic analysis.

Finally, the methods used in collecting samples during the field study (Moya and Huey, 2007) are subject to experimental uncertainty because of the semivolatile nature of some inorganic compounds. Previous work (e.g. Schaap et al., 2004; Chang et al., 2000; Hearing and Cass, 1999; Chow et al., 1994) has reported significant losses of nitrate on filter-based aerosol samples. Uncertainties related to volatilized PM nitrate measurements deserves further analysis as they might introduce some errors in total
particulate nitrate concentrations considered for evaluate model performance.

5 Conclusions

This study analyzes the partitioning of nitrate and ammonium between the gas and particulate phases under dry-winter 2005 conditions of downtown Mexico City through application of thermodynamic models SCAPE2 and state-of-the-art ISORROPIA II.

- ¹⁵ Overall, no significant differences between model predictions (within 30% of error) are observed for particulate (PM₁, PM_{2.5}) ammonium. 4 h PM_{2.5} nitrate measurements are predicted in the same range of error for cases of moderate to high RH (40–70%). At low RH (<30%) characteristic of afternoon sampling periods (14:00–18:00 h), the metastable branch of the equilibrium assumption improves significantly (by 50% of</p>
- MNE, ISORROPIA II simulations) predicted PM_{2.5} nitrate. Further analysis of sulfate-to nitrate molar ratios (>1) on these low RH cases are in agreement with suggested findings by Ansari and Pandis (2000) regarding consideration of both branches of aerosol behavior. This study suggests that knowledge of the real state of the aerosol is of relevance for adequately modeling partitioning of semivolatile species between the gas
- and particulate phases, under Mexico City conditions. Finally, the inclusion of crustals improves predicted PM_{2.5}, particularly ammonium, due to the sulfate-calcium rich environment (such as downtown Mexico City). These findings, if applicable to conditions

other than those found in Mexico City, can be a significant improvement in air quality modeling in nitrate deficient environments.

Acknowledgements. M. Moya acknowledges support from CONACyT-Ciencia Básica (J51782) and PAPIIT-UNAM (IN107306). A. Nenes and C. Fountoukis acknowledge support from NSF
 ⁵ CAREER, NOAA (NMRAC000-5-04017) and EPA (X83234201). Special acknowledgement to R. Ramos and A. Retama from the RAMA-GDF, E. Coz (CIEMAT-Spain), R. Basaldud, M. Murillo and E. Matias (UNAM) for technical support during the field campaign at the MER site (2003–2005). D. Flores is acknowledged for computing assistance.

References

Amundson, N. R., Caboussat, A., He, J. W., Martynenko, A. V., Savarin, V. B., Seinfeld, J. H., and Yoo, K. Y.: A new inorganic atmospheric aerosol phase equilibrium model (UHAERO), Atmos. Chem. Phys., 6, 975–992, 2006,

http://www.atmos-chem-phys.net/6/975/2006/.

Ansari, A. and Pandis, S.: Prediction of multicomponent inorganic atmospheric aerosol behav-

ior, Atmos. Environ., 34, 157–168, 1999a.

- Ansari, A. and Pandis, S.: An analysis of four models predicting the partitioning of semi-volatile inorganic aerosol components, Aerosol Sci. Technol., 31, 129–153, 1999b.
- Ansari, A. S. and Pandis, S. N.: The effect of metastable equilibrium states on the partitioning of nitrate between the gas and aerosol phases, Atmos. Environ., 34, 157–168, 2000.
- 20 Bromley, L. A.: Thermodynamic properties of strong electrolytes in aqueous Solutions, AIChE Journal, 19, 313–320, 1973.
 - Chang, M. C., Sioutas, C., Kim, S., Gong, H., and Linn, W. S.: Reduction of nitrate losses from filter and impactor samplers by means of concentration enrichment, Atmos. Environ., 34, 85–98, 2000.
- ²⁵ Chow, J. C., Watson, J. G., Bowen, J. L.: A sampling system for reactive species in the western US: Sampling and analysis of airborne pollutants, Winegar, E. D. and Keith, L. H. Editors, Ann Arbor, MI: Lewis Publishers, Pages: 209-228, 1993.

Chow, J. C., Fujita, E. M., Watson, J. G. Lu, Z., and Lawson, D. R.: Evaluation of filter-based aerosol measurements during the 1987 Southern California Air Quality Study, Environ. Monit.

³⁰ Assess., 30, 49–80, 1994

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

Title	Title Page				
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
I	۶I				
•	•				
Back	Close				
Full Scre	en / Esc				
Printer-friendly Version					
Interactive	Interactive Discussion				

- Chow, J. C.: Critical review: measurements methods to determine compliance with ambient air quality standards for suspended particles, J. Air Waste Manage., 45, 320–382, 1995.
- Chow, J. C., Watson, J. G., Edgerton, S. A., and Vega, E.: Chemical composition of PM_{2.5} and PM₁₀ in Mexico City during winter 1997, Sci. Total Environ., 287, 177–201, 2002.
- ⁵ Clegg, S. L., Pitzer, K. S., and Brimblecombe, P.: Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes, J. Phys. Chem. A., 96, 9470–9479, 1992.
 - Clegg, S. L. and Pitzer, K. S., Brimblecombe, P.: Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes, (additions and corrections for their published papers), J. Phys. Chem., 98, 1368, 1994.
- Clegg, S. L., Pitzer, K. S., and Brimblecombe, P.: Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes, (additions and corrections for their published papers), J. Phys. Chem. 99, 6755, 1995.
- Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic Model of the System H⁺-NH₄⁺-Na⁺-SO₄²⁻-NO₃⁻-Cl⁻-H₂ O at Tropospheric Temperatures. J. Phys. Chem. A., 102, 2137–2154, 1998a.
- Clegg, S. L., Brimblecombe, P., and Wexler, A. S.: Thermodynamic Model of the System $H^+ NH_4^+ Na^+ SO_4^{2-} NO_3^- Cl^- H_2O$ at 298.15 K, J. Phys. Chem. A., 102, 2155–2171, 1998b.
- Clegg, S. L., Seinfeld, J. H., and Edney, E. O.: Thermodynamic modeling of aqueous aerosols
 containing electrolytes and dissolved organic compounds. II. An extended Zdanovskii-Stokes-Robinson approach, J. Aerosol Sci., 34, 667–690, 2003.
 - Edgerton, S. A., Arriaga, J. L., Archuleta, J., Bian, X., Bossert, J. E., Chow, J. C., Coulter, R. L., Doran, J. C., Doskey, P. V., Elliot, S., Fast, J. D., Gaffney, J. S., Guzman, F., Hubbe, J. M., Lee, J. T., Malone, E. L., Marley, N. A., McNair, L. A., Neff, W., Ortiz, E., Petty, R.,
- Ruiz, M., Shaw, W. J., Sosa, G., Vega, E., Watson, J. G., Whiteman, C. P., and Zhong, S.: Particulate air pollution in Mexico City: A collaborative research project, J. Air Waste Manage., 49, 1221–1229, 1999.
 - Englert, N.: Fine particles and human health a review of epidemiological studies, Toxicol. Lett., 149, 235–242, 2004.
- Fountoukis, C. and Nenes, A.: ISORROPIA-II: a computational efficient thermodynamic equilibrium model for K⁺-Ca²⁺-Mg²⁺-NH⁺₄-Na⁺-SO²⁻₄-NO⁻₃-H₂O aerosols, Atmos. Chem. Phys., 7, 1893–1939, 2007,

http://www.atmos-chem-phys.net/7/1893/2007/.

10

15

7, 11257–11294, 2007 Thermodynamic partitioning of inorganics in downtown Mexico M. Moya et al. **Title Page** Introduction Abstract Conclusions References **Figures** Tables

ACPD

Printer-friendly Version

Full Screen / Esc

Back

Close

Interactive Discussion

EGU

- Fountoukis, C., Nenes, A., Sullivan, A., Weber, R., VanReken, T., Fisher, M., Matias, E. Moya, M., Farmer, D., and Cohen, R.: Thermodynamic Characterization of Mexico City Aerosol during MILAGRO 2006, Atmos. Chem. Phys., 7, 9203–9233, 2007, http://www.atmos-chem-phys.net/7/9203/2007/.
- ⁵ Grutter, M., Flores, E., Basaldud, R., and Ruiz-Suarez, L. G.: Open-path FTIR spectroscopic studies of the trace gases over Mexico City. Atmos. Oceanic Opt., 16, 232–236, 2003.
 - Ha, Z. and Chan, C.: The water activities of MgCl₂, Mg(NO₃)₂, MgSO₄, and their mixtures, Aerosol Sci. Technol., 31, 154–169, 1999.
 - Hearing, S. and Cass, G.: The magnitude of bias in the measurement of PM2.5 arising from
- volatilization of particulate nitrate from Teflon filters. J. Air Waste Manage., 49, 725–733, 1999.

INEGI, http://www.demographia.com/db-mxcward.htm, 2000.

- Jacobson, M., Tabazadeh, A., and Turco, R.: Simulating equilibrium within aerosols and nonequilibrium between gases and aerosols, J. Geophys. Res., 101, 9079–9091, 1996.
- ¹⁵ Jacobson, M. Z.: Studying the effects of calcium and magnesium on size-distributed nitrate and ammonium with EQUISOLV II, Atmos. Environ., 33, 3635–3649, 1999.
 - Kelly, J. T. and Wexler, A. S.: Water uptake by aerosols: Water activity in supersaturated potassium and deliquescence as a function of temperature, Atmos. Environ., 40, 4450–4468, 2006.
- 20 Kim, Y. P., Seinfeld, J. H., and Saxena, P.: Atmospheric gas-aerosol equilibrium I. Thermodynamic model, Aerosol Sci. Technol., 19, 157–181, 1993a.
 - Kim, Y. P., Seinfeld, J. H., and Saxena, P.: Atmospheric gas-aerosol equilibrium II. Analysis of common approximations and activity coefficients calculation methods, Aerosol Sci. Technol., 19, 182–198, 1993b.
- Kim, Y. P., Seinfeld, J. H., and Saxena, P.: Atmospheric gas-aerosol equilibrium III. Thermodynamics of crustal elements Ca²⁺, K⁺ and Mg²⁺, Aerosol Sci. Technol., 22, 93–110, 1995. Kline, J., Huebert, B., Howell, S., Blomguist, B., Zhuan, J., Bertram, T., and Carrillo, J.: Aerosol
 - composition and size versus altitude measured from the C-130 during ACE-Asia, J. Geophys. Res., 109, D19S08, doi:10.1029/2004JD004540, 2004.
- ³⁰ Kusik, C. L. and Meissner, H. P.: Electrolyte activity coefficients in inorganic processing, AIChE Symposium Series, 173, 14–20, 1978.
 - Lee, Y. M., Weber, R., Ma, Y., Orsini, D., Maxwell-Meier, K., Blake, D., Meinardi, S., Sachse, G., Harward, C., Chen, T. Y., Thornton, D., Tu, F. H., and Bandy, A.: Airborne measurement

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

Title	Title Page				
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
14	۶I				
•	•				
Back	Close				
Full Scre	een / Esc				
Printer-frier	Printer-friendly Version				
Interactive	Interactive Discussion				

of inorganic ionic components of fine aerosol particles using the particle-into-liquid sampler coupled to ion chromatography technique during ACE-Asia and TRACE-P., J. Geophys. Res., 108(D23), doi:10.1029/2002JD003265, 2003.

Lurmann, F. W., Wexler, A. S., Pandis, S.N., Musarra, S., Kumar, N., and Seinfeld, J. H.: Modeling urban and regional aerosols. II. Application to California's South Coast Air Basin

- 5 Modeling urban and regional aerosols. II. Application to California's South Coast Air Basin, Atmos. Environ., 31, 2695–2715, 1997.
 - Matías, E.: Evaluación de modelos termodinámicos en la predicción de partículas atmosféricas finas (componente inorgánica) a condiciones del centro histórico de la Ciudad de México, durante febrero-marzo, 2005, Master's Thesis, UNAM-Mexico, 2007.
- Maxwell-Meier, Weber, R., Song, C., Orsini, D., Ma, Y., Carmichael, G. R., and Streets, D. G.: Inorganic composition of fine particles in mixed mineral dust-pollution plumes observed from airborne measurements during ACE-Asia, J. Geophys. Res., 109, D19S07, doi:10.1029/2003JD004464, 2004.

Meng, Z. Y., Seinfeld, J. H., Saxena, P., and Kim, Y. P.: Atmospheric Gas-Aerosol Equilibrium IV. Thermodynamics of Carbonates, Aerosol Sci. Technol., 23, 131–154, 1995.

15

20

30

Metzger, S., Dentener, F., Pandis, S. N., and Lelieveld, J.: Gas/aerosol partitioning: 1. A computationally efficient model, J. Geophys. Res., 107(D16), 4312, doi:10.1029/2001JD001102, 2002.

Molina, M. and Molina, L. T.: Air Quality in the México Megacity: An integrated assessment. Kluwer Academic Publishers, Dordrecht, 2002.

Moya, M. Ansari, A. S., and Pandis, S. N.: Partitioning of nitrate and ammonium between the gas and particulate phases during the 1997 IMADA AVER study in Mexico City, Atmos. Environ., 35, 1791–1804, 2001.

Moya, M., Pandis, S. N., and Jacobson, M. Z.: Is the size distribution of urban aerosols deter-

- ²⁵ mined by thermodynamic equilibrium? An application to Southern California, Atmos. Environ., 36, 2349–2365, 2002a.
 - Moya, M., Avalos-González, E., Baumgardner, D., and Raga, G. B.: Predicting sizedifferentiated inorganic species for México City conditions with SELIQUID, Proceedings of the 2002 American Association for Aerosol Research Conference, Charlotte, NC, USA, 2002b.
 - Moya, M., Grutter, M., and Báez, A.: Diurnal variability of size differentiated inorganic aerosols and their gas-phase precursors during January and February of 2003 near downtown Mexico City, Atmos. Environ., 38, 5651–5661, 2004.

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

Title	Title Page				
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
14	۶I				
•	•				
Back	Close				
Full Scre	en / Esc				
Printer-friendly Version					
Interactive	Interactive Discussion				

- Moya, M. and Huey, G.: Some aspects of fine inorganic aerosols (PM₁, PM_{2.5}) and precursors in the metropolitan area of Mexico City during the winters of 2003, 2005 and 2006 (MIRAGE-MILAGRO field campaign). Proceedings of the 2007 European Aerosol Conference, Salzburg, Austria, 2007.
- ⁵ Nenes, A., Pilinis, C., and Pandis, S. N.: ISORROPIA: a new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols, Aquatic Geochem., 4, 123–152, 1998.
 - Nikasinovich, L., Just, J., Sahraoui, F., Seta, N., Grimfeld, A., and Momas, I.: Nasal inflammation and personal exposure to fine particles PM2.5 in asmathic children. American Academy of Allergy, Asthma and Immunology, doi:10.1016/j.jaci.2006.03.023, 2006.
- Peters, A.: Particulate matter and heart disease: Evidence from epidemiological studies, Toxicol. Appl. Pharm., 207, S477–S482, 2005.
 - Peters, A., Veronesi, B., Calderón-Garcidueñas, L., Gehr, P., Chi Che, L., Geiser, M., Reed, W., Rothen-Rutishauser, B., Schurch, S., Shulz, H.: Translocation and potential neurological effects of fine and ultrafine particles. A critical updated, Part. Fibre Toxicol., 3(13), doi:10.1186/1743-8977-3-13. 2006.
 - Pilinis, C. and Seinfeld, J. H.: Continued development of a general equilibrium model for inorganic multicomponent atmospheric aerosols, Atmos. Environ., 21, 2453–2466, 1987.

15

20

- Rothman, L. S., Rinsland, C. P., Goldman, A., Massie, S. T., Edwards, D. P., Flaud, J. M., et al.: The HITRAN molecular spectroscopic database, J. Quant. Spectros. RA. 60, 665–710, 1998.
- Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics. From air pollution to climate change. Wiley Interscience. New York. USA, 1998.
- Schaap, M., Spindler, G., Schulz, M., Acker, K., Maenhaut, W., Berner, A., Wieprecht, W., Streit, N., Müller, K., Brüggemann, E., Chi, X., Putaud, J. P., Hitzenberger, R., Puxbaum, H.,
- ²⁵ Baltensperger, U., and Brink, H.: Artefacts in the sampling of nitrate studied in the "INTER-COMP" campaigns of EUROTRAC-AEROSOL, Atmos. Environ, 38, 6487–6496, 2004.
 - Shaw, R., Stevens, R. K., et al.: Measurements of atmospheric nitrate and nitric acid: the denuder difference experiment, Atmos. Environ, 16, 845–853, 1982.

Schulz, H., Harder, V., Ibald-Mulli, A., Khandoga, A., Koenig, W., Krobach, F., Radykewicz,

- ³⁰ R., Stampfl, A., Thorand, B., and Petters, A.: Cardiovascular effects of fine and ultrafine particles, J. Aerosol Med., 1, 1–22, 2005.
 - Topping, D. O., McFiggans, G. B., and Coe, H.: A curved multicomponent aerosol hygroscopicity model framework: Part 1 – Inorganic compounds, Atmos. Chem. Phys., 5, 1205–1222,

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

Title Page						
Abstract Introduction						
Conclusions	References					
Tables	Figures					
I4	۶I					
•	•					
Back	Close					
Full Scre	en / Esc					
Printer-friendly Version						
Interactive	Discussion					

2005,

http://www.atmos-chem-phys.net/5/1205/2005/.

- Trebs, I., Metzger, S., Meixner, F. X., Helas, G., Hoffer, A., Rudich, Y., Falkovich, A. H., Moura, M. A. L., da Silva, R. S., Artaxo, P., Slanina, J., and Andreae, M. O.: The $NH_4^+ SO_4^{2^-}$ –
- $NO_3^- CI^- H_2O$ aerosol system and its gas phase precursors at a pasture site in the Amazon Basin: How relevant are mineral cations and soluble organic acids?, J. Geophys. Res., 110, D07303, doi: 10.1029/2004JD00547, 2005.
 - Wexler A. S. and Seinfeld, J. H.: The distribution of ammonium salts among a size and compositional dispersed aerosol, Atmos. Environ., 24A, 1231–1246, 1990.
- Wexler A. S. and Seinfeld, J. H.: Second-generation inorganic aerosol model, Atmos. Environ., 25, 2731–2748, 1991.
 - Wexler A. S. and Seinfeld, J. H.: Analysis of aerosol ammonium nitrate: departures from equilibrium during SCAQS, Atmos. Environ., 26A, 579–591, 1992.

Wexler, A. S. and Clegg, S. L.: Atmospheric aerosol models for systems including the

- ions H^+ , NH_4^+ , Na^+ , SO_4^{2-} , NO_3^- , CI^- , Br^- and H_2O , J. Geophys. Res., 107, 4207, doi:10.1029/2001JD000451, 2002.
 - Zaveri, R. A., Easter, R. C., and Peters, L. K.: A computationally efficient Multicomponent Equilibrium Solver for Aerosols (MESA), J. Geophys. Res., 110, D24203, doi:10.1029/2004JD005618, 2005.

ACPD

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

M. Moya et al.

Title Page					
Abstract	Introduction				
Conclusions	References				
Tables	Figures				
14	۶I				
•	•				
Back	Close				
Full Scre	Full Screen / Esc				
Printer-friendly Version					
Printer-frier	ndly Version				
Printer-frier Interactive	ndly Version Discussion				

EGU

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

M. Moya et al.

Species	Mean observed $(\mu \text{g m}^{-3})$	Maximum value (µg m ⁻³)	Gas phase (average value, %)	Particulate phase (average value, %)	Ti	tle Page
Total Nitrate	12.60	27.10	40*	60	Abstract	Introduction
Total ammonium	20.10	33.70	68	32		
Sulfate	12.90	23.70	0	100	Conclusion	s References
Sodium	0.70	1.90	0	100		
Calcium	0.50	1.10	0	100	Tables	Figures
Potassium	1.30	2.60	0	100		
Magnesium	0.10	0.50	0	100	14	► I
* Denuded HNO ₃						
					•	•
					Back	Close
					Full S	Screen / Esc
					Printer-f	riendly Version
					Interacti	ive Discussion
		11276				

Table 1. Observed PM₁ concentrations for inorganic species at the Merced site, from 17 February to 4 March, 2005.

Species

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

Table 2. Observed $PM_{2.5}$ concentrations for inorganic species at the Merced site, from 17 February to 4 March 2005.

11277

Species	Mean observed $(\mu g m^{-3})$	Maximum value (µg m ⁻³)	Gas phase (average value, %)	Particulate phase (average value, %)
Total Nitrate	16.20	40.00	30*	70
Total ammonium	22.10	36.80	60	40
Sulfate	18.90	30.11	0	100
Sodium	1.00	3.50	0	100
Calcium	1.00	3.50	0	100
Potassium	1.80	2.90	0	100
Magnesium	0.20	0.60	0	100
* Denuded HNO ₃				

ACPD

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

M. Moya et al.

Title Page

Introduction

References

Figures

ÞI

►

Close

ract

sions

es

Back

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

M. Moya et al.

Title Page				
Abstract	Introduction			
Conclusions	References			
Tables	Figures			
۱۹	►I			
•	•			
Back	Close			
Full Scr	een / Esc			
Printer-friendly Version				
Interactive Discussion				
F	ЭU			

Table 3. SCAPE2 model performance for PM_1 ammonium and nitrate by applying deliquescence branch, at the Merced site from 17 February to 4 March 2005.

		ammonium		nitrate	
Sampling period		gas	particulate	gas	particulate
Overall	% MNB	-1	9	-21	13
	% MNE	13	31	82	56
06:00–10:00	% MNB	-3	19	-95	58
	% MNE	6	47	95	58
10:00–14:00	% MNB	-11	22	-43	35
	% MNE	16	23	47	36
14:00–18:00	% MNB	18	-22	113	-82
	% MNE	18	22	113	82

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

M. Moya et al.

Table 4. SCAPE2 model performance for $PM_{2.5}$ ammonium and nitrate by applying deliquescence branch, at the Merced site from 17 February to 4 March 2005.

		ammonium		nitrate	
Sampling period		gas	particulate	gas	particulate
Overall	% MNB	4	6	12	-5
	% MNE	15	24	105	44
06:00–10:00	% MNB	-3	31	-93	34
	% MNE	5	33	93	34
10:00–14:00	% MNB	-4	6	0	11
	% MNE	14	18	82	30
14:00–18:00	% MNB	27	-24	156	-78
	% MNE	27	24	156	78

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

M. Moya et al.

Title Page				
Abstract	Introduction			
Conclusions	References			
Tables	Figures			
I4	۶I			
•	•			
Back	Close			
Full Scre	een / Esc			
Printer-friendly Version				
Interactive Discussion				
FC	311			

Table 5. ISORROPIA-II model performance for PM_1 ammonium and nitrate by applying deliquescence branch, at the Merced site from 17 February to 4 March 2005.

		ammonium		nitrate	
Sampling period		gas	particulate	gas	particulate
Overall	% MNB	-1	4	-18	13
	% MNE	14	30	94	66
06:00-10:00	% MNB	-3	12	-97	61
	% MNE	6	41	97	61
10:00-14:00	% MNB	-14	19	-55	45
	% MNE	17	21	55	45
14:00-18:00	% MNB	19	-28	145	-100
	% MNE	19	28	145	100

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

M. Moya et al.

Table 6. ISORROPIA-II model performance for $PM_{2.5}$ ammonium and nitrate by applying deliquescence branch, at the Merced site from 17 February to 4 March 2005.

		ammonium			nitrate
Sampling period		gas	particulate	gas	particulate
Overall	% MNB	6	-1	32	-11
	% MNE	15	24	124	52
06:00–10:00	% MNB	-3	23	-93	36
	% MNE	5	28	93	36
10:00–14:00	% MNB	-3	-1	15	9
	% MNE	15	17	95	34
14:00–18:00	% MNB	29	-30	208	-100
	% MNE	29	-30	208	-100

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

M. Moya et al.

Table 7. SCAPE2 model performance for PM_1 ammonium and nitrate by applying efflorescence branch, at the Merced site from 17 February to 4 March 2005.

		ammonium			nitrate
Sampling period		gas	particulate	gas	particulate
Overall	% MNB	7	0	1	2
	% MNE	15	31	83	51
06:00-10:00	% MNB	-3	18	-95	58
	% MNE	6	46	95	58
10:00-14:00	% MNB	11	-5	42	-10
	% MNE	22	24	74	37
14:00-18:00	% MNB	16	-20	78	-61
	% MNE	16	20	78	61

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

M. Moya et al.

Table 8. SCAPE2 model performance for $PM_{2.5}$ ammonium and nitrate by applying efflorescence branch, at the Merced site from 17 February to 4 March 2005.

		ammonium			nitrate
Sampling period		gas	particulate	gas	particulate
Overall	% MNB	13	-5	36	-15
	% MNE	18	23	101	42
06:00-10:00	% MNB	-3	21	-83	32
	% MNE	4	24	83	32
10:00-14:00	% MNB	16	-15	73	-23
	% MNE	24	23	103	38
14:00–18:00	% MNB	26	-22	119	-60
	% MNE	26	22	119	60

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

M. Moya et al.

Title Page							
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
14	۶I						
Deals	Class						
Dack	Back Close						
Full Scr	een / Esc						
Printer-friendly Version							
Interactive	Discussion						
F	311						

Table 9. ISORROPIA-II model performance for PM_1 ammonium and nitrate by applying efflorescence branch, at the Merced site from 17 February to 4 March, 2005.

		ammonium			nitrate
Sampling period		gas	particulate	gas	particulate
Overall	% MNB	3	—1	-18	14
	% MNE	12	28	72	47
06:00–10:00	% MNB	-3	13	-97	61
	% MNE	6	41	97	61
10:00–14:00	% MNB	0	2	3	13
	% MNE	16	19	52	30
14:00–18:00	% MNB	16	-23	63	-50
	% MNE	16	23	63	50

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

M. Moya et al.

Table 10. ISORROPIA-II model performance for $PM_{2.5}$ ammonium and nitrate by applying efflorescence branch, at the Merced site from 17 February to 4 March 2005.

		ammonium			nitrate
Sampling period		gas	particulate	gas	particulate
Overall	% MNB	7	-4	6	-1
	% MNE	15	22	86	36
06:00–10:00	% MNB	-3	20	-92	36
	% MNE	5	24	92	36
10:00–14:00	% MNB	5	-8	28	-2
	% MNE	16	17	82	31
14:00–18:00	% MNB	24	-25	87	-45
	% MNE	24	25	87	45

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

M. Moya et al.

Title Page							
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
Back	Close						
Back Full Scre	Close en / Esc						
Back Full Scre	Close en / Esc						
Back Full Scre Printer-frien	Close en / Esc dly Version						
Back Full Scre Printer-frien Interactive	Close en / Esc dly Version Discussion						

EGU

 Table 11. Four-hour particulate nitrate measurements stratified by sampling period.

Particulate nitrate (μ g m ⁻³)						
Sampling Period PM ₁ PM _{2.5}						
06:00-10:00 6.2±1.8 10.3±4.4						
10:00-14:00	13.0 ± 4.4	17.5±8.8				
14:00-18:00	1.7±0.95	2.3 ± 0.96				

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

M. Moya et al.

Title Page							
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
•	•						
Back	Close						
Back Full Scre	Close een / Esc						
Back Full Scre Printer-frien	Close een / Esc						
Back Full Scree Printer-frien	Close een / Esc adly Version Discussion						

EGU

 Table 12.
 Sulfate-to-nitrate molar ratios stratified by sampling period observed at the Merced site.

Sulfate/Nitrate Molar Ratio						
Sampling Period PM ₁ PM _{2.5}						
06:00-10:00	0.8	0.9				
10:00-14:00	0.4	0.6				
14:00–18:00	3.4	1.6				

11287

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

M. Moya et al.

Title Page						
Abstract	Introduction					
Conclusions	References					
Tables	Figures					
14 × 1						
•	•					
Back	Close					
Full Scr	een / Esc					
Printer-friendly Version						
Interactive	Discussion					
F	30					

Table 13. ISORROPIA-II without crustals model performance for PM₁ ammonium and nitrate by applying efflorescence branch, at the Merced site from 17 February to 4 March, 2005.

		ammonium			nitrate
Sampling period		gas	particulate	gas	particulate
Overall	% MNB	-7	23	-13	17
	% MNE	10	26	67	46
06:00-10:00	% MNB	-14	47	-91	72
	% MNE	14	47	91	72
10:00-14:00	% MNB	-9	22	-2	15
	% MNE	9	23	52	27
14:00-18:00	% MNB	5	6	62	-45
	% MNE	6	7	62	45

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

M. Moya et al.

Title Page							
Abstract	Introduction						
Conclusions	References						
Tables	Figures						
14	►I						
•	•						
Back	Close						
Full Screen / Esc							
Printer-friendly Version							
Interactive Discussion							
FGU							

Table 14. ISORROPIA-II without crustals model performance for $PM_{2.5}$ ammonium and nitrate by applying efflorescence branch, at the Merced site from 17 February to 4 March 2005.

		an	nmonium	nitrate		
Sampling period		gas	particulate	gas	particulate	
Overall	% MNB	-8	19	8	-2	
	% MNE	14	26	86	36	
06:00-10:00	% MNB	-11	49	-93	36	
	% MNE	11	49	93	36	
10:00–14:00	% MNB	-13	9	32	-4	
	% MNE	19	19	78	30	
14:00-18:00	% MNB	4	0	90	-46	
	% MNE	8	10	90	46	

	Cl⁻	NO_3^-	SO ₄ ²⁻	Na⁺ (neq m ⁻³)	NH_4^+	K ⁺	Ca ²⁺	Mg ²⁺
06:00-10:00 h LST								
PM1.0	22.8	96.3	239.2	28.1	255.1	28.6	21.2	9.0
PM2.5	30.4	166.2	385.1	40.0	443.8	50.8	72.5	19.0
10:00-14:00 h LST PM1.0 PM2.5	7.5 8.4	209.9 283.0	255.5 363.7	26.3 50.1	381.7 489.2	30.7 41.7	28.5 42.3	7.5 14.0
14:00-18:00h LST PM1.0 PM2.5	3.9 4.0	27.5 37.4	307.5 416.1	33.5 48.1	268.5 380.7	33.3 42.1	24.1 38.4	9.7 6.8

Table 15. Concentration of anions and cations (in neq m^{-3}) for the current dataset (PM₁, PM_{2.5}) stratified by sampling period.

ACPD

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

Fig. 1. Average temperature and RH profile over the period 17–23 February 2005 at the Merced site.

7, 11257–11294, 2007

Thermodynamic partitioning of inorganics in downtown Mexico

Interactive Discussion

Fig. 3. Nitric acid averages obtained by Denuded Difference Method (DDM–HNO₃) during the period 17 February–4 March 2005 at the Merced site. No measurements were available for 00:00-06:00 h, 18:00-24:00 h LST.

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

