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Abstract. The problem of sensor placement is considered. The quality of diagnosis depends on the
number and location of measurements. We first deal with this dependence by analysing the observability.
The concepts of degree of redundancy is introduced. The criterion of reliability is useful for designer to
enhance the reliability of the measurement system. When some variables are required for the control of
the process, the reliability of the measurement system may be computed taking into account the reliability
of all sensors. In order to improve the diagnosis, we propose an original and computational tool for
designer to conceive the automatic and optimal sensor placement. Our objective is to design the
measurement system meeting the following constraints: observability of variables required for the
controlling and the maintenance, fulfilment of different degrees of redundancy imposed for some
variables and fulfilment of criterion of sensor cost or/and reliability.
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1. INTRODUCTION objectives: 1) guaranteeing the observability of variable
required for the control 2) guaranteeing degrees of
redundancy of some variables 3) ensuring minimal cost of
the instrumentation.

It is important for process control improvement to integrate
the design of the measurement system while conceiving the
process itself. The main problem to define a measurement
system concerns the selection of variables to be measured;
especially the state estimation of the process is influenced
by this choice. Indeed, estimation techniques are only
applicable for observable systems; one of the fundamental
steps then consists in isolating observable parts of the
process. Publications on observability concepts are
numerous; (Vaclavek 1969) is one of the firsts to undertake
the linear system study. (Mah et al., 1976) and (Gomolka
et al., 1992) develop a technique based on the graph
theory. One can also quote the works performed for
bilinear systems in the domain of data reconciliation
(Kretsovalis et al., 1988; Crowe 1989; Maquin et al., 1989
and Ragot et al., 1991).

The proposed algorithm is based on the analysis of cycles
of the graph associated with a process. It presents an
interest as much for its facility of implementation as for its
rapidity  with regard to matrix methods (Darouach et al.,
1986 and Maquin et al., 1987). Having concern for the
simplicity, we limit this communication to the linear
system study. It is organized as follows: the section 2 is
relative to the process description; the section 3 presents
the analysis of the process according to the concepts of
observability, redundancy and reliability; using the
analysis results of section 3, the fourth section proposes an
algorithm to solve the problem of sensor placement and
presents some numerical results.

Some synthesis works deal with this topic; indeed, in order
to carry out a diagnosis, a minimum number of information
provided from the sensors of the process is required. If the
amount of information is not sufficient, a number of
supplementary sensors is proposed so as to complete
"poor" parts in information of the process (Vaclavek 1969;
Ragot et al., 1986; Darouach et al., 1986 and Maquin et al.,
1987). The conception of measurement system for bilinear
models has also been published (Ragot et al., 1992). Thus,
the observability concept has provided one of the criteria
for the improvement of the measurement systems. More
recently, optimization study for the global reliability of the
measurement system taking into account simultaneously
observability and sensor reliability has been studied
(Turbatte et al., 1993).

2. DESCRIPTION OF A PROCESS

A process can be described by equations linking different
variables; in a linear system, these equations may be
represented by a graph made up of m arcs and n nodes. The
complete set of equations of the process can be written as:

M X = 0 (1)

where M represents the (n.m) node incidence matrix of
rank n, and X the (m.1) vector of variables of the system.
Considering L, the set of variables of the process, it is
divided into two following subsets: L1 is the subset of
variables required for the control and L2 the subset of
variables non required for the control. In the case of a
process equipped with sensors, measured and unmeasured
variables can be distinguished into the two lists Xm and
Xm- .

Our purpose is focused on the conception of sensor
placement by considering the reliability of sensors. Based
on the concepts of observability, redundancy and
reliability, this communication presents an automatic
sensor placement technique allowing to minimize the
global cost of the instrumentation. More precisely, given
the list of variables required for the control, the
maintenance and the safety of the process (in the
following, we only  use the word control instead), we seek
the optimal sensor placement that meets the following

As an example, let us consider the process network of
figure 1; it can be described by the node incidence matrix
M (table 1), where the first row contains the numbers of
variables, and the first column the numbers of equations
(nodes).



The subsets of variables required and non required for the
control respectively are:

chords. The number of these cycles is Cc
k. To obtain all the

cycles, we use the recursive procedure:

L1 = {1, 4, 6, 9, 10}        L2 = {2, 3, 5, 7, 8} -by using the fundamental cycle matrix, we generate cycles
containing 2 chords,
-then, we generate cycles containing 3 chords from cycles
containing 2 chords and fundamental cycles,
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-more generally, we generate cycles containing k chords
from cycles containing (k-1) chords and fundamental
cycles.

The total number of cycles is given by Nbc:

Nbc = Cc
1 + Cc

2 +...+ Cc
c =  ∑

i=1

c
Cc

i (5)
Fig. 1. A process network

This algorithm will be useful both for the analysis of a
process equipped with sensors and for the conception of a
measurement system.

1 2 3 4 5 6 7 8 9 10
I 1 -1 -1 . . . . . . .
II . 1 . -1 . -1 . . . .
III . . . 1 -1 . . . . .
IV . . . . . 1 . -1 . . 3. ANALYSIS OF AN INSTRUMENTED PROCESS
V . . 1 . 1 . -1 . . -1
VI . . . . . . 1 . -1 . In this section, we introduce the concepts of observability,

degree of redundancy of a variable and reliability.Table 1. Node incidence matrix M

From this process network, the construction of a cyclic
graph is possible by connecting arcs corresponding to its
feeds (entries) and its products (exits) to a so-called
environment node. This graph is interesting because it
allows all the necessary cycles for the implementation of
algorithms that we will present to be determined (Berge
1989).

3.1. Matrix of all the cycles of a graph
For an instrumented process, we define four lists whether a
variable is measured or not and according to its
membership to L1 and L2:

X1m: measured variables required for the control,
X1m- : unmeasured variables required for the control,
X2m: measured variables non required for the control,

The cycle matrix X2m- : unmeasured variables non required for the control.
It is important to note that a process graph is independent
of its measurement system. Especially, cycles are the same
whether the process is supplied with sensors or not. The
research of cycles depends on the determination of a
spanning tree of the graph. The literature proposes several
methods among which the method of Gauss-Jordan is
retained. This one uses linear equation combinations
(rows) and variable exchanges (columns) in order to obtain
a canonical form of the node incidence M (n.m) called the
canonical node incidence matrix or the fundamental cutset
matrix (Maquin et al., 1987; Gomolka et al., 1992):

These four lists allow the columns of the matrix M to be
rearranged as follows:

    <---------measured--------><------unmeasured------->
X1m X2m X1m- X2m-
M1 M2 M3 M4

Table 2. Node incidence matrix M

Then, this matrix is restructured. Using Gauss-Jordan
elimination, we first construct the greatest identity matrix
IC2 with unmeasured variables. Then, if the rank of this
matrix is not equal to n, we reiterate the operation with
measured variables, which generates the matrix IC1. The
matrix M5 concerns the remaining unmeasured variables.
The submatrices M6, M7 and M8 are constituted of
remaining measured variables. Thus, we obtain the
canonical matrix MC with the following form:

MC = [IC    |  MCS] (2)

where IC is the identity matrix (n.n) whose columns
correspond to the branches of the spanning tree, and MCS
the singular matrix (n.(m-n)) whose columns correspond to
the chords. The fundamental cycle matrix CF ((m-n). m) is
defined by

CF = [CFS | IF] (3)
me m- m-e- m e- m e (CFS)T = - MCS (4) IC1 0 0 0 M8
0 IC2 M5 M6 M7If we are solely interested in the occurrence of a variable in

a cycle, the absolute value (of terms) of the matrix CF is
used and noted CFA. The matrix containing all the cycles
generated from the fundamental cycles will be noted CT.

Table 3. Canonical matrix MC

For each list Li (i = 1, 2), we define:
Xime: variables corresponding to the identity submatrix

Theorem 1: a cycle containing k different chords results
from the ring sum of k fundamental cycles containing these
k chords.

IC1 and the submatrices M8 and M7
Xim- : variables corresponding to the identity submatrix IC2
Xim-e- : variables corresponding to the submatrix M5

Proof: If we consider the expressions (2) and (3), the
variables of the identity submatrix IF columns correspond
to the chords. Then, k distinct fundamental cycles are
composed of k distinct chords, therefore k different arcs.
The ring sum of these k fundamental cycles is the same
operation as the deletion of common arcs of these cycles.
As these k chords are distinct, there are no possible
deletion of these k chords.

Xime-: variables corresponding to the submatrix M6

The cycle matrix CFA is easily obtained, using the
relationships (3) and (4).

m e m- m-e- m e- m e 

0 | M5
T | IF1 0 0

0 | M6
T | 0 IF2 0

Algorithm of cycle generation | M8
T | | M7

T | 0 0 IF3Let us denote c = m-n, the number of fundamental cycles
of a connected graph and Cc

k the binomial number of k
elements among c. According to the theorem 1, each of the
c fundamental cycles contains a chord. Cycles formed by
the addition of k distinct fundamental cycles contain k

Table 4. Fundamental cycle matrix
For the process of the figure 1 where Xm = {3, 4, 5, 8, 9
10} and Xm-  = {1, 2, 6, 7}, the cycle matrix, where
measured variables are in bold type, is presented in the



table 5 (the fundamental cycle matrix corresponds to the
four first rows of this matrix). 4 9 1 6 2 7 8 10 3 5

. . 1 1 1 . 1 . . .
4 9 1 6 2 7 8 10 3 5 . 1 . . . 1 . 1 . .

. 1 1 . . 1 . . 1 .. . 1 1 1 . 1 . . .

. . 1 . . . . 1 1 .. 1 . . . 1 . 1 . .
Table 6. Matrix of cycles comprising two measured

variables at the most per cycle.
. 1 1 . . 1 . . 1 .
1 1 1 . 1 1 . . . 1
. 1 1 1 1 1 1 1 . .
. 1 . 1 1 1 1 . 1 . After having analysed this matrix, we can classify the

variables in the following lists according to their
observability state:

1 1 . 1 . 1 1 . . 1
. . 1 . . . . 1 1 .
1 . 1 . 1 . . 1 . 1
1 . . . 1 . . . 1 1

Xm-e-  = Ø Xm-e =  {1, 2, 6, 7}. . . 1 1 . 1 1 1 .
Xme-  =  {8} Xme =  {3, 4, 5, 9, 10}1 . . 1 . . 1 1 . 1

1 . 1 1 . . 1 . 1 1
1 1 . . 1 1 . 1 1 1 3.3. Degree of redundancy
1 1 1 1 . 1 1 1 1 1 Definition 1: a redundant variable of degree k is an

observable variable whose value remains deducible in case
of simultaneous failures of any k sensors.

Table 5. Cycle matrix CT

3.2. Observability  concepts
The observability analysis consists in classifying variables
according to four categories. A deducible and measured
variable (redundant) is a measured variable whose value
can still be deduced from measurements of the other
variables of an equation when the sensor measuring this
variable fails. A measured and non deducible variable is a
measured variable whose value cannot be deduced from
other variables of an equation when the sensor measuring
this variable fails. An unmeasured and deducible variable
is an unmeasured variable whose value can be obtained
from other variables of an equation. The equation in which
a deducible variable occurs is a deduction equation. An
unmeasured non deducible variable is an unmeasured
variable appearing only in equations comprising two
unmeasured variables at least.

Especially, a minimal observable variable is a variable of
zero redundancy degree; a variable belonging to a
redundancy equation is redundant of degree 1 at least.

Definition 2:  an unmeasured variable is pseudo-redundant
(the difference with a redundant variable is that a pseudo-
redundant variable is not measured) of degree 1 if it at least
belongs to an equation where all the other variables are
redundant or pseudo-redundant of degree 1.

By applying the next rules (V and VI), one can more
generally deduce the redundancy degree of a measured
variable, and similarly the pseudo-redundancy degree of an
unmeasured variable:
Rule V: a measured variable is redundant of degree k if,
and only if, it only belongs to cycles where at least (k+1)
variables are measured.Measured variables that are deducible or not and

unmeasured deducible variables are observable variables.
The canonical matrix structure of the table 3 leads to the
variable classification by researching redundancy and
deduction equations. However, we are going to show that
the use of cycles facilitates this classification.

Rule VI: an unmeasured variable is pseudo-redundant of
degree k if, and only if, it only belongs to cycles where at
least (k+1) variables are measured.

The redundancy degree of a variable is found by
computing the minimum number of measured variables
contained in cycles (among these of CT) to which this
variable belongs. If this number is equal to k, then the
redundancy degree is (k-1).

Rules of observability
The observability analysis is based on the study of cycles,
using the four next rules:
Rule I: a measured variable is deducible if, and only if, it
only belongs to cycles where at least two variables are
measured.

Again, consider the process of the figure 1. From the cycle
matrix (table 5), we obtain the following results:

Rule II: a measured variable is not deducible if, and only
if, it at least belongs to a cycle where it is the only
measured variable.

- the measured variable 8 that belongs to the only cycle
(the first) containing one measurement is a minimal
observable variable.

Rule III: an unmeasured variable is deducible if, and only
if, it only belongs to cycles comprising one measured
variable at least.

- the unmeasured variables 1, 2 and 6 belong to the only
cycle where one variable is measured. They are pseudo-
redundant variables of degree 0 or minimal observable
variables.Rule IV: an unmeasured variable is not deducible if, and

only if, it at least belongs to a cycle where no variable is
measured.

- the measured variables 3, 9 and 10 are redundant of
degree 1 because they belong to cycles whose minimum
number of measured variables is two.

Observability algorithm - the measured variables 4 and 5 are redundant of degree 2
because they belong to cycles whose minimum number of
measured variables is three.

Using these four rules, we propose the following algorithm
for the observability study:
1) computing the cycle matrix CT According to the preceding results, values of the variables

3, 9 and 10 are available even if any one sensor fails.
Values of the variables 4 and 5 remain always available in
case of simultaneous failures of any two sensors.

2) computing cycles comprising from 0 to 2 measured
variables among cycles of CT, (the knowledge of cycles
with more than two measurements is not necessary
according to the rule I) In practice, the obtaining of the redundancy degrees of

variables is interesting since that allows the security of the
process functioning to be guaranteed.

3) detecting cycles which do not contain measured
variables: unmeasured variables belonging to these cycles
are unmeasured and non deducible variables (rule IV). The
other unmeasured variables of the system are unmeasured
but deducible variables.

3.4. Reliability of a measurement system
The measurement system function is to provide necessary
information for the control of the process. Then, this
function is not fulfilled if the measurement of a required
variable for the control is no longer available. The
reliability of an instrumentation system is defined as the
probability that information required for the control are
available through measurements or deduction during the
time interval [0, t]. Then, it is advisable to compute the

4) detecting cycles containing only one measured variable:
measured variables belonging to these cycles are measured
and non deducible variables (rule II). The other measured
variables of the system are deducible measured variables.
The cycle matrix comprising a maximum number of two
measured variables is obtained from the cycle matrix CT
(table 5) and is presented in the table 6:



number of sensor failures conserving the observability of
the variables required for the control (list L1).

3.5. Classification of variables required for the control
The canonical matrix structure (table 3) allows redundancy
and deduction equations of variables required for the
control to be determined (subset L1). Indeed, variables are
classified in the following classes (i=1,2):

Assumptions
H0: sensors are considered irreparable.
H1: there is no breakdown of common cause. Xime: deducible measured variables of Li
H2: the failure rate λ of a sensor is independent of the
time, which allows the reliability of a sensor to be defined
analytically by  using  for example, the law of Poisson:

Xim- : unmeasured variables of Li
Xim-e: unmeasured deducible variables of Li
Xim-e-: unmeasured non deducible variables of Li
Xime-: measured non deducible variables of Li

r(t) = exp(-λ t) (6) The unmeasured deducible variables of Xim-  belong to the
rows of the submatrix IC2. These rows correspond to null
rows of M5. From the canonical matrix (table 3), variables
of the list Xim-e are obtained by rearranging M5 to make its
null rows appear. As the system is initially observable
(according to H3), non deducible variables of X1m-e- do not
exist. Since we are interested in the observability of
variables of the list L1, the equations containing variables
of the list L2 as well as the columns corresponding to
variables of the lists X2m-e, X2m-e- are suppressed. We obtain
the following reduced matrix:

H3: initially, the system is observable.

By definition, the reliability of a sensor i is the probability
ri(t) that no failure occurs during the time interval [0, t].
More generally, the reliability of a system constituted of p
sensors with respective reliabilities ri(t) may be expressed
by:

R(t) = f(r1(t), r2(t), ..., rp(t)) (7)

We also define the MTTF function (Mean Time To
Failure) by:

        (a)        (b)         (c)         (d)        (e)          (f)         (g)
X1me X2me X1m-e X1me- X2me- X1me X2me

1 IC11 M81MTTF = 
∞
∫
0
R(t)dt (8)

2 IC12The calculation of the MTTF may or may not take into
account the redundancy equations. If we do not consider
the model, the failure of a sensor measuring a value
required for the control cannot be admitted. The reliability
R0(t) is the probability that all sensors well function.

3 IC211  M61 M71

Table 8. Reduced canonical matrix MC

Finally, columns of bloc (g) are reordered to obtain zero
submatrix in the zone (g1):If the model is taken into account, some sensor failures can

be tolerated. Indeed, one might estimate the value of a
variable whose sensor has failed through redundant
equations owing to the model. Practically, it is necessary
to determine:

(a)  (b) (c)  (d)  (e)       (f)      (ga)       (gb)
X1me X2me X1m- e X1me- X2me- X1me X2me X2me

IC11 M811

IC12 M812- the maximum number v of admissible failed sensors
conserving the observability of the variables required for
the control.

IC211 M61 M711 M712

Table 9. Reduced canonical matrix MC

-  the probability Ri(t) so that the variables required for the
control are available when i sensors (i =1,..,v) fail. If we consider the theorem 2 and the "horizontal bands" (1)

and (3) of the table 8, the knowledge of the values of
variables corresponding to the columns of (d), (e), (f), (ga)
and (gb) allows the deduction of necessary variables
(columns of (a) and (c)) in case of simultaneous failure of
sensors measuring variables corresponding to the columns
of (a) and (b). The number v is equal to (ma+mb) where ma
et mb are respective numbers of columns of (a) and (b). If
the submatrix M712 of dimension (n3.mgb) is a null matrix
(n3 is the total number of lines of the matrix IC211), the
equations (2) of the table 8 will no longer be useful for the
deduction of necessary variables. Then, the number v is
equal to (ma+mb+mgb).

Finally, the reliability of the measurement system is
expressed by:

R(t) = ∑
i=0

v
Ri(t) (9)

It is obvious from (9) that the reliability increases if
analytic relationships of the process are taken into account.
It is shown that there is a relationship linking the
observability, the degree of redundancy and the reliability.

The computation of the reliability necessitates to
enumerate the cases where the failure of sensors can be
tolerated. The value of a variable whose sensor fails is no
longer known if, among all cycles to which this variable
belongs, there is at least one cycle which do not contain
measured variables (Rule IV). The availability of the value
of a variable therefore depends on the number of measured
variables in the cycle possessing the less ones; the more
this cycle has measured variables, the more the
measurement system can tolerate sensor breakdowns.

3.6. Reliability under constraint
The problem consists in determining the number of failures
conserving the observability of variables required for the
control (list L1). If equations of the process are not
considered, the probability that all sensors function is equal
to:

R0(t) = r(t)p (10)

On the other hand, if we take into account these equations,
the probability that a sensor fails while (p-1) others (p > 1)
well function is: (1-r(t))r(t)p-1. If α1 is the number of
possibilities to consider a failed sensor while ensuring the
observability of necessary variable, the probability that the
system is operational while any one sensor fails is

The computation of the maximal number v of admissible
failed sensor is based on the following theorem.

Theorem 2: in a connected graph of (n+1) nodes, the
maximal number of deducible variables through others is
n; these variables are carried by the branches of the
considered spanning tree. R1(t) = α1 (1-r(t))r(t)p-1 (11)
Proof: considering the expression (2) and the canonical
matrix (table 3) whose regular part variables are carried by
the branches of the spanning tree. It is obvious that these
variables are deducible through the knowledge of variable
values of the singular part of the matrix.

More generally, we have:

Ri(t) = α i (1 - r(t))i r(t)p-i (12)

where the coefficient α i is the total number of
configurations that admit a number i of failed sensors



while ensuring the observability of variables required for
the control of the process.

with regard to the criterion of the minimum sensor cost so
as to ensure:
- the minimal observability of variables required for the
control (L1),The problem consists in computing Ri(t). We therefore

compute the coefficients αi for i = 0,...,v. According to the
definition of the coefficient αi, cycles comprising only
variables non required for the control (list L2) have not to
be counted. Furthermore, we eliminate cycles whose
number of measured variables is higher than v. These
cycles are not useful for the proposed analysis in the case
where the number of simultaneous failures is less or equal
to v. We finally obtain a so-called CTv cycle matrix whose
analysis comprises three steps:

-  redundancy degrees of variables of the sets Ldk.

Having concern for the simplicity and without loss of
generality, the value of k is limited to 1.

4.2. Algorithm
It comprises three steps: the first consists to create the
matrix of all cycles, the second to select an optimal set of
variables to be measured with respect to the criterion of
cost and minimal observability of necessary variables (list
L1), the third to choose supplementary variables to be
measured in order to ensure redundancy degree 1 of
variables of the set Ld1 while minimizing the
corresponding sensor cost and taking into account
measured variables given by the second step.

step 1: extracting among cycles of the matrix CTv those
whose number of measured variables varies from 1 to i
(cycles with k measured variables such that k is higher than
i will have one measured variable at least when i sensors
fail simultaneously, which is not interesting for the
research of non admitted combinations),
step 2: forming Cp

i  combinations of i failed sensors among
p sensors. For each combination, variables measured by
failed sensors are considered as unmeasured ones. We then
calculate the number of measured variables for each cycle.
According to the observability rule III, if all cycles include
a measured variable at least, the considered combination is
admissible,

step 1: useful cycle matrix
From the lists L1 and L2, the procedure of researching a
spanning tree is the same as that of section 3. The
measured and unmeasured variables might be replaced by
those of the lists L1 and L2 respectively. Then, we deduce
the fundamental cycle matrix CFA and the cycle matrix CT.
step 2: minimal observability of variables required for the
control.step 3: deducing αi which is equal to the number of

admissible combinations, then Ri(t). According to the rule V, we need to measure a variable at
least per cycle containing a variable of L1. We simplify
this research by eliminating, among cycles of CT, those
containing only variables of the subset L2. The resulting
matrix C1 of dimension (nc1.mc1) is obtained. During this
step, we first compute all possible sets of variables to be
measured Lint, then select one, Ls1 which satisfies the cost
criterion.

Consider the example of the figure 1 and the following
lists:

L1 = {1, 4, 6, 9, 10}         L2 = {2, 3, 5, 7, 8}
Xm = {3, 4, 5, 8, 9, 10}   Xm-  = {1, 2, 6, 7}

The greatest admissible number of failed sensors is equal
to 2. Cycles of the graph are presented in the table 6. The
matrix CT2 whose cycles contain 2 measured variables at
the most, is given in the table 10:

step 3: redundancy of variables of the set Ld1.
According to the rule V, we have to measure two variables
at least per cycle containing a variable of Ld1. First, all
possible sets of variables to be measured are computed.
Before selecting a list satisfying the cost criterion, we take
into account the proposed measured variables of the
precedent list Ls1. Then, we select the list Ls2 fulfilling the
cost criterion.

4 9 1 6 2 7 8 10 3 5 N
. . 1 1 1 . 1 . . . 1
. 1 . . . 1 . 1 . . 2
. 1 1 . . 1 . . 1 . 2 Finally, the set of variables to be measured fulfilling the

objective is the union of the lists Ls1 and Ls2.. . 1 . . . . 1 1 . 2
Table 10. Matrix of cycles CT2.

4.3. Results
Let us note λ the common failure rate of all sensors. The
coefficient α0 is equal to 1. Among six possibilities to
consider a sensor failing, only the possibility to consider
the failure of the sensor measuring the variable 8 is not
admitted (according to the cycle 1). Thus, α1 is equal to 5.
Combinations including the variable 8 are not retained.
Besides, next combinations are not accepted either: (9,10),
(9,3), (10, 3) according to the last three cycles. We have 7
admissible combinations for α2. Therefore, the function of
reliability is:

Consider the process network of the figure 1 with L1 = {1,
4, 6, 9, 10} and L2 = {2, 3, 5, 7, 8}, we wish to define the
measurement system with a redundancy degree 1 for va-
riables of the list Ld1 = {1, 9}. To each variable is
associated a weight representing the cost of the sensor
(table 11).

Variable Cost Variable Cost
1 3 6 4
2 3 7 8
3 4 8 7
4 1 9 2R(t) = e-6λt+ 5(1-e-λt)e-5λt + 7(1-e-λt)2e-4λt
5 9 10 5
Table 11. Costs associated with variables.Then, the value of the MTTF is 0.45/λ

step 1: the cycle matrix is the same as that presented in the
table 6. It only includes cycles containing at least a
variable of the list L1; let us note it by C1.

4. DESIGN OF MEASUREMENT SYSTEM

step 2: the whole possible measurement lists for the
selection (lists of intersection Lint) is not presented here
due to their sizes. Taking into account the constraint of
minimum cost, the following variables are to be measured
to guarantee the minimal observability of the list L1: Ls1 =
{1, 2, 4, 9}

4.1. Position of the problem and objective
We are provided with the subset of variables required for
the control of the process (list L1). A weight, that is
proportional to the cost of sensor, is assigned to each
variable. Among the variables of the subset L1, some are
important for the functioning security; these are "high
availability" variables. This demand may be ensured by
analytic redundancy. According to the previous rules and
especially the rule V, we can obtain a redundancy degree k
for a high availability variable solely if the minimum
number of measurable variables of all cycles to which this
variable belongs is greater or equal to k+1. Necessary
variables (subset L1) are assumed measurable. Therefore,
the purpose is the selection of variables to be measured

step 3: the variables 1, 2, 4 and 9 are considered as
measured ones, the matrix C11 contains cycle number 2, 8,
11 and 12 of the matrix C1 (because they contain less than
two measured variables). Besides, we have suppressed
columns of C1 corresponding to variables 1 and 9 (list
Ld1). The resultant matrix C11 is the following.
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Table 12. Cycle matrix C11
We have presented an analysis of the observability, the
redundancy degree and the reliability; this technique is
based on the analysis of cycles of the graph associated with
the process. This analysis has been applied to the
conception of the measurement system of a process. The
proposed solution gives the optimum number of sensors
and their location in order to: obtain (1) the minimal
observability of variables required for the control, (2)
redundancy degrees of variable of high degree of
availability while minimizing the cost of measurements. In
the case where several solutions provide a same minimum
cost, we can use a complementary criterion taking into
account the reliability. The use of cycles is all the more
interesting for the conception of measurement system as it
allows one to obtain a list of measurements easily,
according to one or several given criteria. The solution of a
multicriterion problem including precision of estimation,
sensitivity to a modification of precision, observability,
redundancy degree and reliability is a future direction of
research.

We need to measure one variable of each list of the lists
(corresponding to a cycle of C11): {7,10}, {10,3},
{6,2,8,10,3}, {4,6,8,10,5}. Finally, the supplementary
variable to be measured is the variable 10.
In conclusion, the variables to be measured that meet the
objective while minimizing the sensor cost are {1, 2, 4, 9,
10}. The corresponding total cost is 14. The reader may
verify that cycles (of the matrix C1) containing variables 1
and 9 comprise at least two measured variables. We can
calculate the reliability of this measurement system with
the help of the algorithm of the section 3. The evolution of
the reliability is represented by R(t). The calculation is
carried out with an identical failure rate for each sensor
being equal to 1.25 E-4. The calculation of MTTF is in fact
represented by the area of the surface limited between the
curve R(t) and the time axis. In the figure 3, the curve in
solid line represents the reliability R(t) of the system with
the measured variable list {1, 2, 4, 9, 10}. As a
comparison, the curve in dashed line represents the
reliability of the system obtained with the measured
variable list {1, 2, 4, 9}, that only ensures the minimal
observability of variables required for the control. 6. REFERENCES
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