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Abstract. Recent work has shown that disparate systems can
be described as complex networks i.e. assemblies of nodes
and links with nontrivial topological properties. Examples
include technological, biological and social systems. Among
them, earthquakes have been studied from this perspective.
In the present work, we divide the Southern California re-
gion into cells of 0.1◦, and calculate the correlation of activ-
ity between them to create functional networks for that seis-
mic area, in the same way that the brain activity is studied
from the complex network perspective. We found that the
network shows small world features.

1 Introduction

Physics, a major beneficiary of reductionism, has developed
an arsenal of successful tools to predict the behavior of a sys-
tem as a whole from the properties of its constituents. The
success of these modeling efforts is based on the simplicity
of the interactions between the elements: there is no ambigu-
ity as to what interacts with what, and the interaction strength
is uniquely determined by the physical distance. We are at a
loss, however, in describing systems for which physical dis-
tance is irrelevant, or there is ambiguity whether two compo-
nents interact (Albert and Barabási, 2002).

Historically, the study of networks has been mainly the
domain of a branch of discrete mathematics known as graph
theory. Since its birth in 1736, when the Swiss mathemati-
cian Leonhard Euler published the solution to the Königsberg
bridge problem (consisting in finding a round trip that tra-
versed each of the bridges of the Prussian city of Königsberg
exactly once), graph theory has witnessed many exciting de-
velopments and has provided answers to a series of practi-
cal questions such as: what is the maximum flow per unit
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(ajlloret@ual.es)

time from source to sink in a network of pipes, how to color
the regions of a map using the minimum number of colors
so that neighboring regions receive different colors, or how
to fill n jobs by n people with maximum total utility. In
addition to the developments in mathematical graph theory,
the study of networks has seen important achievements in
some specialized contexts, as for instance in the social sci-
ences. Social networks analysis started to develop in the
early 1920s and focuses on relationships among social en-
tities such as communication between members of a group,
trades among nations, or economic transactions between cor-
porations (Boccaletti et al., 2006).

Recent work has shown that disparate systems can be de-
scribed as complex networks, that is, assemblies of nodes
and links with nontrivial topological properties, examples of
which include technological, biological and social systems
(Egúıluz et al., 2005). Among them, earthquakes also have
been studied from this perspective (Abe and Suzuki, 2004,
2006a; Baiesi and Paczuski, 2005). In the past few years, the
discovery of small-world and scale-free properties of many
natural and artificial complex networks has stimulated a great
deal of interest in studying the underlying organizing princi-
ples of various complex networks, and has led to dramatic
advances in this emerging and active field of research (Wang
and Chen, 2003). Here we present for earthquake fault sys-
tems a similar approach to that of Eguı́luz et al. (2005) for
functional brain networks, and find that the analyzed catalog
has small-world behavior.

The small world concept, in simple terms, describes the
fact that despite their often large size, in many networks there
is a relatively short path between any two nodes. The dis-
tance between two nodes is defined as the number of edges
along the shortest path connecting them. The most popular
manifestation of small worlds is the six degrees of separa-
tion concept, uncovered by the social psychologist Milgram
(Milgram, 1967), who concluded that there was a path of ac-
quaintances with typical length about six between most pairs
of people in the United States (Kochen, 1998). Watts and
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Fig. 1. Scheme of the method.

Strogatz (1998), in their seminal paper, have proposed to de-
fine small-world networks as those networks having both a
small value ofLp (characteristic path length), like random
graphs, and a high clustering coefficientC, like regular lat-
tices. They consider a one-dimensional graph withN nodes,
each vertex being connected to itsk nearest neighbors (where
Nkln[N ]). The numberk of edges per vertex is also called
the degree of the graph. Next, with a probabilityP , a random
edge is chosen and rewired to connect to a randomly chosen
vertex. By varyingP between 0 and 1 graphs can be created
which span the whole range from regular (P=0) to random
(P=1).

Two measures were introduced to characterize such
graphs: the characteristic path lengthLp is the mean of the
shortest path (expressed in number of edges) connecting any
two vertices on the graph. The cluster coefficientCp is the
likelihood (between 0 and 1) that thekv neighbors of vertex
v are also connected to each other, averaged over all vertices.
Regular networks or graphs have a highCp (Cp≈3/4) but a
long characteristic path length (Lp≈N/2k); random graphs
have a lowCp(k/N) but the shortest possible path length
(Lp≈ln(N)/ln(k)). The discovery of Watts and Strogatz
was that some networks with 0<P≪1, thus regular networks
with only a very small number of random edges, have a path
length that is much smaller than that of a regular network,
while theCp is still close to that of a regular network. This
dramatic drop inLp for P only slightly higher than 0 im-
plies that any vertex on the graph can be reached from any
other vertex in only a small number of steps. This is equiv-
alent to the small-world phenomenon and this type of graph
(Cp close to regular network;Lp close to random network)
was called a small-world graph by Watts and Strogatz. They
showed that many real world networks such as networks of
actors playing in the same movies, the power grid of North
America, and the neuronal network ofCaenorhabditis ele-
gans have small-world features. Furthermore, they suggested

that such networks may be optimal for information process-
ing in complex systems. Since then it has been shown that
many real networks display small world features and that
these may reflect an optimal architecture for information pro-
cessing (Stam, 2004).

2 Method

For a network (or graph) representation, first we have to de-
fine thenodes and theedges. Figure 1 shows a scheme of the
method. The seismic region is divided into squared cells (for
latitude and longitude only in this particular case), which will
be the nodes; the time is divided into intervals. At each time
step (we will try some, from days to several years), the ac-
tivity, a(x, t) of the cell is calculated as the number of earth-
quakes at that cell and time. Now we have a time series for
each cell. For each pair of cells,x1 andx2, we calculate their
correlation coefficient in this way:

r(x1, x2) =
〈a(x1, t)a(x2, t)〉 − 〈a(x1, t)〉 〈a(x2, t)〉

σ(a(x1))σ (a(x2))
(1)

whereσ 2(a(x))=
〈

a(x, t)2
〉

− 〈a(x, t)〉2, and〈·〉 represents
temporal averages.

Then, a threshold matrix is calculated for different values
of the correlation coefficient,rc, so that when the correlation
between two cells (nodes) is higher than the threshold value
(positive values ofrc only), we say that they are positively
correlated, and the nodes (cells) are connected by an edge.
Once our network is defined, we proceed to analyze its prop-
erties.

2.1 Node degree and degree distributions

The degree (or connectivity)di of a nodei is the number of
edges incident with the node, and is defined in terms of the
adjacency matrixA as:

di =

N
∑

j=1

aij (2)

The most basic topological characterization of a graph can
be obtained in terms of the degree distributionp(d), defined
as the probability that a node chosen uniformly at random
has degreed or, equivalently, as the fraction of nodes in the
graph having degreed.

2.2 Shortest path lengths and diameter

The shortest path is the geodesic distance between vertex
pairs in a network. The mean geodesicl is then:

l =
1

1
2n(n + 1)

∑

i≥j

gij (3)

wheregij is the geodesic distance from vertexi to vertex
j , andn is the number of nodes. The maximum value of
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Fig. 2. Average length and clustering coefficient of the networks
with different thresholds (rc) compared to those corresponding to a
random graph with the same number of nodes and the same average
node degree, for time lags of 1 day.

gij is called the diameter of the graph. We used Dijkstra’s
algorithm to implement this calculation (Dijkstra, 1959).

2.3 Clustering

A clear deviation from the behavior of the random graph can
be seen in the property of network transitivity, sometimes
also called clustering (Newman, 2003). Here we use the def-
inition by (Watts and Strogatz, 1998), that has found wide
use in numerical studies and data analysis (Newman, 2003):

C =
1

n

∑

i

Ci (4)

Ci =
number of triangles connected to vertex i

number of triples centered on vertex i
(5)

wheretriple means a single vertex with edges running to an
unordered pair of others. The clustering coefficient measures
the average density of triangles in a network. For random
networks,C tends to zero asn−1 in the limit of large system
size.

Fig. 3. Average length and clustering coefficient of the networks
with different thresholds (rc) compared to those corresponding to a
random graph with the same number of nodes and the same average
node degree, for time lags of 100 days.

3 Data

The catalog belongs to the Southern California Earthquake
Center (SCEC) and contains the seismic data for the period 1
January 1984 to 3 July 2001. The analyzed area ranges from
32–37 N, and 115–121 W. The magnitude spans from 3.0 to
8.0. The catalog is complete above magnitude 3.

As explained in Sect. 2, the catalog has to be discretized, in
order to translate it into nodes and edges. We used a 2D ap-
proximation, with box size of 0.1◦, which is reasonable tak-
ing into account the typical size of a small fault and the accu-
racy in the hypocentral locations. We also need a discretized
time, so that the activity at each time step is the number of
events at that interval, and then we obtain a time series of
activity for each cell. This is necessary in order to correlate
the different activities by means of Eq. (1). We tested dif-
ferent time intervals: 1 day, 100 days, and 1000 days. 1 day
is a natural selection to obtain almost continuous time series
seismic activity; between 100 and 1000 days we have the
commonly accepted time scale for aftershock sequences and
can be related to nucleation processes (Dieterich, 1994).

www.nonlin-processes-geophys.net/15/389/2008/ Nonlin. Processes Geophys., 15, 389–395, 2008
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Fig. 4. Average length and clustering coefficient of the networks
with different thresholds (rc) compared to those corresponding to a
random graph with the same number of nodes and the same average
node degree, for time lags of 1000 days.

4 Results

As can be seen in Figs. 2–4, the clustering coefficient for
the connected components is always much higher than that
of a random network. It also shows that for correlations be-
tween the cells higher than 0.8, the average path is always
lower than that of a random network. So, when we apply
a threshold forrc higher than that 0.8, we obtain a complex
network which behaves as a small world, as defined in (Watts
and Strogatz, 1998). Note that we are interested in study-
ing highly correlated cells, andrc>0.8 is therefore a good
lower threshold for our seismicity network. Note also that the
thresholdrc affects the connectivity of generated networks.
Largerrc will result in the disconnected network whose av-
erage short path length will become very large in the sense
of graph theory, which would be different from the results
in the figures. In Fig. 5 we show the degree distribution for
rc=0.8 and 1, 100, and 1000 days, respectively. They are not
scale free. This result is opposite to that found previously in
(Abe and Suzuki, 2004, 2006a; Baiesi and Paczuski, 2005).
Thus, the scale invariance is violated by thresholding. This
implies that thresholding eliminates an important element of
complexity of a seismic network. We also analyze the scaling
relationship between the clustering coefficient and the degree

Fig. 5. Degre distribution forrc=0.8 and 1 day, 100 days, 1000 days
lag, respectively. As can be seen, they are not scale free.

(Abe and Suzuki, 2006b). We see that it is also violated by
thresholding (Fig. 6).

In Fig. 7 we present the networks obtained withrc>0.8
and 1 day time interval. The main component is relating the
Landers earthquake of 1992. All the components are related
to big earthquakes with their corresponding aftershocks. It
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Fig. 6. Clustering in function of the degre forrc=0.8 and 1 day,
100 days, 1000 days lag, respectively. As can be seen, they are not
scale free.

is interesting to note that those Coalinga and Imperial Valley
earthquakes have cells relatively far from them, but with a
high correlation in the seismicity rate series.

When we visualize the network for 100 days lag, we can
see that there are much more main components (56) than be-
fore (6) by using the hierarchical algorithm. The main com-

Fig. 7. Networks obtained forrc>0.8, by using a betweenness and
a hierarchical algorithm (with some of the main earthquakes in the
region) to find the components, with Pajek (Batagelj and Mrvar,
1998), for time lags of 1 day.

ponent (first in Fig. 8) is the same as the main component for
1 day lag. Other particular components are related to differ-
ent earthquakes. Most of the clusters’ links outline clearly
the San Andreas fault direction.

The number of clusters decreases with respect to the net-
work found for the 100 days lag. In Fig. 9, the main compo-
nent for the 1000 days lag relates the whole area.

The way of constructing the seismic network is differ-
ent than that proposed by Abe and Suzuki (2006a), but one
conclusion obtained is very similar: the mainshock plays
a role of a “hub” with large degrees of connectivity. For
these highly correlated events, the network obtained repre-
sents a small world. It is also interesting to note that those
components can be viewed as the different activities a brain
processes. Each stimulus is answered by different cells in
the area. However, the networks obtained are not scale-free
(the degree distributions were not found to follow a power
law). So, the model for the network seems to be as follows:
links are much more likely to connect “neighbor nodes” than
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Fig. 8. Some of the 56 components for the 100 days time interval
and rc>0.8, by using a hierarchical algorithm to find the compo-
nents, with Pajek (Batagelj and Mrvar, 1998).

distant nodes. However, as can be deduced from the net-
works for 1 day lag (Fig. 7), there are some long range links,
in particular following the San Andreas fault. Since the rate
of earthquakes is related to the stress transfer (Helmstetter et
al., 2005), the networks reflect the way stresses are diffused
in the area.

Fig. 9. Some of the 18 components for the 1000 days time interval
and rc>0.8, by using a hierarchical algorithm to find the compo-
nents, with Pajek (Batagelj and Mrvar, 1998).

5 Conclusions

We propose a different analysis of seismicity in terms of
complex networks. They are obtained in a way similar to
the way brain functional networks are studied (Eguı́luz et
al., 2005). In our preliminary results, we see that the dif-
ferent components of the obtained networks act as different
responses to the stimulus given by the general plate motions
in the region. The results of this study show that the func-
tional connectivity matrix of seismic activity recordings can
be converted into a sparsely connected graph by applying a
suitable threshold ofrc. So, it can be said that the highest cor-
related cells in the region form a small world network. This
small world property means that there are long-range con-
nections in the seismic network. These connections might
be related to the San Andreas or other large faults in the re-
gion, that transfer the stresses. This method could be use-
ful to find triggered earthquakes, as well as for decluster-
ing the catalogs. This is related to the correlation coeffi-
cients, that may offer some important information about the
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earthquake activities. Another choice would be to let these
“small-world” networks to be weighted. In the present study
we only made our analysis in two dimensions, due to limita-
tions in the computations.
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