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Abstract. The Howard & Krishnamurti (1986) low-order
model (LOM) of Rayleigh-B́enard convection with sponta-
neous vertical shear can be extended to incorporate various
additional physical effects, such as externally forced vertical
shear and magnetic field. Designing such extended LOMs
so that their mathematical structure is isomorphic to those of
systems of coupled gyrostats, with damping and forcing, al-
lows for a modular approach while respecting conservation
laws. Energy conservation (in the limit of no damping and
forcing) prevents solutions that diverge to infinity, which are
present in the original Howard & Krishnamurti LOM. The
first LOM developed here (as a candidate model of transverse
rolls) involves adding a new Couette mode to represent exter-
nally forced vertical shear. The second LOM is a modifica-
tion of the Lantz (1995) model for magnetoconvection with
shear. The modification eliminates an invariant manifold in
the original model that leads to potentially unphysical behav-
ior, namely solutions that diverge to infinity, in violation of
energy conservation. This paper reports the first extension
of the coupled gyrostats modeling framework to incorporate
externally forced vertical shear and magnetoconvection with
shear. Its aim is to demonstrate better model building tech-
niques that avoid pathologies present in earlier models; con-
sequently we do not focus here on analysis of dynamics or
model validation.

1 Introduction

Rayleigh-B́enard convection is the buoyancy-driven circula-
tion in a shallow layer of Newtonian fluid contained between
two horizontal, isothermal surfaces, the lower one at higher
temperature than the upper one, in the presence of a constant,
uniform, vertical gravitational field (Chandrasekhar, 1961;
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Koschmieder, 1993; Getling, 1998; Mutabazi et al., 2006).
The response of the fluid to the imposed, adverse tempera-
ture gradient depends, in part, on the Rayleigh number,Ra,
a nondimensional control parameter assessing the relative
strength of buoyancy to dissipative effects. Rayleigh-Bénard
convection is a classical problem in hydrodynamic instabil-
ity, with applications in geophysics and astrophysics as well
as in various industrial processes. For instance, Rayleigh-
Bénard convection serves as a model system for both man-
tle convection in geophysics (Peltier, 1989) and mesoscale
shallow convection in atmospheric boundary layers (Brown,
1980; Agee, 1987; Atkinson and Zhang, 1996). Furthermore,
thermal convection of an electrically conducting fluid in the
presence of a magnetic field is a model system for magne-
toconvection in the solar photosphere (Proctor and Weiss,
1982).

Over twenty-five years ago, Krishnamurti and Howard
(1981) discovered that spontaneous vertical shear could be
generated in a Rayleigh-Bénard convection laboratory exper-
iment, resulting in large scale horizontal flow coexisting with
local convective structures. The first theoretical evidence re-
inforcing the possibility of such large scale circulations was
provided by their study of a low-order model (Howard and
Krishnamurti, 1986), which has since been widely used and
extended. Alow-order model(LOM) is a nonlinear dy-
namical system usually derived from a severely truncated
spectral Galerkin approximation (Shirer, 1987; Holmes et
al., 1996). The hydrodynamic fields (in this case, stream-
function and temperature) are expanded in infinite series of
time-independent, orthogonal eigenfunctions that satisfy the
boundary conditions. The series are then truncated, usually
arbitrarily, and the remaining finite set of time-dependent
“Fourier” amplitudes satisfy a set of coupled, nonlinear or-
dinary differential equations (the LOM).

The purpose of a low-order model is usually not to have
a numerically accurate computational fluid dynamics (CFD)
simulation of the flow. Rather, LOMs provide a simplified,
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abstract representation of the physical situation that may help
understand a critical feature of the dynamics, such as the
sensitive dependence on initial conditions revealed by the
Lorenz (1963) model or the theoretical plausibility of large
scale circulation in the Howard and Krishnamurti (1986)
model. The latter model is not intended to be an exact de-
scription of large scale circulation in thermal convection, but
rather a plausibility argument that such circulations can be
exhibited in a theoretical model that represents, at some level
of abstraction, the Rayleigh-Bénard flow.

Howard and Krishnamurti (1986) noted that, due to a de-
ficiency in the selection of modes retained in the truncation,
their LOM possesses an invariant manifold on which the sys-
tem is linear and unstable at sufficiently high Rayleigh num-
ber, resulting in trajectories that diverge to infinity. Thiffeault
and Horton (1996) showed that the Howard-Krishnamurti
(HK) model could be extended by adding one mode to the
temperature expansion, so that conservation of energy (in the
dissipationless limit) is restored. The resulting LOM has nei-
ther the offending invariant manifold nor solutions diverging
to infinity; instead, it exhibits better agreement with experi-
mental heat flux data than the original HK model (Thiffeault
and Horton, 1996). Meanwhile, Hermiz et al. (1995) showed
that, in order to satisfy a vorticity balance condition derived
by Lantz (1995), the HK model should include an additional
mode in the streamfunction expansion.

Indeed, the Galerkin technique for deriving LOMs does
not provide any guidance on the selection of modes to re-
tain in the truncation (Treve and Manley, 1982), and care-
less choices can lead to the potential for unphysical behav-
ior such as solutions that diverge to infinity. A physically-
motivated, modular approach to designing LOMs using the
Galerkin method has been introduced (Gluhovsky, 1982,
1986; Gluhovsky and Tong, 1999; Gluhovsky et al., 2002;
Gluhovsky, 2006). This approach is based on designing
LOMs so that their mathematical equations have a structure
isomorphic to those for systems known in mechanics as cou-
pled gyrostats, with friction and forcing. In mechanics, agy-
rostat is a system of bodies whose relative motion cannot al-
ter the intrinsic mass distribution of the system; the principal
example is an arbitrarily shaped rigid body, the carrier, with
an axisymmetric rotor that rotates (with constant angular ve-
locity) about an axis fixed in the carrier body (e.g. Gluhovsky
and Tong, 1999).

In rescaled variables, the Volterra (1899) equations of mo-
tion for a gyrostat have the following form:

v̇1 = pv2v3 + bv3 − cv2,

v̇2 = qv3v1 + cv1 − av3, (1)

v̇3 = rv1v2 + av2 − bv1,

wherea, b, c, p, q, andr are constants characterizing the
geometry of the gyrostat, with the constraint that

p + q + r = 0, (2)

andv1, v2, andv3 are state variables that describe the dy-
namics of the system (Gluhovsky, 1982; Gluhovsky and
Tong, 1999). This system is quadratically nonlinear, like the
Navier-Stokes equations, and it possesses two quadratic in-
tegrals of motion and also conserves phase space volume.
Damping and driving terms may be added to Eq. (1). If linear
viscous friction and constant forcing are used, the solutions
are guaranteed to be bounded (Gluhovsky and Tong, 1999).

The Volterra gyrostat can be used as a “building block”
for building higher order dynamical systems, by coupling to-
gether multiple gyrostats. Such systems maintain the con-
servation properties of interest. For instance, any system of
coupled gyrostats conserves the sum of squares of all dy-
namic variables, a quantity usually representing some form
of energy. An increase in the order of approximation of a
LOM may be carried out by adding gyrostat modules. The
modules’ internal coefficients can be modified to represent
adding various physical effects, such as rotation, topography,
and magnetic field (Gluhovsky and Agee, 1997; Gluhovsky
and Tong, 1999). This is because the gyrostats that appear in
LOMs are usually not of the general form (1) but rather one
of its special cases. For instance, the widely-known Lorenz
(1963) model of Rayleigh-B́enard convection has the form
of (1) but with r=b=c=0 and with additional friction and
forcing terms, as can be seen after a linear change of vari-
ables (Gluhovsky, 1982). This version of the gyrostat will
be referred to as theLorenz gyrostat. Another gyrostat com-
monly encountered in LOMs is theEuler gyroscope, where
a=b=c=0 so that only the three nonlinear terms are present
(Obukhov, 1969). For a thorough discussion of Eq. (1), in-
cluding the relationships between the fluid dynamical and
rigid bodies interpretations of the gyrostat, see Gluhovsky
and Tong (1999). For a discussion of the general rela-
tionships between systems of coupled gyrostats, including
their generalizations that incorporate nonlinear feedback, and
energy-conserving low-order models, see the work of Laksh-
mivarahan and Wang (2008a,b). In particular, they establish
the equivalence between a class of energy-conserving LOMs
characteristic of magnetohydrodynamics and systems of cou-
pled gyrostats, and provide algorithms for converting such
LOMs into coupled gyrostat form.

In previous work, we showed that the Thiffeault and Hor-
ton (1996) LOM has the form of four coupled gyrostats, with
friction and forcing, and demonstrated that it possesses two
integrals of motion corresponding to conservation of total
mechanical energy and of “unavailable” energy (Gluhovsky
and Tong, 1999). Subsequently, we added the streamfunc-
tion mode of Hermiz et al. (1995) to the Thiffeault-Horton
LOM, which results in a system of six coupled gyrostats that
respects both energy and vorticity balance (Gluhovsky et al.,
2002). In this paper, we expand the scope of the coupled
gyrostats approach for designing LOMs by showing how the
HK model can be further extended to include (1) a represen-
tation of externally forced shear, by extending our previous
LOM (Gluhovsky et al., 2002), and (2) magnetoconvection
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with shear, by extending the LOM of Lantz (1995). These
will be discussed in the next two sections, respectively. (Nei-
ther physical mechanism was previously known to be within
the scope of applicability of the coupled gyrostats approach.)
A concluding section will explore additional implications be-
yond the HK model. (An appendix presents an informal ap-
proach for converting a LOM into a system of coupled gy-
rostats, when this is possible.)

Since low-order models continue to be used recently for
the investigation of various flow phenomena, e.g. Fütterer
(2003); Chen and Price (2004); Moehlis (2004); Lakshmi-
varahan et al. (2006); Chen and Price (2006); Peng et al.
(2007), and Roy and Musielak (2007), there remains a need
to foster innovative principles for designing LOMs such as
those discussed here. This paper limits its scope to the con-
tribution of coupled gyrostats to low-order model building.
In this paper we do not discuss other key issues in mathemat-
ical modeling, such as convergence and validation, the inves-
tigation of model dynamics, and the comparison of model
results with observational or experimental data. Of course,
these latter issues should be considered when deploying cou-
pled gyrostat LOMs to physical problems. We also do not
claim to provide a general recipe for LOM construction with
a fail-safe procedure for picking the “right” modes. Rather,
we show how to improve existing practices of often arbitrary
mode selection, which can result in unphysical behavior. We
focus on illustrating how our technique can assist in model
building by enforcing conservation properties and bounded-
ness of solutions in the presence of novel physical mecha-
nisms (externally forced shear and magnetoconvection with
shear). Our approach certainly eliminates the most extreme
pathology of unfettered model building: solutions that di-
verge to infinity. There areno parameter regimes in which
coupled gyrostat LOMs exhibit such pathologies.

2 Externally forced shear

The problem of Rayleigh-B́enard convection in an exter-
nally sheared flow has numerous geophysical and engineer-
ing analogs (Kelly, 1994), for instance, in the formation
of cloud rows in a convective atmospheric boundary layer
(Brown, 1980; Shirer, 1986; Atkinson and Zhang, 1996).
Usually convection rolls with axes parallel to the shear di-
rection are found, e.g. in experiments and in meteorologi-
cal observations of cloud bands. These longitudinal rolls are
preferred when the basic Couette flow loses stability due to
the thermal stress. However, transverse rolls, whose axes are
perpendicular to the direction of shear, are known to occur in
certain situations, such as moderately supercritical convec-
tion with very low Reynolds number in air (Graham, 1933;
Chandra, 1938; B́enard and Avsec, 1938). For more discus-
sion of experimental work on transverse rolls, see the reviews
by Brunt (1951) and Kelly (1994), and the paper by Ingersoll

(1966). The LOM to be developed below is proposed as a
model of transverse rolls.

The basic momentum and heat equations for two-
dimensional Rayleigh-B́enard convection can be written in
the following nondimensional way (Saltzman, 1962; Howard
and Krishnamurti, 1986):

∂

∂t
∇2ψ +

∂ψ

∂z

∂

∂x
∇2ψ −

∂ψ

∂x

∂

∂z
∇2ψ = Pr

∂θ

∂x

+Pr∇4ψ, (3)
∂θ

∂t
+
∂ψ

∂z

∂θ

∂x
−
∂ψ

∂x

∂θ

∂z
= Ra

∂ψ

∂x
+ ∇2θ, (4)

whereψ is the streamfunction,θ is the temperature devia-
tion from the conductive steady-state profile,Pr is the Prandtl
number, andRa is the Rayleigh number. Here,t is time,x is
position along the horizontal axis, andz is position along the
vertical axis.

The boundary conditions at the top and bottom of the
layer are thatθ≡∂ψ/∂x≡∂2ψ/∂z2≡0 at z=0, π , which in-
cludes the stress-free condition. (However, note that any
externally-forcedshear mechanism could not be subject to
the stress-free condition.) For a flow without vertical shear,
periodic boundary conditions of the form,∂ψ/∂z≡∂θ/∂x≡0
at x=0, π/a, wherea is the aspect ratio (cell height to cell
width), are often assumed. However, to allow for vertical
shear, Howard and Krishnamurti (1986) and Thiffeault and
Horton (1996) do not impose these periodic boundary con-
ditions and deliberately include Fourier modes that do not
obey them. Rather, in the Galerkin expansions they simply
choose to seek solutions that have horizontal wavenumber
a, but include modes that arex-independent, without which
there would be no large scale circulation (which they wish to
study). We shall follow their approach here.

Using the following Galerkin expansions,

ψ(x, z, t) = A(t) sin(ax) sin(z)+ B(t) sin(z)

+C(t) cos(ax) sin(2z)+G(t) sin(3z)

+
π

2
ǫz2, (5)

θ(x, z, t) = D(t) cos(ax) sin(z)+ E(t) sin(2z)

+F(t) sin(ax) sin(2z)+H(t) sin(4z), (6)

the following LOM may be derived:

Ȧ = −Pr(1 + a2)A+
aPr

1 + a2
D +

a

2

(

3 + a2

1 + a2

)

BC

+
3a

2

(

5 − a2

1 + a2

)

CG−
16a

9

(

4 + a2

1 + a2

)

ǫC, (7)

Ḃ = −PrB −
3a

4
AC, (8)

Ċ = −Pr(4 + a2)C −
aPr

4 + a2
F −

a3

2(4 + a2)
AB

−
3a

2

(

8 − a2

4 + a2

)

AG+
16a

9

(

1 + a2

4 + a2

)

ǫA, (9)
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Ḋ = −(1 + a2)D + aRaA− aAE −
a

2
BF

+
3a

2
FG+

16a

9
ǫF, (10)

Ė = −4E +
a

2
AD, (11)

Ḟ = −(4 + a2)F − aRaC +
a

2
BD + 2aCH

−
3a

2
DG−

16a

9
ǫD, (12)

Ġ = −9PrG+
a

4
AC, (13)

Ḣ = −16H − aCF. (14)

A version of this system, but withǫ=0, was studied previ-
ously by Gluhovsky et al. (2002). Without variablesG and
H and withǫ=0, the above system reduces to that of Howard
and Krishnamurti (1986). The role ofH is to maintain con-
servation of energy (Thiffeault and Horton, 1996); the role
of G is to maintain conservation of vorticity (Hermiz et al.,
1995). The new term in the streamfunction, proportional to
ǫz2, represents a linear shearing velocity profile superim-
posed onto the basic flow. This “Couette mode” is a crude
representation of a fully developed, externally forced shear.
Here, the shear is applied transversely to the axes of the rolls.
The Reynolds number of the external shear mode can be ex-
pressed asRe=π2ǫ/Pr.

Strictly speaking, theǫz2 term in the streamfunction ex-
pansion is not part of the Galerkin approximation, since it
does not belong to the Fourier set of orthogonal eigenfunc-
tions. Note that its magnitude is fixed as a parameter,ǫ, while
the magnitudes of the Fourier modes are time-dependent un-
knowns. Thus the externally forced shear term is treated
as specified, and we apply the Galerkin expansion only to
the unspecifiedcomponent of the flow. Note also that the
forced shear term does not satisfy the stress-free boundary
condition,∂2ψ/∂z2 ≡ 0, at the top and bottom of the layer;
rather, it plays the role of a forcing mechanism not unlike
the classical, laminar Couette parallel-plate flow. The stress-
free boundary condition is imposed only on theunspecified
component of the flow.

A linear change of variables is often required to show ex-
plicitly that a LOM has a coupled gyrostats form. The choice
of transformation is usually not unique (for further discus-
sion, see the Appendix). To give one example, the following
transformation of variables,

x1 = 1 +
a2Pr

16(1 + a2)
(Ra− E),

x2 =
a2Pr

16(1 + a2)
√

2
D,

x3 =
a

4
√

2
A,

x4 =
a

4
√

2

(

4 + a2

1 + a2

)

C,

x5 =
a

4(1 + a2)
B,

x6 =
a2Pr

16(1 + a2)
√

2
F,

x7 =
4 + a2

2(1 + a2)
+

a2Pr

16(1 + a2)

(

Ra

2
−H

)

,

x8 =
9a

4(1 + a2)
G,

and where time is scaled up by a factor of four, transforms the
above LOM into coupled gyrostat form, shown in Table 1. In
the Table,α2=1/b, α3=α2Pr, α4=(3/4+1/b)Pr, α5=Pr/4,
α6=α4/Pr, α7=4, α8=9α5, f1=1+r̃Pr/b2, f2=2((4 +
a2)/(1+a2))+r̃Pr/b2, q=−a2/2, r=−1/(2(1+4/(3b))),
p= − (q + r), Q=2/(3b)−3/2, R=a/(6+8/b), P= −
(Q+R), c=2/b, d=2(1 + a2)/(4 + a2), b=4/(1 + a2), and
r̃=Ra/Rac, whereRac=(1+ a2)3/a2 is the critical Rayleigh
number at which the conductive steady state loses stability,
under conditions of no external shear. Finally,ǫ′=16aǫ/9.

In Table 1, friction and (constant) forcing terms are to the
immediate left of the first vertical bar. On the right of the first
vertical bar, there are (consecutively) (I) a Lorenz gyrostat
(x1, x2, x3), (II) an Euler gyroscope (x3, x4, x5) with a pair
of linear terms added, thus becoming a gyrostat, (III) a de-
generative gyrostat (x2, x5, x6) (Gluhovsky and Tong, 1999),
(IV) another Lorenz gyrostat (x4, x6, x7), (V) a plain Euler
gyroscope (x3, x4, x8), and finally (VI) a degenerative gyro-
scope (x2, x6, x8) (Gluhovsky and Tong, 1999).

This system of six coupled gyrostats differs from that stud-
ied in Gluhovsky et al. (2002) only by the terms with coeffi-
cientǫ′. It is thus evident that adding the effect of externally
forced shear adds new linear (gyrostatic) terms to existing
gyrostats in the model. In particular, gyrostat II, originally
an Euler gyroscope, is now a gyrostat with three nonlinear
terms and two linear terms; and gyrostat III, originally a de-
generative gyroscope, is now a degenerative gyrostat.

As with any system of coupled gyrostats, one can ver-
ify that the sum of squares of all dynamical variables is a
conserved quantity in the absence of forcing and dissipation.
This quadratic integral of motion is associated with the total
energy of the system, a linear combination of kinetic, gravita-
tional potential, and available potential energies (Gluhovsky
and Tong, 1999). In addition, this model also possesses the
same linear integral of motion,Rx5−rx8, representing to-
tal vorticity conservation, as in the model of Gluhovsky et
al. (2002). Therefore all conservation properties are main-
tained and solutions will be bounded (Gluhovsky and Tong,
1999). We do not present here the explicit equivalence of
these invariants with their hydrodynamic counterparts, since
the nondimensionalization scheme used to write Eqs. (3–
4) involves normalizing streamfunction and temperature by
the viscosity and thermal diffusivity (Saltzman, 1962). To
demonstrate the equivalence of the LOM invariants with their
hydrodynamic counterparts, one would like to take these dis-
sipation parameters to the zero limit to show conservation.
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Table 1. The LOM for convection with externally forced shear in coupled gyrostats form.

ẋ1 = −x1 + f1 −x2x3,

ẋ2 = −α2x2 +x3x1 −x3 +cx5x6 +ǫ′x6 − c
3x8x6,

ẋ3 = −α3x3 +x2 +px4x5 −ǫ′x4 +Px4x8,

ẋ4 = −α4x4 +qx5x3 +ǫ′x3 +x6 +Qx8x3,

ẋ5 = −α5x5 +rx3x4,

ẋ6 = −α6x6 −cx5x2 −ǫ′x2 +dx4x7 −x4 + c
3x8x2,

ẋ7 = −α7x7 + f2 −dx6x4
ẋ8 = −α8x8 +Rx3x4,

I II III IV V VI

A more convenient but nonstandard nondimensionalization
scheme would allow this to be done (see the example given
by Tong and Gluhovsky (2002)).

The modular structure of this LOM is also worth atten-
tion. The addition of the externally forced shear mechanism
results in modifying the existing gyrostatic modules in the
LOM. Extending the order of approximation will result in
adding new gyrostat modules to the system. For instance,
adding two non-shear modes to the model, a sin(2ax) sin(z)
mode in the streamfunction expansion and a cos(2ax) sin(z)
mode in the temperature expansion, results in adding a new
Lorenz gyrostat to the system. The new gyrostat couples the
two new modes with theE sin(2z) temperature mode. The
new gyrostat does not involve the externally-forced shear pa-
rameter.

Note that the common modes selection procedure for
LOMs is just to add a few more modes, the next ones in the
Fourier expansion. We improve this by selecting only those
among them that result in gyrostats, thereby maintaining en-
ergy conservation and bounded solutions. Our procedure can
thus be used to assist in increasing the order of approxima-
tion of the Galerkin expansion. If one’s goal is to formulate
a numerically accurate CFD simulation, this also requires in-
vestigating the convergence of the Galerkin approximation
as one continues to add modes (or gyrostat modules).

3 Magnetoconvection with shear

Lantz (1995) extended the HK model to the case of 2-
D magnetoconvection with an imposed horizontal magnetic
field. His aim was to model magnetoconvection with spon-
taneously generated vertical shear, a phenomenon originally
observed in a numerical simulation of the magnetoconvec-
tion partial differential equations (Lantz and Sudan, 1995).
The basic momentum, heat, and magnetic flux equations, in
nondimensional form, are as follows (Lantz, 1995):

∂

∂t
∇2ψ +

∂ψ

∂z

∂

∂x
∇2ψ −

∂ψ

∂x

∂

∂z
∇2ψ

= Pr
∂θ

∂x
+ Pr∇4ψ + PrmPr Q

(

∂φ

∂z

∂

∂x
∇2φ

−
∂φ

∂x

∂

∂z
∇2φ +

∂

∂x
∇2φ

)

, (15)

∂θ

∂t
+
∂ψ

∂z

∂θ

∂x
−
∂ψ

∂x

∂θ

∂z
= Ra

∂ψ

∂x
+ ∇2θ, (16)

∂φ

∂t
+
∂ψ

∂z

∂φ

∂x
−
∂ψ

∂x

∂φ

∂z
=
∂ψ

∂x
+ Prm∇2φ, (17)

whereψ is the streamfunction,θ is the temperature devia-
tion from the conductive steady state profile, andφ is the
magnetic flux related to the magnetic fieldB in two dimen-
sions byB=ŷ×∇φ, whereŷ is a unit vector orthogonal to
the x−z plane. Also,Pr is the Prandtl number,Prm is the
magnetic Prandtl number,Ra is the Rayleigh number, andQ
is theChandrasekhar numberwhich characterizes the “ini-
tial strength of the mean-squared horizontal magnetic field
in the region” (Lantz, 1995). (See Lantz and Sudan (1995)
for the precise definition ofQ.) The boundary conditions are
similar to those in Sect. 2, plus conducting magnetic bound-
ary conditions forφ; see Lantz (1995) and Lantz and Sudan
(1995) for further discussion.

Consider the following Galerkin expansions:

ψ(x, z, t) = A(t) sin(ax) sin(z)+ B(t) sin(z)

+C(t) cos(ax) sin(2z), (18)

θ(x, z, t) = D(t) cos(ax) sin(z)+ E(t) sin(2z)

+F(t) sin(ax) sin(2z)+K(t) sin(4z), (19)

φ(x, z, t) = G(t) cos(ax) sin(z)+H(t) sin(2z)

+I (t) sin(ax) sin(2z)+ J (t) sin(4z). (20)

This is an extension of the original Lantz (1995) model,
which did not include theK sin(4z) andJ sin(4z) terms. The
addition of theK sin(4z) term is required in the temperature
expansion to maintain conservation of energy (Thiffeault and
Horton, 1996; Gluhovsky and Tong, 1999). The addition of
theJ sin(4z) term in the magnetic flux expansion is required
to transform the LOM into a system of coupled gyrostats, to
be discussed below. (Note also that the original Lantz model
reduces to the HK model whenG≡H≡I≡Q≡0.) The re-
sulting equations for themodified Lantz modelare as follows:

Ȧ = −Pr (1 + a2)A+
aPr

1 + a2
D +

a(3 + a2)

2(1 + a2)
BC
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−aPrmPr Q

[

3 − a2

1 + a2
GH +G

]

, (21)

Ḃ = −PrB −
3a

4
AC − PrmPr Q

3a

4
GI, (22)

Ċ = −Pr(4 + a2)C −
aPr

4 + a2
F −

a3

2(4 + a2)
AB (23)

+aPrmPr QI + 2aPrmPr Q
12− a2

4 + a2
IJ,

Ḋ = −(1 + a2)D + RaaA− aAE −
a

2
BF, (24)

Ė = −4E +
a

2
AD, (25)

Ḟ = −(4 + a2)F − RaaC +
a

2
BD + 2aCK, (26)

Ġ = −Prm(1 + a2)G+ aA− aAH −
a

2
BI, (27)

Ḣ = −4PrmH +
a

2
AG, (28)

İ = −Prm(4 + a2)I − aC +
a

2
BG+ 2aCJ, (29)

J̇ = −16PrmJ − aCI, (30)

K̇ = −16K − aCF. (31)

Equation (21) corrects a sign error that appeared in the last
term of Eq. (12a) of Lantz (1995) (S. R. Lantz, personal com-
munication). This 11-mode model has a coupled gyrostats
form, as shown by the linear change of variables,

A′ =
1

√
2
A,

B ′ =
1

√
1 + a2

B,

C′ =

√

1

2

(

4 + a2

1 + a2

)

C,

D′ = D,

E′ =
√

2E −
√

2

(

Ra+
Pr

2(1 + a2)

)

,

F ′ = F,

G′ =
√

PrmPr Q

2
G,

H ′ = 2

√

2PrmPr Q

1 + a2
H,

I ′ =

√

PrmPr Q

2

4 + a2

1 + a2
I,

J ′ = 4

√

PrmPrQ

1 + a2
J,

K ′ =
√

2K −
1

√
2

(

Ra+
Pr

2(1 + a2)

)

.

Dropping primes, the resulting set of equations appears in
Table 2.

In Table 2, the parameters have the following definitions:

p1 = a 3+a2

2
√

4+a2
, p3 = −3a

2
1√

4+a2
,

q1 = − 3a

2
√

4+a2
, q3 = − a

2
1+a2√

4+a2
,

r1 = − a3

2
√

4+a2
, r3 = a

2

√
4 + a2,

p2 = − a

2
√

2
3−a2√

1+a2
, p4 = a

2
12−a2

4+a2

√
1 + a2,

q2 = − a
2

√

1+a2

2 , q4 = a
2

√
1 + a2,

r2 = 2a
√

2
1+a2 , r4 = −8a

√
1+a2

4+a2 ,

k1 = aPr
(1+a2)

√
2
, k3 = 2a

√

1+a2

4+a2 ,

k2 = a
2

√
1 + a2, k4 = aPr√

2(1+a2)(4+a2)
,

f1 = 4
√

2
(

Ra+ Pr
2(1+a2)

)

, f2 = 16√
2

(

Ra+ Pr
2(1+a2)

)

,

andγ=
√

PrmPr Q, and the dissipation parameters are

αA = Pr (1 + a2), αF = (4 + a2),

αB = Pr, αK = 16,
αC = Pr (4 + a2), αG = Prm(1 + a2),

αD = (1 + a2), αH = 4Prm,
αE = 4, αI = Prm(4 + a2),

αJ = 16Prm.

In Table 2, the friction and (constant) forcing terms appear
to the immediate left of the first vertical bar. Following the
first vertical bar are seven gyrostats. Gyrostats I (an Euler
gyroscope), II (the original Lorenz gyrostat), III (a degener-
ative gyroscope), and IV (another Lorenz gyrostat) comprise
the energy-conserving Thiffeault and Horton (1996) model.
Gyrostats V (with three nonlinear and two linear terms), VI
(another Euler gyroscope), and VII (another gyrostat with
three nonlinear and two linear terms) are all added as the re-
sult of the inclusion of the magnetic field. They represent the
interaction of the magnetic flux modes with all three stream-
function modes. Note further that the original Lantz (1995)
model, missing theK andJ terms, cannot be transformed
into the form of coupled gyrostats. This leads to potential
pathological behavior, as we now discuss.

Consider the original Lantz (1995) model, Eqs. (21–31)
but withJ≡K≡0. This system has an invariant manifold,

A=B=D=E=G=H=0,

on which the equations for the remaining variables,C,F ,
and I , are exactly linear and give unstable solutions for
Ra>Rac2, where

Rac2 =
(4 + a2)3

a2
+Q(4 + a2). (32)

Therefore the original Lantz (1995) model has solutions
diverging to infinity. Adding the modesK sin(4z) and
J sin(4z) eliminates the existence of the invariant manifold,
thanks to the presence of Eqs. (30–31). Moreover, the mod-
ified Lantz model’s coupled gyrostat structure guarantees
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Table 2. The modified Lantz model in coupled gyrostats form.

Ȧ = −αAA +p1BC +k1D +p2GH −aγG,
Ḃ = −αBB +q1AC +p3GI,

Ċ = −αCC +r1AB −k4F +p4IJ +aγ I,
Ḋ = −αDD −aAE −k1A −k2BF,
Ė = −αEE − f1 +aAD,
Ḟ = −αFF +k2BD +k3CK +k4C,
K̇ = −αKK − f2 −k3CF,
Ġ = −αGG +q2AH +aγA +q3BI,

Ḣ = −αHH +r2AG,
İ = −αI I +r3BG +q4CJ −aγC,
J̇ = −αJ J +r4CI,

I II III IV V VI VII

conservation of energy and bounded solutions (Gluhovsky
and Tong, 1999). This is explicitly shown by verifying that
the sum of squares of all dynamic variables is conserved in
the absence of forcing and dissipation, as in any system of
coupled gyrostats.

These observations do not cast doubt on Lantz’s original
work since, like Howard and Krishnamurti (1986), he studied
his LOM in regimes which avoided the pathological behav-
ior, and he obtained results consistent with numerical simu-
lations of the full PDEs (Lantz and Sudan, 1995). Nonethe-
less, the implication of the results reported here is to show
how further systematic and physically-motivated extensions
of magnetoconvection LOMs could be carried out. A sugges-
tion for future study would be the addition of a sin(3z) term
in the streamfunction expansion, which in the LOM for exter-
nal shear was needed for vorticity conservation (see Sect. 2).
In fact, an external shear mechanism similar to that of Sect. 2
could also be added to the modified Lantz model.

4 Conclusions

In this paper, we show that the HK model can be extended to
incorporate either a representation of externally forced ver-
tical shear or magnetoconvection effects with shear, by us-
ing the coupled gyrostats framework for designing LOMs.
This results in LOMs with modular structures which main-
tain the conservation properties of interest and avoid hav-
ing solutions that diverge to infinity, which can result from
the usual approach of arbitrarily truncating the Galerkin ex-
pansions. Note that unlike the original HK and Lantz mod-
els, their coupled gyrostat counterparts haveno parameter
regimes where solutions diverge to infinity.

The coupled gyrostats approach has also been applied
to the study of three-dimensional Rayleigh-Bénard convec-
tion (Tong and Gluhovsky, 2002) as well as thermosolutal
convection (Gluhovsky, 1982) and thermal convection with
rotation (Gluhovsky, 1986; Gluhovsky and Agee, 1997).
Furthermore, it is easy to show that the Rucklidge (1992)

model of “double convection,” which can be used to model
Rayleigh-B́enard convection with one of four possible phys-
ical mechanisms (solutal diffusion, rotation, or an imposed
vertical or horizontal magnetic field), has the form of two
coupled gyrostats (a Lorenz gyrostat and a gyrostat with
three nonlinear terms and one pair of linear terms) plus fric-
tion and forcing.

Moving beyond thermal convection, other hydrodynamic
problems lend themselves to the coupled gyrostats ap-
proach. For instance, a hierarchy of low-order models for
the barotropic, quasigeostrophic potential vorticity equation
for a beta plane atmosphere with topography has been shown
to have the building block structure of coupled gyrostats
(Gluhovsky et al., 2002). Systems of coupled gyrostats can
also serve as shell models for turbulence (Gluhovsky and
Tong, 1999). Finally, a LOM for the magnetohydrodynamics
of a toroidal confinement device (Chen et al., 1990) can eas-
ily be shown to have the form of a gyrostat with three nonlin-
ear terms and one pair of linear terms. It is also notable that
Hamiltonian LOMs based on gyrostats inherit the Hamilto-
nian structure (hence all conservation properties) of the orig-
inal equations (Gluhovsky, 2006). These examples provide
further evidence that coupled gyrostats can be employed in a
physically motivated, modular approach to designing LOMs
based on spectral Galerkin approximations.

Appendix A

Converting a LOM into coupled gyrostats form

In Sects. 2 and 3, we use linear changes of variables to con-
vert a system of equations into explicit coupled gyrostats
form. Here we discuss an informal approach of how to estab-
lish such a transformation when confronted with a candidate
LOM. A more general, algorithmic method is given by Lak-
shmivarahan and Wang (2008a,b). Since we did not learn of
their work until recently, we did not use their methodology
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in the work reported here. In the interest of disclosure, we
present below how we found our transformations.

Our informal approach begins with attempting to write
the original system of equations in an array similar to Ta-
bles 1 and 2. The idea is to arrange the nonlinear and linear
terms into coupled subsystems, each involving three dynam-
ical variables and a triplet of nonlinear terms. In some cases,
such a subsystem may have only two, not three nonlinear
terms (e.g. the Lorenz (1963) model). Once all the nonlinear
terms are grouped into triplets, next associate every linear
term to one of the triplets (those involving the variable in this
particular term), except the friction terms. A friction term is
a linear term using the same variable that appears on the left
hand side of the equation containing it. The friction terms
are set off on in a special column right after the equal sign,
along with constants (see, e.g. Table 1).

Now, every nonlinear and linear term should belong to a
subsystem that looks like one of the special cases of a gyro-
stat discussed in Gluhovsky and Tong (1999), except for their
coefficients and signs. (If not, there will be some remaining
“orphan” terms.) If a candidate subsystem looks almost like a
gyrostat but is missing a linear term, sometimes such a term
may be generated by transforming a variable involved in a
nonlinear term. For instance, if there is a nonlinear termXY
and the same row is missing a linear term proportional to
X, then the transformationY=aY ′+b, X=X′ will turn the
nonlinear term intoaX′Y ′+bX′, producing the missing lin-
ear term. In some cases, there is no hope of generating the
missing linear term, so that the subsystem may not be a gy-
rostat after all. The presence of such incomplete triplets or
orphan terms may suggest that the system of equations can-
not be converted into coupled gyrostat form. (The inability
of a LOM to be convertible into such a form may often be
verified by identifying an invariant manifold on which the
LOM is linear and, in certain regimes, possesses unstable so-
lutions.)

If there are no such pathologies, the final step is to con-
vert the coefficients and signs of the terms in the subsystems
to explicitly match the pattern of Eqs. (1). This is done by
writing a general linear change of variables, e.g., for theith
variable, letYi=aiY ′

i+bi , whereai andbi are arbitrary un-
knowns. Some of these unknown constants are constrained
by the condition that they need to be used to generate missing
linear terms as described above. Another constraint comes
from the requirement not to generate new linear terms where
they are unnecessary, again because the relevant variable is
involved in a nonlinear term.

After executing the transformations, and setting the result-
ing coefficients equal to those required by coupled gyrostat
form, one obtains a system of algebraic equations for theai ’s
andbi ’s with more unknowns than equations. This indicates
that the required transformation is non-unique. From here,
by trial and error one can establish a particular transforma-
tion that is valid. For instance, one can successively set some
of theai ’s andbi ’s to 1 and 0, respectively, until the number

of unknowns equals the number of equations, then solve for
the remaining unknowns. While desirable, simplicity can be
elusive, as shown by the examples in Sects.2 and 3.
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