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Abstract

Chemical and physical processes, such as heterogeneous chemical reactions, light

scattering, and metamorphism occur in the natural snowpack. To model these pro-

cesses in the snowpack, the specific surface area (SSA) is a key parameter. In this

study, two methods, computed tomography and methane adsorption, which have in-5

trinsically different spatial resolutions –molecular and 30µm, respectively – were used

to determine the SSA of identical natural snow samples. The two methods give iden-

tical results, with an uncertainty of 3%. This implies that the surface of natural snow

is smooth up to a scale of about 30µm and that for optical methods a voxel size of

10µm is sufficient to capture all structural features of natural snow. This smoothness10

can be physically explained by calculating sublimation and surface diffusion on the

snow particles. The methane adsorption method is superior to computed tomography

for very fresh snow, but thin layers typical for natural snowpacks can not be resolved.

Computed tomography can measure SSA in layers of less than 1 mm thickness, and is

therefore advantageous in layered snowpacks.15

1 Introduction

Snow, after sedimentation of the snow flakes on the surface, has a very high initial

porosity and sinters rapidly. Specific surface area is commonly used to describe sin-

tered materials (German, 1996). In the context of integral geometry, specific surface

area is identical to the second Minkowski functional (Ohser and Mücklich, 2000). Re-20

cently, SSA was found to be a monotonously decreasing parameter apart from volume

fraction (Flin et al., 2004; Schneebeli and Sokratov, 2004; Legagneux and Dominé,

2005) in the course of snow metamorphism. This is in contrast to the traditionally used

grain size, which has a non-monotonous behavior in the transition from new snow to

rounded grain snow to depth hoar (Colbeck et al., 1990). Grenfell and Warren (1999)25

show that the ratio of volume to surface area (i.e. the inverse of SSA) is the best estima-
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tor for grain size in modelling optics. The same result but with a different optical theory

is obtained by Kokhanovsky and Zege (2004). The air permeability of snow can be de-

scribed using the Carman-Kozeny relation, which uses SSA in developing the hydraulic

diameter (Dullien, 1992). Flanner and Zender (2006) use SSA to parameterize snow

albedo in the context of global climate models. The interactions between the lower5

atmosphere and the snowpack is subject to extensive research and it is clear that the

chemical reactions which take place in the snowpack depend heavily on the available

surface i.e. on the SSA (Grannas et al., 2007). SSA is therefore one of the key param-

eters in snow physics and chemistry and a precise and unambiguous measurement is

necessary.10

The SSA of snow has been measured using various techniques, such as determining

the adsorption isotherm of nitrogen (Adamson and Dormant, 1966; Adamson et al.,

1967; Jellinek and Ibrahim, 1967; Hoff et al., 1998), or of methane at liquid nitrogen

temperature (Chaix et al., 1996; Legagneux et al., 2002; Dominé et al., 2007), via

the grain size distribution (Granberg, 1985), with stereological measurements (Matzl15

and Schneebeli, 2007
1
; Narita, 1971; Sommerfeld and Rocchio, 1993), geometrical

analysis of images of single snowflakes (Fassnacht et al., 1999), optical and electron

microscopy (Dominé et al., 2001), and micro tomography (Flin et al., 2004; Schneebeli

and Sokratov, 2004).

Previously published data show considerable scatter, reported values range from 620

up to 77 700 cm
2
g
−1

. This is not surprising, because the SSA strongly depends on

snow history and snow type. In previous studies, snow history was not specified accu-

rately; it is therefore almost impossible to compare the data obtained with the different

techniques. On the other hand, an upper limit of SSA in natural snow covers may be

estimated by considering the finest ice structures, which are observed in nature, so25

called diamond dust (Grenfell and Warren, 1999). These atmospheric long hexagonal

1
Matzl, M. and Schneebeli, M.: Stereological measurement of the specific surface area

of snow, J. Microscopy, submitted, preprint at http://www.slf.ch/schnee-lawinen/Schneephysik/

Downloads/Stereological measurement specific surf area.pdf, 2007.
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ice crystals can have an aspect ratio of 50:1, with a typical diameter as small as 15µm

and a length of 750µm. Based on this shape, we estimate a geometric SSA of around

3 500 cm
2
g
−1

, which can be considered as an upper limit for all natural snow covers

and therefore question some of the early measurements which resulted in far too high

values. During the last ten years, the reported snow SSA seemed to converge to val-5

ues between 1600 cm
2
g
−1

and 20 cm
2
g
−1

, depending on the snow type (e.g. Dominé

et al., 2007; Chaix et al., 1996; Legagneux et al., 2002; Flin et al., 2004; Schneebeli

and Sokratov, 2004). High SSAs are obtained on fresh snow whereas low SSAs are

measured on aged snow. Note that values greater than 1000 cm
2
g
−1

are scarce. These

measurements show that (i) SSA of snow varies over two orders of magnitude and (ii)10

a conclusive statement concerning the precision and value of the different methods is

not possible without using identical snow samples.

Here, we compared – using identical snow samples – two of the previously cited

methods, namely adsorption of methane and X-ray Computed Micro-Tomography (µCT).

Methane adsorption measurements followed by BET analysis (Brunauer et al., 1938)15

have been intensively performed to assess this parameter and a large SSA dataset of

natural snow was obtained using this technique (e.g. Dominé et al., 2007; Legagneux

et al., 2002). µCT has also been successfully employed in the last decade to inves-

tigate geometrical properties of the ice structure and the pore space in snow (Coléou

et al., 2001; Flin et al., 2004; Schneebeli and Sokratov, 2004). These techniques have20

also radically different spatial resolutions. Methane adsorption measurement allows

the calculation of accessible surface area from the number of adsorbed molecules and

thus has a molecular resolution whereas the used µCT reconstructs the spatial distribu-

tion of ice and air with a voxel size of 10µm, which means that, after filtering, structures

of about 30µm can be clearly resolved. By using two methods having such a different25

spatial resolution, we also want to address the question of the surface roughness of

the ice surface of a snow crystal and the presence of microstructures on its surface.

If microstructures exist, the large ratio between the resolutions of the two methods will

lead to a disagreement of the measured SSA.
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The presence and the size of surface microstructure in high vapour pressure con-

densed matter, such as ice, is determined by thermodynamic and kinetic processes.

Minimization of the Free Energy reduces the overall surface area of the porous medium

by sintering. On the contrary, continuous sublimation and resublimation of water molecules

on the ice surface may induce roughening of the surface and hence the formation of5

new nanosized structures on the ice surface. The magnitude of such effects depends

on the complex interplay of sublimation and resublimation rates, surface and bulk diffu-

sion (Xiao and Ming, 1994). Additional complications occur, because at temperatures

above about –20
◦
C, as typical for natural snow, the ice surface is covered by a dis-

ordered surface region, which is often called premelt or quasi-liquid layer (see Dash10

et al., 1995, and citations therein). Because this layer is highly mobile, one might spec-

ulate that its thickness defines the scale of the smallest structures on the ice surface.

At –5
◦
C, the thickness is of the order of 1 to 10 nm (Henson et al., 2005; Dash et al.,

1995; Lied et al., 1994), hence the smallest structures on the ice surface should be

larger than this size.15

Surface microstructures have been reported on natural snow by Rango et al. (1996)

who presented scanning electron microscopy (SEM) images of rimed precipitation par-

ticles. Similar microstructures have been seen by Dominé et al. (2003) with the same

technique, but they explain these as artefacts due to the resublimation of humid air

during the transfer of the samples, which had been stored at liquid nitrogen temper-20

ature, into the SEM sample chamber. Nonetheless, even if those observations were

artefacts, they show that microstructures can easily form at low temperature. The exis-

tence of micro-and nanostructures may affect physical and chemical processes, such

as the growth of ice crystals (Libbrecht, 2005, and citations therein), or the total surface

area available for trace gas adsorption and chemical reactions on the ice surface.25

In this paper, we show that both methods coincide within 3% for SSA ranging from 50

to 700 cm
2
g
−1

. Therefore the physical concepts, on which the adsorption of methane

and µCT are based allow assessing the SSA of natural snow. It also shows that the

low spatial resolution of the tomograph compared to an adsorption measurement is
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enough to measure accurately SSA of natural snow. Moreover, it proves that the ice

surface of snow is smooth up to a scale of 30µm.

2 Measurement Procedure

2.1 Sampling

We used five different natural snow types, covering the ranges 2–5 defined in the In-5

ternational Classification for Seasonal Snow on the Ground (ICSSG) (Colbeck et al.,

1990). These are expected to cover a broad range of SSA. Three types of snow,

called “decomposing snow” (ds), “metamorphosed I” (mI), and “metamorphosed II”

(mII), were prepared by sieving (in order to avoid creation of inhomogeneities) fresh

snow after precipitation into boxes. The boxes were stored at different temperatures,10

allowing for isothermal metamorphism at different rates. Details of storage are found in

Table 1. Two more snow types were collected in the field just before the measurements,

denoted “depth hoar” (dh), and large grained “wet snow” (ws). The dh snow was col-

lected in blocks, while the ws was also sieved into boxes (10 mm grid) and soaked with

ice water to further reduce the SSA. These snow types ds, mI, mII, dh, and ws, corre-15

spond to the ICSSG classes 2a, 3a/2a, 3a, 5a2, and 6a, respectively (see Table 1). The

characteristic grain shapes, along with the real 3-D structures, of all five snow types

are shown in Fig. 1.

Natural snow covers exhibit density fluctuations and layering on a length scale of

various centimeters. Since homogeneity of the snow used for sampling is crucial for20

comparison of the two methods, we confirmed homogeneity for each block of snow

by means of a high resolution penetrometer (Schneebeli et al., 1999). In the region

of maximum homogeneity, 7 to 8 cores, each of 57.3 cm
3

volume, were extracted by

inserting sharp edged Polyethyleneimine (PEI) sample holders into the snow and care-

fully removing the remaining snow at the outside of the sample holders. After weighing25

each cylinder, five were mounted in a specially designed stainless steel sample holder
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for the BET measurements, while the remaining samples were directly scanned in the

µCT.

2.2 Adsorption of methane

In this study, we used the apparatus already used by Bartels-Rausch et al. (2002,

2004). The adsorption method to determine the SSA of snow using methane has been5

described by Legagneux et al. (2002). In short, a small amount of gaseous methane

is filled into a defined volume. Methane is then expanded into the evacuated sample

holder kept at liquid nitrogen temperature, which contains the snow. The pressure

drop, due to expansion of the gas into the sample holder and adsorption on the snow

surface allows calculating the number of molecules which has adsorbed on the snow10

surface. This number is calculated using the ideal gas equation. It is assessed from the

difference in the gas phase molar budget of methane before and after the expansion.

An isotherm of adsorption is obtained by increasing the pressure of methane over snow

step by step.

All measurements were made according to a strict protocol as follows. i) The snow15

sample is thermalized to liquid nitrogen temperature for at least 1 hour. ii) The air is

very slowly evacuated from the porous snow sample (≈5 mL min
−1

) using first a pri-

mary pump and subsequently a turbo molecular pump. After around 30 minutes, high

vacuum (≈10
−2

Pa) is established in the system. The vapour pressure of ice at liquid

nitrogen temperature is lower than 1.9×10
−4

Pa (lowest value from Mauersberger and20

Krankowsky, 2003, at 164.5 K). Hence, sublimation of ice due to pumping is insignifi-

cant. iii) The volume occupied by the snow sample is measured, at least three times,

by expanding Helium. Although the u-shaped gas inlet is immersed into liquid nitrogen,

the flow of helium was kept at a slow rate of 6×10
16

-3×10
17

Molecules s
−1

to avoid

possible annealing of the snow sample due to the introduction of warm gas. iv) The25

isotherm of adsorption was measured. Sixteen data points were recorded by stepwise

increasing the reduced pressure (P/P0) of methane over snow, where P is the pressure

of methane in the system and P0 is the vapour pressure of methane at liquid nitrogen
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temperature. v) Three desorption points were recorded to check the reversibility of the

adsorption.

Each isotherm obtained was processed by applying the BET model (Brunauer et al.,

1938; Legagneux et al., 2002; Gregg and Sing, 1982). This model describes the ad-

sorption of gases in multimolecular layers. Assuming that an infinite number of layers

is formed during the adsorption process, the model leads to Eq. (1),

P/P0

Nads

(

1 − P/P0

)
=

1

NMC
+

C − 1

NMC

P

P0

, (1)

where Nads is the number of molecules adsorbed per gram of snow, P is the pressure

in the system, P0 is the vapour pressure of methane at liquid nitrogen temperature, NM

is the monolayer capacity (i.e. the total number of molecules that can be adsorbed on5

a single layer) and C is the so called BET constant.

The measurements were done in Davos, Switzerland, where, due to the altitude,

the atmospheric pressure in the laboratory was 828 (±4) hPa during the experiments.

The boiling point temperature of liquid nitrogen at this pressure was derived to be

75.7 (±0.2) K (Moussa et al., 1966). The vapour pressure of methane at 75.7 K was10

calculated to be 1030 (±2) Pa (Lide, 2006).

2.3 Tomography

We used a modified Scanco µCT 80 desktop X-ray computer tomograph, with a mi-

crofocus X-ray source emitting a white spectrum (45 kV acceleration voltage), to scan

the snow samples. A 180
◦

rotation of the sample was divided into 1000 steps. At15

each angular step, a 1024×128 CCD detector captured the absorption signal during

an integration time of 250 ms, and averaged over two such intervals in order to reduce

the noise. The apparatus resides in a cold room at –15
◦
C. With this configuration,

a complete scan with 408 slices took approximately 3 h. Along with each adsorption

measurement, two or three tomograms were taken, with a voxel size of 10µm for the20
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fine grained ds, mI, and mII snow types. This corresponds to the maximum resolu-

tion of the µCT. For the much coarser dh and ws types a resolution of 18µm was

chosen, since then a larger volume can be processed. After scanning, a subvolume

was extracted from the reconstructed image. After filtering with a 3×3×3 median filter

and a 3×3×3 3-D Gaussian kernel filter with a standard deviation of 1.2 voxels a vol-5

ume of 600×600×400 voxels remains. Hence, the investigated volumes correspond to

144 mm
3

and 839.81 mm
3

for a voxel size of respectively 10 and 18µm, which can be

considered representative for the whole sample. This has been shown by Kaempfer

et al. (2005) and Coléou et al. (2001), who found that the elementary volumes, i.e.

the minimal volumes which correctly represent the bulk snow properties, are between10

1.25
3

and 2.5
3

mm
3
, depending on the snow coarseness. The volumes we have used

for the analysis are at least ten times larger.

To segment the images we considered the gray scale histograms of the tomograms.

Figure 3 shows the histograms of all measurements of two snow types, decomposing

snow and depth hoar. One would expect two peaks, representing the two materials15

ice and air; while this is true for depth hoar, the histogram for decomposing snow is

dominated by the air peak. In this case, the fine structure of the ds sample leads to

many mixed voxels, i.e. voxels with a gray scale value between that of ice and air,

and it is difficult to find a threshold value for segmentation. The optimal threshold

was determined by fitting a sum of two Gaussian curves to the gray scale histograms20

and calculating the intersection of the individual Gaussians (Sonka et al., 1999). This

procedure minimizes the number of spurious voxels introduced in the segmentation

process. The optimal threshold was determined for each tomogram, and the mean

for each class was finally applied to segment the images. In Fig. 3, bars indicate

the variations around the mean optimal threshold for all measurements of a particular25

class. This uncertainty in threshold finally leads to an uncertainty in the SSA, where

the sensitivity of SSA on threshold variations depends on the snow type and has to be

determined experimentally .
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3 Results

For each of the mI, mII, and dh types five blocks were investigated, whereas for ds

and ws only four and three blocks, respectively, were used. Thus, 22 adsorption mea-

surements were made, of which 15 were accompanied by three µCT scans, and the

remaining seven by two, giving a total of 59 µCT images.5

3.1 Adsorption of methane

The mean heat of adsorption (∆QCH4
) was derived according to ∆QCH4

=RT lnC, using

the BET constant C (Legagneux et al., 2002; Gregg and Sing, 1982). For the whole

set of measurements we found a mean value of 2680 (±200) J mol
−1

. This value is in

agreement with the one given by Dominé et al. (2007) who found 2580 (±200) J mol
−1

.10

The adsorption of methane on the sample holder walls may lead to artefacts in the

BET analysis, as mentioned by Legagneux et al. (2004). We quantified it by blank

measurements and found that the surface area of the wall is 0.278 (±0.001) m
2
. The

heat of adsorption on the wall of our Polyethyleneimine/Stainless steel sample holder

was measured to be 1760 (±150) J mol
−1

. In our case, the contribution of the wall15

represents 8 to 30% of the total uptake of methane, the more important contribution

occurring for coarse snow, which has a low SSA. All the SSA values given here are

corrected for the adsorption on the wall of the sample holder.

Measured SSA values range from 48(±1) to 656(±52) cm
2
g
−1

. The errors on each

value were calculated from both the inherent errors of the experimental apparatus and20

the errors on physico-chemical data. This specific type of errors was called “a-priori

errors”. The calculated mean SSA values for each snow type are given in Table 1,

where the cited errors are the standard deviations (1σ) of all measurements within

each snow type. This error was called “interblock error”.

Due to the repetitive injections of methane “a-priori errors” on data points are increas-25

ing with rising methane pressure, as Fig. 2 shows. In order to take this into account,

each data point was assigned a weight equal to the inverse of its own error. This weight

10296

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/10287/2007/acpd-7-10287-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/10287/2007/acpd-7-10287-2007-discussion.html
http://www.egu.eu


ACPD

7, 10287–10322, 2007

SSA measurement

with X-ray

tomography and gas

adsorption

M. Kerbrat et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

was used when fitting the BET transform of the isotherm (see Fig. 2).

When calculating the “a-priori error” for each data point of the isotherms of adsorp-

tion, it was found that it decreases with increasing SSA. This is due to the fact that

the more surface is available; the more sensitive is the method. But when SSA values

are determined with the BET model, slopes and intercepts have to be determined, and5

these are assigned with a larger error for higher SSA. However, the second effect is

stronger, such that the combined effect results in an increasing overall error when SSA

increases.

3.2 Tomography

The SSA values determined by tomography ranged between 46 (±1) and 733 (±78)10

cm
2
g
−1

. In contrast to the BET measurements, where one measurement was taken

for one block of snow, several measurements, using different subsamples, have been

made for each snow block (see Sect. 2.1). The error on SSA for one individual block

is the standard deviation (1σ) of the SSA determined from the different subsamples

taken from one single block. This type of error, and the average SSA, were called “in-15

trablock error” and “intrablock SSA”, respectively, and are compared to the adsorption

results in Fig. 4. The summarized mean SSA values, calculated from the average of

all subsamples for each snow type are given in Table 1, where the cited errors are the

“interblock errors” (defined in Sect. 3.1). For decomposing snow (ds in Fig. 4), there

is a wide variation among the different subsamples of each of the 4 blocks (e.g. from20

672 to 821 cm
2
g
−1

within one block). Note that in Fig. 4 the mean (intrablock) SSA is

shown, and the variation is expressed in the large error bars. Also, within one and

the same subsample, the SSA varies between 5% and 10% depending on the posi-

tion of the investigated subvolume. As Fig. 3 illustrates, the optimal threshold varies

notably for the different decomposing snow measurements, and, in addition, the SSA25

depends heavily on the threshold for this type (≈0.10 cm
2
g
−1

per gray scale unit). Thus,

each individual SSA measurement for decomposing snow has an uncertainty of about

±57 cm
2
g
−1

due to the uncertainty in the optimal threshold determination. As this pos-
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sibly systematic error is smaller than the one estimated from the standard deviation,

we chose the standard deviation as error estimate.

On the other hand, the coarse types can be segmented with less ambiguity, thus

yielding a sharply determined threshold, and are less sensitive to threshold variation

(e.g. for ws, ≈0.002 cm
2
g
−1

per gray scale unit). Therefore, the uncertainty for ws mea-5

surements, for example, due to thresholding is only ±0.5 cm
2
g
−1

for each individual

sample. Also, for all other snow types other than decomposing snow, the spatial varia-

tion within one scan is less pronounced, i.e. typically about 2%.

3.3 Comparison of data

The correlation between SSA values measured by adsorption of methane (SSABET)10

and µCT values (SSAµCT) was found to be very good. Indeed, the slope of the correla-

tion line, which is shown on Fig. 4, was found to be SSAµCT=1.03(±0.03)SSABET. This

result was obtained by forcing the linear regression through the origin and assigning a

weight to each data point equal to the inverse of the product of the “intrablock errors”

on SSAµCT and the “a-priori errors” on SSABET. This procedure was motivated by the15

fact that the errors change with the SSA. We note that the correlation is better for lower

SSA, which is in agreement with the evolution of the errors on measurements. More-

over, the obtained SSA values are consistent with most recent measurements (Dominé

et al., 2007) on comparable snow samples.

Albeit the correlation between both methods is very good, the small deviations may20

be attributed to inherent errors of each method, which are discussed in the two following

paragraphs.

Concerning the adsorption measurements, two major sources of error are suspected.

i) The molecular area of methane (aCH4
) was experimentally obtained from the molecu-

lar area of nitrogen (Chaix et al., 1996). Nonetheless, there is no absolute value of the25

molecular area of a nitrogen molecule (aN2
), when it is adsorbed on ice. This is mainly

due to its dependence on the nature of the surface on which it is adsorbed. Therefore

it cannot be defined better than within ≈5–10% (Gregg and Sing, 1982). Hence, the
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value for the molecular surface area of methane used here (1.92×10
−19

m
2
) also suf-

fers from at least 5–10% uncertainty, which will influence the calculation of SSA. ii) An

error of 1 K in the liquid nitrogen temperature determination will give rise to a difference

of ≈200 Pa in P0 at a temperature close to the boiling point of liquid nitrogen. From

error propagation we estimate an error of about ≈3% in the SSA.5

Regarding the µCT measurements, the three main sources of error are: i) Setting the

threshold value as discussed in Sect. 3.2. ii) Air inclusions in the ice, which could lead

to an overestimation of the SSA compared to adsorption, since these pores are not

accessible for methane during an adsorption measurement. Analyzing the tomograms,

the contribution of such inclusions to the total surface area was found to be always10

lower than 0.6%, thus being negligible. iii) Choosing a resolution, which is not sufficient

to grasp the finest structures of the snow. This would lead to an underestimation of

SSA compared to adsorption. Since our values for the finest investigated snow were

even slightly above the adsorption values, it may be concluded that structure sizes for

this snow type are still of the same order of magnitude as the resolution (10µm voxel15

size, corresponding to roughly 30µm resolution).

To check this hypothesis and to find a limit for the resolution, we gathered and im-

mediately measured solid precipitation, obtaining an adsorption value of 804(±64) and

a tomography value of 691(±36) cm
2
g
−1

. It indicates that precipitation particles still

feature structures below about 30µm, which can be resolved by the gas adsorption20

method, but not with the resolution of our µCT; we state therefore that for snow the

resolution limit of this µCT is approximately 700 cm
2
g
−1

. A theoretical upper limit is

given by the SSA of 30µm cubes, i.e. 2000 cm
2
g
−1

; however, the geometry and dis-

tribution of sizes in real structures reduces this theoretical value. Therefore, no theo-

retical justification for our experimentally found upper limit can be given. Note that this25

data point, denoted as “Precipitation” in Fig. 4, was not included in the calculation of

the correlation coefficient because the µCT value is probably too low due to insufficient

resolution.

Apart from the instrumental and analysis issues, also the sampling procedure could
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have induced artefacts. It is well known that a too small sample holder could compress

the boundary layer, or break away grains at the boundary. This would lead to an over-

estimation or underestimation, respectively, of the weighed density with respect to the

density obtained from segmented tomograms. Table 1 shows no significant systematic

deviation, however.5

4 Discussion

4.1 Comparison of methods

Previous studies of the SSA of presumably comparable samples using adsorption

method and computer tomography had resulted in the same order of magnitude. For

example, Legagneux et al. (2002) measured, using adsorption of methane, the SSA of10

rounded grains ranging from 400 to 146 cm
2
g
−1

with a mean value for the 15 samples

of 249(±80) cm
2
g
−1

. Schneebeli and Sokratov (2004) used the same type of snow for

their experiments and measured SSAs of 122 and 218 cm
2
g
−1

.

However, as no direct comparison between both methods has ever been made, it

is difficult to assess the quality of methods to determine the SSA of snow. Here,15

we present the first direct comparison of methods based on two different physical

processes and find an agreement within 3% between the SSA values measured by

adsorption of methane (SSABET) and µCT (SSAµCT), for snow having a SSA below

700 cm
2
g
−1

. This shows that the adsorption of methane and the absorption of X-ray

light allow measuring reliably the SSA of snow. It also proves that the data previously20

obtained using both methods do not suffer from artefacts, such as a lack of resolution

or deeper issues, such as problems with physical concepts (e.g. the unknown size of

adsorbed methane molecules on the ice surface).

Nonetheless, we showed in Sect. 3.2, that for SSAs higher than around 700 cm
2
g
−1

,

tomography underestimates SSA. Taillandier et al. (2007) parameterized the evolution25

of the SSA of natural snow as a function of temperature for isothermal metamorphism
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or under a temperature gradient. If we use this parameterization, we can estimate that

for snow having a SSA of 1000 cm
2
g
−1

, it will take 4, 9, 18 or 29 h under temperature

gradient conditions at a mean temperature of evolution of the snow layer of –5, –10, –15

and –20
◦
C to cross the limit of quantification of 700 cm

2
g
−1

. In the case of isothermal

metamorphism, the times are 7, 12, 19 or 28 h respectively for the same conditions.5

This shows that the time necessary to reduce the SSA to the limit of detection is short

and that the SSA of snow can already be measured successfully with the µCT one day

after the precipitation under alpine conditions. Note that we choose 1000 cm
2
g
−1

for

the calculation because it is a typical high SSA value and because higher values are

rare. Indeed, only 3% of the 340 measurements gathered in Dominé et al. (2007)10

are greater than 1000 cm
2
g
−1

. To check the validity of the parameterisation on our

snow samples, we apply it to our isothermally metamorphosed snow sample. The

SSA (SSAType) obtained on our ds snow sample was considered as the initial SSA

and the times and temperatures given in Table 1 were used in the parameterization.

The calculated SSA values are 337 cm
2
g
−1

for mI and 260 cm
2
g
−1

for mII. Those results15

agree within 12% and 8% respectively with the one which we measured and show that

the parameterization is consistent with our measurements.

4.2 Physical explanation for surface smoothing

Our measurements not only show the coincidence between both methods, but also

prove experimentally that our snow samples were smooth up to about 30µm.20

Two mechanisms may be capable of smoothing the ice surface and therefore would

explain our experimental results: vapour transport due to the Kelvin effect (Flin et al.,

2003; Legagneux and Dominé, 2005), and surface diffusion. The latter process might

be quite fast on the ice surface due to the presence of a highly mobile surface layer,

often called premelt layer or quasi liquid layer (e.g. Dash et al., 1995).25

To see whether our observations are consistent with these principles, here we give a

simple estimation of the time scale a small spherical asperity would need to completely

disappear from a flat surface.
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According to the Kelvin effect, the vapour pressure above a convex interface is en-

hanced compared to the one above a flat surface (Pruppacher and Klett, 1997). First,

for the Kelvin effect, we consider a simple configuration like a half sphere emerging

from a flat surface. The higher water vapour pressure above the curved surface as

compared to the flat surface results in sublimation of the curved asperity, where the5

water vapour is transported away by gas phase diffusion. Even for such a simple con-

figuration, the kinetics of how the half sphere will sublimate would require a numerical

simulation. As such a calculation is far beyond the scope of this paper; we simplify the

geometry and neglect the flat surface where the half sphere rests. Considering only a

flat surface at infinite distance from the half sphere, an analytic solution for this diffusion10

problem can be obtained. The effect of a flat surface beneath the half sphere is an in-

crease of the pressure gradient, implying an increase of the diffusion flux. In this sense

our estimation yields an upper limit for the diffusion time. Three different conceptual

models were tested to see if the evaporation time depends on the way how the asperity

evaporates. The three ways of evolution are illustrated in Fig. 5. The characteristics15

of each model are: i) The radius of the asperity – and therefore the water vapour flux

from the evaporating asperity under steady state conditions – is assumed to be con-

stant until the asperity has disappeared when the amount of water it contained has

been diffused away, ii) the radius of the asperity decreases during sublimation, which

leads to an increase of the water flux as the radius gets smaller. When the radius20

reaches 0, the asperity has disappeared, iii) the contact area of the asperity with the

flat surface is kept constant and the asperity will flatten, hence the water vapour flux

will decrease. The asperity is considered flat when the radius of curvature has grown

to 1000 times the original radius of curvature. (details see Appendix A). The results of

the calculations are shown in Fig. 6. The different models coincide within at most 6%25

for the radii under consideration and the difference due to the different assumptions

cannot be seen in Fig. 6.

Second, the effect of surface diffusion on the smoothing of asperities may be es-

timated by calculating the order of magnitude of the time it takes to smear out the
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asperity by the random movement of molecules on the highly mobile surface. The sur-

face diffusion constant Ds has been determined in the past in a number of different

experiments, but the results depend heavily on the method and on the temperature

range of the measurement (Mizuno and Hanafusa, 1987; Brown and George, 1996;

Livingston et al., 1997; Jung et al., 2004). Here, we quote the work of Mizuno and5

Hanafusa (1987), since they measured the properties in the quasi liquid layer on a col-

lection of small ice beads at temperatures close to the melting point, which resembles

the situation in snow. Using NMR spectroscopy between –1.5 and –20
◦
C, they found an

activation energy of Ea = 0.24 eV and a preexponential factor of D0 =8.43×10
−9

m
2
s
−1

.

Using these assumptions, and the characteristic diffusion length of ∆x=(4Ds td)
1/2

,

we can estimate the characteristic time td to distribute an asperity of radius R into a

disc of thickness d

td =
R3

6dDs

. (2)

To estimate an upper limit for the timescale, we consider that the asperity is completely10

smeared out when it has reached the thickness of the quasi-liquid layer. However,

measurements of the thickness of the quasi-liquid layer are subject to discrepancies.

The fact that the techniques used to measure it are sensitive to different physical fea-

tures of the quasi-liquid layer properties could explain the differences (Huthwelker et al.,

2006). Several theoretical models related to the quasi-liquid layer have also been de-15

veloped (Dash et al., 1995), but the experimental discrepancies render it difficult to

decide which model is the most appropriate. Moreover, it has been shown theoret-

ically that impurities (Wettlaufer, 1999) and curvature (Baker and Dash, 1989) could

affect the thickness of the quasi-liquid layer. Hence, the thickness of this layer is not

yet exactly established. In this paper our aim is only to evaluate the effect of surface20

diffusion when flattening an ice surface. Thus, in the calculation, we use an order of

magnitude assumption for the quasi-liquid layer thickness, in agreement with published

data. Hence, in Fig. 6, the thickness of the quasi-liquid layer was set to 100 and 10

10303

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/10287/2007/acpd-7-10287-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/10287/2007/acpd-7-10287-2007-discussion.html
http://www.egu.eu


ACPD

7, 10287–10322, 2007

SSA measurement

with X-ray

tomography and gas

adsorption

M. Kerbrat et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

namometer at –1
◦
C and –40

◦
C, respectively. For such thicknesses, the characteristic

time for the surface diffusion is 10 times higher, but becomes comparable to vapour

diffusion for smaller radii, where the size of the asperity is comparable to the mean free

path and diffusion becomes limited by molecular kinetics.

Figure 6 also suggests that even at temperatures as low as –40
◦
C the “smoothing” of5

the surface due to the Kelvin effect is very fast, and after a day structures of the size of

several micrometers have disappeared. This estimate agrees with our measurements.

Indeed, if we used Eq. (A6) to calculate the size of the asperities which would still be

present on our ds sample which was stored 8 days at –50
◦
C, we find that all asperi-

ties having a radius lower than 15µm may have sublimated. This radius corresponds10

to an asperity of a about 30µm in size, which is the resolution of the tomograph. As

no asperities smaller than the resolution of the tomograph may have “survived” – if

they were present after the formation of the crystal –, SSABET agrees with SSAµCT

on this decomposing snow sample. In the case of the sample called “Precipitation”

(see Sect. 3.3), the latter was measured about one hour after the precipitation. The air15

temperature during sampling was ≈ -7
◦
C. Using Eq. (A6), we calculated that only as-

perities with a diameter of about 20µm and smaller would have had time to sublimate

before the measurement. This means that on the “Precipitation” sample there possi-

bly were still asperities which could not be resolved by the tomograph and therefore

SSABET was higher than SSAµCT. The calculation also shows that during the scan of20

a sample, which takes 3 h and which is made at –15
◦
C (see Sect. 2.3), all asperities

with a diameter of ≈25µm which may have been present at the beginning of the scan

will disappear during the measurement. As this value is lower than the resolution of

the tomograph, the changes occurring during the scan will not affect the results. In

the case of an adsorption measurement, there is no evolution of the sample during the25

measurement, as it is done at liquid nitrogen temperature

We saw in the previous paragraphs, that the surface of ice is very likely to be smooth

on a micrometer and nanometer scale. Nevertheless, ice is a high vapour pressure

(P0) solid and in thermodynamic equilibrium, its surface is continuously bombarded
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with water molecules with a rate of jkin=P0v̄/(4kBT ) with the mean thermal velocity

v̄=(8kBT/πM)
1/2

, while the same flux of water molecules desorbs. In absence of sur-

face diffusion on the ice surface, this continuous exchange of molecules with the gas

phase could lead to a molecular rough surface. However, driven by the minimization

of the surface energy, the roughness will disappear, if surface diffusion is fast enough.5

The interplay between absorption, desorption and diffusion is complex and has been

subject to molecular dynamics studies. Xiao and Ming (1994) studied this interplay and

found conditions for the molecules smoothness of surfaces. Based on their work and

using the activation energy of diffusion of Ea=0.24 eV (Mizuno and Hanafusa, 1987),

the ice surface should be also smooth on a molecular scale, as long the ice does not10

grow.

4.3 Practical aspects

Both techniques are suitable to measure reliably the SSA of snow. The measurements

require in all cases a relatively constant temperature and A.C. power supply. The

application in the field is therefore limited to sites with a good infrastructure. Therefore,15

it has to be pointed out here that optical methods such as contact spectroscopy (Painter

et al., 2007) or near-infrared photography (Matzl and Schneebeli, 2006) are much more

appropriate for field work.

4.4 Sampling volume, macroscale resolution and snow stratigraphy

Methane adsorption measures the smallest naturally occurring ice particles. Compared20

to tomography, this independence of resolution is its largest advantage. However,

snowpacks are layered (Colbeck, 1991). In fact, the traditional classification of snow

layers underestimates the vertical variation of snow properties substantially (Pielmeier

and Schneebeli, 2003) . This is also the case for SSA (Matzl and Schneebeli, 2006).

A high vertical spatial resolution is therefore extremely important to understand the25

exchange processes in a natural snowpack. Methane adsorption works only on a rel-
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atively large volume; in our measurements we used a sampling volume of 286.5 cm
3
,

compared to 0.144 cm
3

for tomography. The use of methane adsorption measurements

in simulations of real snowpacks must carefully consider errors introduced by the large

sampling volume. This is especially important when photon flux and permeability are

calculated.5

4.5 Atmospheric implications

Regarding atmospheric chemistry, the water vapour fluxes responsible for the smooth-

ing of the surface after the snow crystal has stopped growing may also influence the

partitioning of atmospheric trace gases between the gas and the adsorbed phase within

and over the snow pack. Indeed, on the first hand, trace gases which may have been10

trapped during the crystal growth (Huthwelker, 1999; Kärcher and Basko, 2004), could

be released during the surface flattening. Such mechanism would lead to a transport

of atmospheric gases from the higher to the lower atmosphere. On the other hand,

some could be trapped where ice is growing and therefore would be removed from the

gas phase also modifying the atmospheric composition over the snowpack.15

5 Conclusions

For the first time ever, we have the performance of two techniques to measure the

SSA on snow. Although the two techniques used are based on two different physical

concepts, the correlation factor between both methods was found to be 1.03(±0.03),

for SSA values ranging between 50 and 700 cm
2
g
−1

. The spatial resolution of the20

adsorption method is on the molecular level, while the effective resolution of the µCT is

about 30µm. Thus, the very good agreement between both measurements excludes

the presence of micrometer or nanometer sized surface structures, which would remain

undetected with the µCT. Consequently, our measurements prove that the ice surface

in alpine snow is smooth up to a scale of about 30µm few hours after the precipitation.25
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From simple estimations of the time scales for sublimation (Kelvin effect) and surface

redistribution (diffusion in a quasi-liquid layer) of small asperities we draw the conclu-

sion that both processes are capable of smoothing the surface on a length scale of

about 30µm within a few hours.

The absence of surface micro- and nanostructures is significant for the modelling in5

such diverse fields as friction on snow, snow chemistry, snow optics, and snow meta-

morphism. In modelling snow metamorphism, for example, a smooth surface allows to

ignore all processes which might occur on a scale smaller than a few micrometers.

Another very important implication of these results is that the reliability of the µCT

in capturing the geometry of snow is guaranteed. This fact is crucial for further investi-10

gations to link physical properties with the geometry of snow, for which the µCT is an

ideally suited device.

Appendix A

Diffusion due to Kelvin effect15

In this section, we present the equations to estimate the time it takes to evaporate a

small spherical particle due to the Kelvin effect, if the transport of vapour is limited by

gas phase diffusion. In the following paragraphs, we consider a semi-infinite environ-

ment, which means that all quantities refer to a half sphere. We consider a particle

sitting on a flat surface, which is assumed not to interact with the gas phase. Under

this assumption, and assuming steady state diffusion, the water vapour pressure field

over the half sphere may be approximated by the solution of the diffusion equation in

spherical symmetry which is:

p(r) = p
∞

+
A

r
. (A1)
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The Kelvin effect states that over a convex surface the vapour pressure is higher than

over a flat surface, which provides the boundary conditions

p(R) = p
∞

exp

(

C

R

)

, (A2)

C =

2mH2Oσ

kBTρice

. (A3)

This determines the constant A=Rp
∞

[

exp
(

C
R

)

−1
]

. In thermodynamic equilibrium, the

diffusion away from the curved surface is given by Fick’s law, j=(D/kBT )(A/R2
), which,

upon multiplication with the surface of a half sphere, gives the particle flux leaving the

sphere

J(R) = 2π
D

kBT
Rp

∞

[

exp

(

C

R

)

− 1

]

. (A4)

Then, the rate of mass loss due to diffusion may be expressed as

dm

dt
= −mH2OJ(R). (A5)

If we now consider the three models for the evolution of the shape of a spherical asper-

ity assumptions, which were described in Sect. 4 and in Fig. 5, one can evaluate the

characteristic time needed to sublimate an asperity from a flat surface.

A1 Assumption 1: constant radius

In the first assumption, we neglect the changing radius during sublimation, i.e. assume

a constant diffusion rate. The time it takes for a half sphere to evaporate can be calcu-
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lated from the analytical solution of equation (A5) as

t =
γ

3

R2

[

exp
(

C
R

)

− 1
]
, (A6)

γ =
ρicekBT

mH2ODp
∞

. (A7)

In this assumption, the asperity has disappeared when its total mass has been diffused.

A2 Assumption 2: shrinking sphere

Alternatively we can assume that the radius decreases while the sphere evaporates.

The asperity will be considered to have vanished when its radius is zero. In Eq. (A5),

the variables can be separated to dm/dt=dm/dR · dR/dt. The term dm/dR is the

derivative of the mass of a half sphere as function of its radius. The term dR/dt
represents the rate of decrease (in this case) of the radius of the particle. The time it

takes for the radius to decrease from R (the initial radius) to zero is given by

t = γ

∫ R

0

R′

[

exp
(

C
R′

)

− 1
]
dR′, (A8)

with γ and C as before.

A3 Assumption 3: constant contact area

A third model can be constructed by assuming that the contact area between the as-5

perity and the flat surface stays constant, and the radius of curvature increases. The

asperity is considered to be flat when its radius has grown to 1000 times the initial

radius.
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With the height of a spherical calotte h=R−

√

R2
− R2

i
and its volume V =π

3
h2

(3R−h),

we can calculate the derivative

dV

dR
= πR






2R −

2R2
− R2

i
√

R2
− R2

i






. (A9)

As dm/dR=dV/dR · ρice, Eq. (A5) can be used in the same way as in the assumption

2 and we obtain upon integration:

t =
γ

2

∫ Rf

R

2R′
−

2R′2
−R2

i
√

R′2
−R2

i

[

exp
(

C
R′

)

− 1
]

dR′ (A10)

The integrals (Eq. A8 and A10) have been solved numerically and the results are shown

on Fig. 6. From our calculations, we could state that the way the half sphere evolves

upon sublimation doesn’t affect the characteristic time it needs to disappear. The diffu-

sion constant has been corrected for kinetic effects for very small spheres, as described

in Pruppacher and Klett (1997).5
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Table 1. Sample characteristics and preparation methods for the different snow types together

with the obtained results. ρweighed is the snow density calculated after weighing a known volume,

whereas ρCT is the density calculated from the segmented µCT images. Note that the relatively

large density error includes both the measurement error and the natural sample variation. The

number of adsorption and tomography measurements for each snow type corresponds to Nr.

BET and Nr. µCT respectively. The given SSABET and SSAµCT represents the mean values

–measured by each method– for each snow type and the errors are “interblock errors ” (see

Sect. 3). The SSAType are the mean values of all measurements made on each snow with both

methods... The given errors are the corresponding standard deviations (1σ).

snow type ICSSG snow ρweighed ρCT Nr. Nr. SSABET SSAµCT SSAType

history g cm
−3

g cm
−3

BET µCT cm
2

g
−1

cm
2

g
−1

cm
2

g
−1

ds 2a 8 days @ –50
◦

C 0.11 (±0.01) 0.11 (±0.02) 4 11 616(±29) 665(±73) 642(±51)

mI 3a(2a) 14 days @ –17
◦

C 0.15 (±0.01) 0.13 (±0.01) 5 13 346(±11) 420(±27) 381(±42)

mII 3a 17 days @ –3
◦

C 0.19 (±0.05) 0.19 (±0.03) 5 12 270(±31) 291(±27) 282(±30)

dh 5a2 field, not sieved 0.31 (±0.02) 0.31 (± 0.02) 5 14 93(±5) 91(±6) 92(±6)

ws 6a field, sieved 0.54 (±0.03) 0.56 (± 0.03) 3 9 49(±1) 48(±3) 48(±2)
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Fig. 1. Typical grain forms and corresponding 3-D-structures of the different snowtypes: (from

top to bottom) decomposing snow, metamorphosed I, metamorphosed II, depth hoar, and wet

snow. The scale bar in the left column is always 1 mm. In the middle column, note the different

scales of the shown 3-D volumes for fine grained (2.7×2.7×0.45 mm
3
) and coarse grained

(5.4×5.4×0.9 mm
3
) snow types. The right column shows a detail of the 3-D structure, i.e. the

shaded lower left corner.
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Fig. 2. The BET transform (in black on the left axes), is derived from the isotherm of adsorption

(in gray on the right axes) (Brunauer et al., 1938). The slope and the intercept of the linear part

are used to calculate the SSA (Legagneux et al., 2002).
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Fig. 3. Histograms of the filtered 3-D grayscale tomography images. Shown are all tomograms

for decomposing snow and depth hoar. The fraction of “mixed voxels” is much higher for de-

composing snow (ds) than for depth hoar (dh). The bars are located at plus and minus one

standard deviation of the mean optimal threshold of the individual measurements.
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Fig. 4. The correlation between adsorption measurements and tomography was found to be

SSAµCT =1.03(±0.03)SSABET. The plotted error bars given for the adsorption method were

called “a-priori errors” whereas the one given for tomography were called “intrablock errors”

(see text for details). The data point called “Precipitation” was not taken into account when

calculating the correlation coefficient as explained in Sect. 3.3.
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Fig. 5. Models to estimate the sublimation time of a half sphere: i) constant flux ii) decreasing

radius, meaning increasing flux, iii) increasing radius
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Fig. 6. Characteristic time for the smoothing of an ice surface due to the Kelvin effect (straight

lines) and surface diffusion (dashed lines) as a function of the initial radius of the asperity.
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