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Abstract. Conditions under which a single oscillator model 1987; Bak et al., 1988). Numerous studies and various im-
coupled with Dieterich-Ruina’s rate and state dependent fricprovements to this model have been attempted (Pelletier,
tion exhibits chaotic dynamics is studied. Properties of2000; Gross, 2000; Clancy and Corcoran, 2005) in order to
spring-block models are discussed. The parameter values @fain more realistic dynamics for simulations done to com-
the system are explored and the corresponding numerical sgare with laboratory experiments. Over the years it has been
lutions presented. Bifurcation analysis is performed to de-agreed upon that friction constitutive laws are one of the
termine the bifurcations and stability of stationary solutions most important factors in improving the laboratory model,
and we find that the system undergoes a Hopf bifurcation tecenabling them to exhibit effects more like those observed in
a periodic orbit. This periodic orbit then undergoes a pe-an actual fault. Additional references and discussion of this
riod doubling cascade into a strange attractor, recognized asan be found in the paper by Marone (1998).

broadband noise in the power spectrum. The implications for In the early 80s, rate and state dependent frictions laws
earthquakes are discussed. have shown to be qualified in reproducing some behavior
similar to that of earthquake faulting. Burridge and Knopoff
incorporated a friction term in their model that was depen-
dent on the block’s velocity, but studies were later made that
indicated that the friction term could not be a single valued

i i function of velocity (Marone, 1998). Improvements to the
In the late 1960s, Burridge and Knopoff (BK) introduced a gy fiction law were made by Dieterich, Ruina, Rice and

mod_el that exhibited some charact_eristics similar to the dy'others based on empirical studies of rock friction in the lab-
namics of an earthqua_ke fault (Burrldge_ a_nd Knopo_ff, 1967)'oratory. They discovered that the incorporation of a state
They were interested in the role that friction plays in regard, ; japje enabled the model to exhibit almost entirely the ob-

to the earthquake mechanism and how successive events rga o g seismic behaviors such as stick-slip phenomena, fault
late to each other in time and space. The basic conflguratlorﬂea”ng and memory effects (Ruina, 1983), (Marone, 1998).
of the 'BKImodeI CIOHSIStS of a b,IOCthOUDrI]ed t?y a sfp;:n% t°|CarIson and Batista (1996) developed further constitutive re-
amoving oader plate r_epresentlng_ the ot er side o t € faultyiions to describe the friction in a lubricated interface, with
(see Fig. 1). The equations of motion for this model include o siate variable representing the degree of melting in the
a friction term accounting for the roughness of the surface) it layer. Daub and Cralon (208ave studied fault-

uhpon VIVh'f:h tr;ehblﬁCk sllps.l This term is a Ilqear function of scale behavior of various friction laws (including Dieterich-
the ve ocity of the oa}der plate added to aviscous term proy jina style friction) and their implications for dynamic rup-
portional to the velocity of the block. Burridge and Knopoff ..

wanted to see how many features observed in nature would :otarich-Ruina style friction in the spring-block model

be reproduced by their model. o _ involves a logarithmic term whose nonlinearity has intro-
Since its introduction, different variations of sprlng-b_lock_ duced additional difficulty in solving the problem. Due to
models have been shown to possess a power law distributioghe ponjinear term, analytic integration cannot be done even
of event sizes similar to the Gutenberg-Richter law (Carl-, e simplest case when one block is used. And while
son et al., 1994; Turcotte and Malamud , 2002; Bak et al.,

1 Introduction

_ Ipaub, E. G. and Carlon, J. M.: A constitutive model for fault
Correspondence to: B. Erickson gouge deformation in dynamic rupture simulations, J. Geophys.
(brittany@math.ucsb.edu) Res., submitted, 2007.
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Fig. 1. The single degree of freedom block and spring model is a
slider coupled by a spring to a loader plate representing the othe

side of the fault. The surface upon which the block slips is rough 40-
and the friction force holding the slider in place is quite complex.
Dieterich — Ruina style laboratory derived friction laws are used in 30
this simulation for their capability in reproducing many qualitative = , AN
dynamics similar to earthquake faulting. g 20 \\\
10
N

numerical solutions can be computed, the logarithmic term
still proves to be a challenge. Under laboratory determinec
values for the parameters, the system is extremely stiff in the
numerical sense. Due to the nonlinear term, the main sourc
of numerical stiffness, extremely small time steps must be
taken even with implicit methods. In the past, the Dieterich-
Ruina friction term has been altered because of this problem.
In Lapusta and Rice (2003) and Szkutnik et al. (2003), therig. 2. Periodic solution to the Single-Degree of Freedom system
authors regularize the nonlinear friction term for values near(2) with parameters=1.9,£=0.3,y=1. Top: The slip value (green),
zero. This can be done by either allowing rate values to becharacterizes the block sticking and slipping. The velocity (blue) is
of either sign and taking absolute values or by linearizing theinitially at zero, while the block is stuck. The slider remains stuck
term giving only a close approximation in a small interval. until the friction force holding it in place is overcome by the loading
Either this alteration of the nonlinear term or the lack of bet- force. The velocity then spikes when the block slips and the slip
ter solution algorithms (in Rice and Tse, 1986, for example)value jumps almost instantaneously. The velocity then _returns to

. . . ero, as the block becomes stuck and another cycle begifed)
may explain why chaotic regimes have rarely been observed

in simulati d ith this friction | d listi Can be interpreted as the amount of asperity contact that the block
I(:t;mgl aelsns onew IS Inction faw and realistic param- ¢ ith the surface. While the block is stuck, the contacts steadily
values.

increase, until the block slips and the contacts instantly decrease.
In this paper we use the full nonlinear term in the numer-Bottom: periodic orbit in the corresponding phase space. Notice

ics and find many different types of solutions to the systemthat the phase space is three-dimensional.

of a single block. Figure 2 shows the dynamics of the single

block from Fig. 1, under such a new friction law, exhibiting

periodic behavior. As shown later, this periodic orbit under- films subjected to shear. The measured friction force re-

goes a period-doubling cascade into a strange attractor du@ained constant for the steady sliding phase, oscillatory be-

to variations in the system’s parameters. Shkoller and Min-tween two values for periodic phases, and even chaotic in a

ster (1997) performed simulations and used unimodal mapsertain velocity range. These empirical results suggest that

to show that chaotic behavior was suggested by this frictionthe nonlinearity of the friction force in these models is cru-

force, although their parameter values do not seem to be recial for chaotic dynamics to emerge.

alistic for earthquakes. In 1999, Drummond found dynamic We integrate the dynamical system numerically, choosing

regimes similar to ours while experimenting with lubricant parameter values that are commonly used in more recent

Nonlin. Processes Geophys., 15, 1-12, 2008 www.nonlin-processes-geophys.net/15/1/2008/



B. Erickson et al.: Aperiodic earthquakes 3

literature. Under the assumption that the friction law is
the main physical process regulating the frequency of earth | 7y+A
quakes, then the presence of a strange attractor suggests fi
that earthquakes are sensitive to perturbations. Second, tt
strange attractor suggests that earthquakes are typically ap
riodic, although periodic earthquakes have been observe
(Beeler et al., 2001), (USGS, 2002). Thus aperiodic orbits.
on the strange attractor may exhibit dynamics analogous tt.
those during an earthquake.

riction stress

F

2 The single degree of freedom model Ty—(B-A)

We began numerical simulations of a spring-block model by Displacement

using the version proposed by Madariaga (1998) of a single
degree of freedom (one block) oscillator. In this form one can

V||e\t/v thihS“derS SII[; rre]lat“f/emtotithr? pu"Ingfc\)A:ﬁE ([))rl dtn:,/ieL the imposed velocity of the spring block illustrated in Fig. 1. The
P a_e. ese equations of mo O. (?OUD € . ete C_ “imposed velocity, initially maintained constantgt is suddenly in-
Ruina rate and state erendent friction (Ruina, 1983), (R'C%remented by\v and subsequently held constanvgt+ Av. The
and Tse, 1986), are given by: friction stressr, initially constant atrg, suddenly increases té
. when the velocity is incremented hyv and then decreases expo-
0 = —(v/L)(8 + Blog(v/vop)) nentially to a new value3. The length scald. characterizes the

L:‘ =V~ @) distance taken by the state variableo reach a new steady stakg
v = (—1/M)[ku + 6 + Alog(v/vo))]

Fig. 3. A schematic illustration of the response to a step change in

where the paramete#/ is the mass of the spring block. anq; (for a discussion of non-dimensionalized variables, see

In the context of seismology, the spring-block model illus- 5150 Gu et al., 1984). This non-dimensionalization puts the
trated in Fig. 1 can be understood as a representation fogystem into the following form:

one-dimensional earthquake motion (Scholz, 2002). In this "

context, the spring stiffnegscorresponds to the linear elas- ¢ = —v(¢ + (1 + €) log(v))

tic properties of the medium surrounding the fault (Scholz, # =v —1 (2
2002). According to Dieterich and Kilgore (1994), the pa- v = —y2[u + (1/£)(0 + log(v))]

rameterL corresponds to the critical sliding distance neces- o

sary to replace the population of asperity contacts. The pa\_/vh_ere e=(B fA)/ A measures the sen_smvny of the Ve
rametersA andB are empirical constants, however the mean-loc'ty relaxation,§=(kL)/A is the nondimensional spring

ing of these two parameters is best understood by writing theconstant, gn_cj/: vk/M(L/v,) is the nondimensional fre-
expression for the friction stress: quency. It is important to note that the parameter values cur-

rently being used in the literature are approximatehB.1
T =104 6+ Alog(v/vo), (e=1 in numerical simulations discussed in Rice and Tse,
1986),6=0.5 andy=10* — 10*? (Madariaga, 1998).
wherer is the traction when the oscillator is moving atcon-  The system has only one stationary solution, namely
stant velocityvg. When the slider moves at constant velocity (9, 4, v)=(0, 0, 1), which corresponds to steady sliding.
vss (Steady state), the expression for the stress becomes:  This solution is plotted in Fig. 4 under two different sets of
parameter values. In this case, the numerical solution falls
Ts = 70 — (B — A) l0og(vss/vo)- into its stationary state after a transient region and corre-
According to Rice (1983) and Rice et al. (2001), the pa_sponds to no movemen_t of the block relative to the dri_ver
rameter A=97/d log(v) is a measure of the direct veloc- plate. The plock’s veloc!ty is the same as that of the driver
ity dependence (sometimes called the “direct effect”) while p!ate, thus its slip remains zero. Investigation of the local
(A—B)=01,, /0 log(vss) is a measure of the steady-state ve- elgenyalqes of system (2) WI||.InfOI’m usasto yvhat param.eter
locity dependence (see Fig. 3). When compared to the S|iF5;0mb|nat|0ns lead to bifurcations of the stationary solution,

weakening friction law (Ohnaka and Shen, 1999), the param@S Well as how to choose a suitable numerical scheme. The
eter(B—A) plays a role of a stress drop whilecorresponds Jacobian matriDf is evaluated at the stationary solution to

to the strength excess. obtain matrixA:

System (1) can be non-dimensionalized by defining the -1 0 —(A+e)
new variable®, o, i and? in the following way. Sep=A6, A= 0 o0 1
v=v,9, u=Lii, t=(L/v,)f then return to the use &f, v, u —y2/E —y? —y?/¢

www.nonlin-processes-geophys.net/15/1/2008/ Nonlin. Processes Geophys., 15, 1-12, 2008
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Fig. 4. Stationary solutions of system (2) whose parameter val-Fig. 5. Periodic solution of system (2) whose parameter values have
ues have not crossed the Hopf bifurcation plane in Fig. 7. Herecrossed the Hopf bifurcation plane (given by Fig. 7) and its associ-
(e,&,y)=(0.2,0.8,0.8) and (¢, &, y)=(0.3, 1, 100 yield station- ated phase space. Hare &, )=(0.5, 0.6, 0.6) yields a period one
ary solutions corresponding to no movement of the block relativeorbit relatively smooth in its dynamics. The slip (green) fluctuates,
to the driver plate. After a transient region, its velocity stays at aincreasing as the velocity (blue) peaks and decreasing as the ve-
constant rate=1 as it moves with the driver plate. Its relative slip locity approaches zero. Similarly the state variable (red) decreases
is zero and its change in state (asperity contacts) is also zero. when the velocity peaks, but grows when the velocity reaches a min-
imum, and the asperity contacts are reestablished. The correspond-
ing phase portrait on the bottom is a smooth circular orbit where the
periodicity between the velocity, slip and state is further clarified.
Notice that the phase space is three-dimensional.

The corresponding eigenvalues #fare computed and we

find that the system has one non-zero real eigenvalue and a

pair of complex conjugates, suggesting the possibility of a3 Numerical integration and analysis

Hopf bifurcation to occur. When the matrix has a sim-

ple pair of pure imaginary eigenvalues and no other eigenin computing the local eigenvalues Bff at different times
values with zero real part, then if the complex eigenvaluesalong a solution’s trajectory, we found that when the block’s
cross the imaginary axis, the stationary solution will undergovelocity goes to zerow— 0), the minimum eigenvalue @ f

a Hopf bifurcation into a periodic orbit, s&guckenheimer is small (< <1) and decays exponentially towardso as the
and Holmes (1983) and Perko (2001) for more informationparametery is increased. This is important to consider be-
about this bifurcation. Similar linearized stability analysis cause for commonly used valuesjofy ~10*—10'? accord-

for rate and state dependent friction laws has been discussedg to Madariaga, 1998) the more negative the eigenvalue is,
by Gu et al. (1984) and Ranjith and Rice (1998). the stiffer the system will be. In regular systems, the choice

Nonlin. Processes Geophys., 15, 1-12, 2008 www.nonlin-processes-geophys.net/15/1/2008/



B. Erickson et al.: Aperiodic earthquakes 5

Solution for e = 0.1, E = 0.7, 7= 100 less. System (2) is stiff in time intervals whar@pproaches
50 - - - zero, i.e. if the step size is too large, thercan be com-
puted to be negative (or zero). Evaluating(lopat this time
aor 1 returns either an imaginary or undefined number and thus a
' completely inaccurate solution. If the step size is taken small
3or 1 enough, the velocity will move away from zero, due to the

negative coefficient-y2/£. Thus higher values af will in-
crease the stiffness in the system and require an extremely
small time step. It appears that the time stepscales in-
10F Nl versely withy (Ar~cy 1 for some constant), but no in-
depth studies have been done on this.
= — — | We have found that for small valuesafstationary, period
e one and period two orbits result. In integrating this system
10 | s . i numerically, solutions that were stationary undergo a Hopf
0 0 20 e “ =0 5 bifurcation and periodic orbits are born. It is possible to cal-
culate the parameter regions for which this bifurcation occurs
as we have done in Fig. 7. Parameter combinations that lie
below the surface will be stationary solutions, while combi-
nations that lie above it will yield periodic solutions.

The first set of diagrams in Fig. 7 correspond to small val-
~. ues ofy. The fact that it is a skewed surface means that a
2% Vs ~ Hopf bifurcation is dependent on the values of all three pa-
§ \\ rameters. This result agrees with the analysis in Gu et al.

(1984) where a transition to chaos was found by varying the
0. i' \\ parametek. For higher values of , however, the Hopf bi-
o furcation surface takes the shape of a two-dimensional plane.
Let us consider some simple trajectories in the parameter
space illustrated in Fig. 7 with relevant consequences for the
earthquake analogy. For fixed valuesyofi.e., fixed values
Siip -5 =10 State of k and L), the trajectory for a Hopf bifurcation depends on
€ andé. In this case, we can observe a transition to chaos
by simply increasing the value of those two parameters (or

Fig. 6. Periodic solution of system (2) whose parameter values haveequwalently the value of the parametetsand B) so as to

crossed the Hopf bifurcation plane (given by Fig. 7) and its associ-C10SS the plane. This trapsmon to chaos is thus_lndepend_ent
ated phase space. Hare £, )=(0.1, 0.7, 100) yields aperiod one ~ Of K @ndL, a result that differs from the results discussed in
orbit with similar dynamics to those in Fig. 5, but the changes in the GU €t al. (1984), where they were not able to explore large
velocity, slip and state are more sharp and distinguishable, correvalues ofk. Now consider the trajectories obtained by vary-
sponding to a more abrupt movement of the block relative to theing the parameteréB—A) and A. In general, these trajec-
driver plate. The associated phase portrait is also a circular orbit butories are more complicated since betandé consequently
not quite as smooth as that in Fig. 5. Notice that the phase space igary. However, if the parameteksand L (used in the defini-
three-dimensional. tion of £) are held constant, thanis a linear function of,
and the trajectories are straight lines again. For a large class
of these trajectories, the lines will cross the Hopf bifurcation
of the time step should be chosen to satisfy accuracy resurface with a transition to chaos. These transitions are also
quirements, and methods such as forward Euler and expliciindependent of the values bfandL. In an earthquake anal-
Runge-Kutta methods can be used. In stiff systems, howeveggy to the single block, illustrated in Fig. 1, this suggests that
these explicit methods are numerically unstable and requirgotential transitions to chaos are essentially controlled by the
very small time steps in order to maintain numerical stabil- ratio of the stress parameteB—A) and A (see Fig. 3) and
ity. Implicit methods have the ability to remain stable even independent of the elastic property of the medium surround-
with larger time steps, thus we chose to use an implicit, secing the fault (idealized by the parameterand the critical
ond order backward-differentiation formula (BDF) numeri- |engthL of the friction law.
cal scheme from Ascher and Petzold (1998), see appendix A Figures 5 and 6 represent two period one orbits similar
for a summary of this method applied to system (2). to that in Fig. 2. The solution in Fig. 5 is a periodic solu-
While the BDF scheme is stable, we find that the nonlin-tion but is more smooth in its motion than that in Fig. 6 (or
earity of the logarithm term restricts our time step nonethe-in Fig. 2), that represent more abrupt motion of the block

Walocity (blue), Slip (green), State (red)
2

Phase space fore=0.1,£E=07,y=100
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Fig. 7. Two Hopf Bifurcation Planes: Parameter spaces (from two different angles) for system (2) that yield a Hopf bifurcation. Parameter
combinations that lie below these surfaces will yield stationary solutions, while combinations above the two surfaces will yield periodic
solutions. Top: Small values ¢f produce a skewed surface in the{, ) plane while larger values of (bottom), produce a planar surface.

In both cases, for a fixed andg, a Hopf bifurcation will occur whea is sufficiently increased.

slipping beyond the driver plate. Initially the block is stuck stop, the contacts begin to increase, a process that could be
on a rough surface so the relative slip to the driver plate deinterpreted as fault healing after an event.

creases at a constant rate as the driver plate catches up andPeriodic solutions can be viewed in the phase space, or
even surpasses the block. Once the pulling force overcomelsy plotting the corresponding Poinéamap as shown in the
the static friction holding the block in place, the block’s ve- right of Fig. 8. The map is constructed by slicing a trans-
locity spikes, the slider shoots forward again and another cyverse hyperplane through the periodic solution in the phase
cle begins. The smoothness in the dynamics of Fig. 5 represpace and taking a small neighborhood around the solution
sents a fluid-like interaction between the block and the roughin the hyperplane (Guckenheimer and Holmes, 1983). Ex-
surface it slides upon. The block fluctuates gently in responselicitly, we sliced a plane in the phase spaéeu, v), at

to the driver plate and the friction on the surface, but never(9, u, 1), generating a plot of where the periodic orbit crosses
completely sticks to it for any period of time. Note that when the plane. Stationary solutions will, in general, not appear on
the velocity increases, the state variable decreases, a fact thiédite Poincag map. Period one orbits correspond to a fixed
supports the interpretation that the state variable measurgsoint of the Poinca map, period two orbits will appear as
the amount of contact the block has with the surface: wherntwo points on the Poincarmap etc., and chaotic orbits are
the block is stuck, the contacts will be greater than when theepresented by randomly distributed points on the map.
block is in motion. After the block arrests and comes to a

Nonlin. Processes Geophys., 15, 1-12, 2008 www.nonlin-processes-geophys.net/15/1/2008/
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Fig. 8. Left: The strange attractor appears in the phase space of a single block pétsses through a critical value. The attractor is a
compact set, invariant and with a neighborhood shrinking under the flow, to which orbits of the system approach. In our case, the attractor
is an aperiodic orbit and that it is strange is determined by the system’s sensitive dependence on initial conditions, yielding broadband noise
in the power spectrum. Right: Critical valueseyield period doubling bifurcations of periodic orbits. The Poirgcarap is shown on the

vertical axis, and the parameteon the horizontal axis.

Chaotic solutions to a spring-block model under a differ- attractor appears (Collet and Eckmann, 1980). If we assume
ent rate and state dependent friction law have been seriouslghat the nonlinear friction term in a single block system is
explored in Oancea and Laursen (1997), who studied bifurresponsible for simulating aperiodicity in earthquakes then it
cations of the system as they varied the pulling velocity at therequires that be at least in this regime.
end of the spring. As this velocity is increased, they found We can say a lot about the attractors of system (2) by
that growing oscillations would either become bounded peri-studying the quadratic map, defined by the iterative equa-
odic orbits orstrange attractors, although periodic windows tion: xn+1=1—,ux§. Our simulations make it clear that
would appear between the chaotic regimes. An attractor is @ur Poincag@ map is in the same universality class as the
compact set in the phase space, invariant and with a neighbottuadratic map and exhibits the same bifurcations. The sys-
hood shrinking under the flow, to which orbits of the systemtem defined by the quadratic map undergoes a period dou-
are attracted. It is calledsirange attractor if it exhibits sen-  bling bifurcation and becomes chaotic whes jicrit. Its his-
sitive dependence on initial conditions. See Guckenheimetogram counts the number of times the chaotic orbit visits a
and Holmes (1983) and Perko (2001) for more details on thiggiven x value on the strange attractor. Figure 9 shows the
topic. histogram for two types of attractors for the quadratic map

Our system under Dieterich-Ruina style friction undergoeswhich will will discuss in more detail in the next two para-

a sequence of period doubling bifurcations, until chaotic or-graphs to explain how to find signatures of aperiodicity.

bits appear in the phase space, seen in the left of Fig. 8. From Fig. 8, one can see the period-doubling bifurcation
These chaotic orbits are all pulled into an attractor in thepoints, ¢,, converge ak.,, where lim,_ « €,=€5~115,
phase space. If we consider the bifurcation diagram of theand the attractor becomesiagularly supported strange at-
solution X (1)=(0(¢), u(z), v(¢)) as a function ok (viewed tractor with a histogram similar to that of the quadratic map,
in the right of Fig. 8), then there is an initial interval where given in the top of Fig. 9. This means that the attractor con-
the attractor is a stationary solution. Then a Hopf bifurcationsists of a thin set on the x-axis, where orbits visit only a set
occurs and the attractor is a fixed point of the Poiaaaap  of points of Lebesgue measure zero. In each interval, the pe-
corresponding to a periodic orbit of system (2). As seen inriodic orbit from the previous interval survives, but becomes
the right of Fig. 8, the system undergoes a Hopf bifurcationunstable. Thus each interval to the leftegf contains unsta-
arounde~4. Then a series of period doubling bifurcations ble periodic orbits of all the previous periods. The histogram
occur and we get a sequence of intervals where the attractorfer the quadratic map can be compared with the histogram of
are stable periodic orbits of period 4, 8, 16 etc. This periodslip on an earthquake fault. If the magnitude of slip is plotted
doubling cascade converges arouael 15, where a strange against the number of slip events, and this data is compiled

www.nonlin-processes-geophys.net/15/1/2008/ Nonlin. Processes Geophys., 15, 1-12, 2008



8 B. Erickson et al.: Aperiodic earthquakes

ing the absolutely continuous invariant measure. In particular
the ergodic theorem holds so we can exchange time averages
by space averages (on the attractor) and the motion is mixing
= (Benedicks and Young, 1992), (Collet and Eckmann, 1980).
This means that orbits on the strange attractor visit a dense
2 set of points, as seen in the bottom of Fig. 9 (Benedicks and
Young, 1992). For values af past 12, there are windows
(open sets ir) where the attractor returns to a periodic orbit
from a chaotic one.

To confirm that the attractor is strange, we calculated the
Fourier power spectrum for period 1, 2 and chaotic orbits,
shown in Fig. 10. We took the numerical solution to the
block’s slip,u(z,) at N discrete points, and computed its dis-
crete Fourier transformi,( f;) for k=0, ..., N — 1. The esti-
Yy o 0.2 0.4 08 08 1 1.2 1.4 mated pOWGIP(fk) : =|ﬁ(fk)12(fk)|/N2 WhEI'Efk : Zk/At

andu is the conjugate of: (Press et al., 1986). The power
spectrum will plot the mean squared amplitude gff;)
against the positive frequencigsg for k=0, ..., N—1. After
normalizing the frequencies, the bifurcation from period one
to period two is confirmed in the first two plots in Fig. 10. In
the first plot, the single peak in power at frequency = 1 corre-
sponds in period to one dominating Fourier coefficient in the
Fourier expansion of the numerical solution. After the bifur-
cation, a first peak appears at frequenc%,i.e., double the
period of the previous solution, and a second peak appears at
frequency = 1, indicating a period two orbit. The broadband
noise in the third plot in Fig. 10 indicates that the attractor is
indeed strange (Begget al., 1984), (Crutchfield et al., 1980)
and the fourth figure plots the power of all three orbits so that
the broadening of the spectrum can be well observed.

We briefly discuss the consequences of this transition to
aperiodicity, withex~115, for the earthquake analogy of a
single block. For this purpose, it should be noted tzat/ S,
whereS is the non-dimensional seismic ratio introduced by
Fig. 9. Histograms for a singularly supported attractor (top) and anAndrews (1976). In a paper discussing transition to super-
attractor with an absolutely continuous invariant measure (bottom)shear velocity for the self-similar Dugdale model, Dunham
These figures are for the quadratic map. The x-axis is the interva{2007) observes that the crack tip will propagate at supers-
where_' the map takes its value§ and the y-axis is the number of pointgegr velocity for§~0.1 or smaller values. This range &f
that hit each x value (5000 points are sampled). values corresponds t being on the order of 10 or larger

(see Fig. 5 in Dunham, 2007). These results suggest that

for the single block-faulting process, a sequence of aperi-
for sufficiently many earthquakes, one can obtain histogramgdic earthquakes will be characterized by a rupture velocity
that look similar to that in Fig. 9. This can be a guide in that propagates at supershear velocity. Potential fault candi-
the analysis of earthquake data. Aperiodicity will appear indates for this model of aperiodicity include the San Andreas
the histogram as either one of the strange attractors in Fig. %nd the Kunlun faults (R. J. Archuleta, personal communi-
while periodicity will appear as isolated periodic peaks. cation, 2007). Finally, using the fault model computed by

What can we say about the region beyerd? Itis known  Archuleta (1984) for the 1979 Imperial Valley earthquake,
that the set o¢ for which there exists no stable periodic orbit Bouchon (1997) generates fault maps of the static stress drop
has positive Lebesgue measure, as does the slightly smallend strength excess (Fig. 4 in Bouchon, 1997). Although the
set for which there is sensitive dependence on initial condi-spatial distributions of the static stress drop and strength ex-
tions. It has been proven more recently that the still smallercess are both heterogeneous, one can find regions of the fault
set where there existhsolutely continuous invariant mea- where the ratio of the static stress drop to the strength excess
sures, living on support of the attractor on theaxis, has s of the order of 10 and thus closede11.5.
positive Lebesgue measure. For these values, tie dy-
namics reduce to ergodic theory on the strange attractor us-

Number of visits to x

Number of visits to x
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period 1 (groen, period 2 fod), brcadband ncise (ohse) Fig. 11. Slip values of three different blocks for period two orbit
000 ] withe =051, & =06,y = 1.
5000 1
§ 4000
3000
oty 05 1 15 2 4  The three block model
Frequency
. x A , Systems of multiple blocks and springs have also been stud-
Bl | | | ied in the past in an effort to better understand earthquake
wop | A , 1 dynamics. Period-doubling and chaotic solutions have been
ol el b ) ) i
N observed in simulations of other earthquake models: two

and three block models under velocity weakening friction

were found to be quite complex if wider parameter ranges
Fig. 10. The Fourier power spectrum was taken for period 1,2 andwere studied (Galvanetto, 2002; De Sousa Vieira, 1999;
chaotic orbits. It plots the mean squared amplitude of the FourieHuang and Turcotte, 1990). In particular, Huang and Tur-
transform of the slipi(f), against the positive frequencigg for cotte (1990) found that the system’s behavior was compara-
k=0,...,N — 1. The bifurcation from period one to period two ple to that of certain types of active faults, if studied over
is confirmed in the first two figureS, and the broadband noise |na W|de parameter range It |S |nterest|ng to note that under
the third figure suggests that the attr_actor is strange. The _fourtrDieterich-Ruina style friction, as in our system, chaotic dy-
figure plots the power of all three orbits so that the broadening Ofnamics resulted even with the use of one block. We explore
the spectrum can be well observed. .

a larger system to see where the threshold for chaos lies, and

we find that chaotic dynamics emerge for smaller parameter

values than those used in the single block system. We built
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10 B. Erickson et al.: Aperiodic earthquakes

exploration into parameter combinations leads to a period
two orbit. The important difference from the single degree
of freedom model (2) is that these period doublings occur for
a range of parameter values comparable to those derived in
the laboratory. Figure 11 shows a plot for parameters on the
order of 101, i.e., a much smaller value than for the single
block. Whene is further increased we find aperiodic orbits
like that in Fig. 12 and conclude that for the system of three

| M!Ullﬂlmllmllwlnrp,-.».w;,i t,r.n.l'l"ﬂ 1,-'|,W,||W|l||' | blocks, the threshold for chaos is greatly lowered for values

Slip values of 3 blocks fore = 0.2, £ = 0.8 and y= 0.55

j of &€ ande. The route to chaos for very large values;of
remains an open question.

15 s s - 5 Conclusions

Time
We have shown that the single degree of freedom block and
spring model (2) with the Dieterich-Ruina friction law ex-
Fig. 12. Slip values of the three different blocks for an aperiodic hlblts' cgmplex behavior. By using the full nonlinearity of
solution withe=0.2, £=0.8, =0.55. the friction term, we see that for a set of parameter values,
the system remains in a stationary state. An increase in the
parametet forces the system to undergo a Hopf bifurcation
the three block system with Dieterich-Ruina friction and the from a stationary solution to a periodic orbit, some of which
equations of motion found in BK's original paper. exhibit stick slip behavior reminiscent of earthquake dynam-
We letx; represent the displacement from equilibrium of ics. The periodic orbit then undergoes a period doubling bi-
the jth block. Thus withu ;41 as the spring constant con- furcation initiating a period doubling cascade where we find
necting thejzh block to the j+1rh block, andi; as the  periodic orbits of period 2, 4, 8, 16 etc. Whemnreaches
spring constant connecting theh block to the driver plate, €0, the periodic orbit bifurcates into an aperiodic orbit on a

which is moving at a constant ratg, our equations become: singularly supported strange attractor. Rast there exists
absolutely continuous invariant measures living on support

mjxXj=pj1(jp1—x;)—pj(xj—Xj41)—Aj(xj—vot)+F}, of the attractor and we find windows in which periodic orbits

for i=1 2. 3. We h led the fi d last block with appear and then bifurcate into aperiodic orbits.
orj=1,2, 3. We have coupled the first and last block With -1, -4 nsition to complex behavior discussed in this paper
a spring to make the system periodic and taken spring con-

. ) Is determined by the parameterThis parameter is indepen-
stants to be equal. We want to view the slip of thé ythep b P

block with t to the dfri lat introd h dent of the characteristic length scélesuggesting that com-
ock with respect 1o the driver .p ate, so we intro uge eplex behavior should be observed irrespectively of the value
new variable:u j=x;—vot. Thusu;j=v;—vo wherev;=x;.

R i di ionalized set of first ord taken byL. This is an important result in view of the current
~e-wriling as a non-dimensionalized Set of irst order equa-yqie oyer the guestion of using laboratory derived values
tions and applying the Dieterich-Ruina friction law (&)

) i of L in numerical computations of the earthquake rupture
yields: model (Lapusta and Rice (2003), for example). According
9j=—vj (0;4(1+€) log(v;)) to Fig. 3, the parameterquantifies the balance between the

final friction stress increment given gy —A) and the stress

incrementA due to the sudden jump in the imposed velocity
Av. Translated to earthquake motion, this picture suggests
that the parameteris principally determined by the ratio of
where the parameters, &, y remain those in Sect. 2, and the amount of “stress” dropped during an earthquake to the
all variables are non-dimensionalized versions of those inincrease in stress that accompanies the sudden change in the
Eqg. (2). We proceed by the computations preformed to thefault velocity. Provided that the former is sufficiently large
system in Sect. 2, first computing the Jacobian matrix forwhen compared to the latter, the parametevill be large
system (3) evaluated at its stationary solution and finding itsenough to ensure that a sequence of earthquake motions will
associated eigenvalues. be in the chaotic regime. A similar conclusion can be held

We notice that if we increase the same parametemd regarding the parametércorresponding to the linear elas-
strongly couple the blocks so that they are not allowed totic properties of the medium surrounding the fault (Gu et al.,
move very independently, (i.e. we set0.6), then the sys- 1984).
tem undergoes a similar bifurcation from a stationary solu- The periodic model for the recurrence of large earthquakes
tion to a periodic orbit as the one block system. Some furthetas been largely developed by Reid (1910), however support

u'jzvj—l (3)
o=y 2l jo1—2u e 1—uj— (1/6) 6+ 10g(v)))]
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for this idea lacks empirical evidence. (For a detailed dis-and at every time step, apply Newton’s method to solve the
cussion of the concept of periodic earthquakes see Scholzpot problem.

2002 — Fig. 5.34 in this book is a schematic illustration sim-  For every fixed step in time, n, th& 1" iteration under
ilar to the one block system in Fig. 1). Furthermore, tran- Newton’'s method is given by:

sitions to chaos have been observed for the simple configu- ., ) bl
ration of two or three coupled blocks (Huang and Turcotte,Yn = Yn = (31 = 2hDi(ts, y,))
1990; De Sousa Vieira, 1999; Galvanetto, 2002). In this pa-(3Y,, — 4Yn—1+ Yu—2 — 2hf(ts, ¥,))),
per we showed that even for a single block with a nonlinearWhere the vectorg? andf(t,, y?) are given by
friction law, a transition to chaos can be observed. The anal- n " In '
ogy with earthquake motion suggests that the friction law can 2
be a potential source for the observation of aperiodicity iny" —
earthquake dynamics (Huang and Turcotte, 1990).

It is important to note that non-periodic behavior ob-
served in this simple problem may be partially responsible —v, (0, + (L4 €)log(v}))
for irregular ground motion in addition to the heterogeneity f(z,, y,) = v, —1
in the stress distribution as simulated in Lapusta and Rice —yz(uz + (1/8)(6) + log(v}))
(2003). Furthermore, it will be important to see how this ] .
non-periodic behavior will affect the nucleation process in @nd the matrixDf(z,. y,) is

< &
ScxcSc

the numerical simulation of se .
quences of ea.rth.quakes Our ' 0 —0" — 1+ e)logw’) + 1)
results suggest that the use of the nonlinear friction term genpe _ 0 0 1
erates chaotic regimes that approximations to the term ma
g PP y —y?/E —y? (—v2/6)(1/vY)

not produce. There are also empirical results from the labo-
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