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Abstract

Organic carbon (OC) comprises a large fraction of fine particulate matter (PM2.5) in

Mexico City. Daily and select 12-h PM2.5 samples were collected in urban and pe-

ripheral sites in Mexico City from 17–30 March 2006. Samples were analyzed for

OC and elemental carbon (EC) using thermal-optical filter-based methods. Real-time5

water-soluble organic carbon (WSOC) was collected at the peripheral site. Organic

compounds, particularly molecular markers, were quantified by soxhlet extraction with

methanol and dichloromethane, derivitization, and gas chromatography with mass

spectrometric detection (GCMS). A chemical mass balance model (CMB) based on

molecular marker species was used to determine the relative contribution of major10

sources to ambient OC. Motor vehicles, including diesel and gasoline, consistently

accounted for 47% of OC in the urban area and 31% on the periphery. The daily con-

tribution of biomass burning to OC was highly variable, and ranged from 5–30% at the

urban site and 11–50% at the peripheral site. The remaining OC unapportioned to

primary sources showed a strong correlation with WSOC and was considered to be15

secondary in nature. Comparison of temporally resolved OC showed that contributions

from primary aerosol sources during daylight hours were not significantly different from

nighttime. This study provides quantitative understanding of the important sources of

OC during the MILAGRO 2006 field campaign.

1 Introduction20

The Megacity Impacts on Regional and Global Environment (MIRAGE) study of the at-

mosphere in Mexico City, as part of the Megacity Initiative: Local and Global Research

Observations (MILAGRO), targets the chemical characterization and transformation of

atmospheric pollutants generated in and transported from the urban area (NCAR/EOL,

2006). The air pollution generated in megacities poses a threat to human health and25

the environment; Mexico City has experienced extreme urbanization in the last century
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which has caused many environmental problems, including severe air pollution (Molina

and Molina, 2004). This capital city and its nearly 20 million inhabitants reside in an

elevated basin, 2240 m above sea level nearly surrounded by mountain ranges. Air-

borne PM frequently exceeds maximum concentrations allowed by air quality standards

(Molina and Molina, 2004) and high levels of PM have been associated with negative5

health impacts (Dockery et al., 1992; Saldiva et al., 1995; Schwartz and Marcus, 1990).

Aerosols may play an important role in the radiative balance of the earth through the

direct absorption or reflection of incident solar radiation or indirectly as cloud conden-

sation nuclei (CCN) (Sun and Ariya, 2006). The climate forcing of aerosols generated

in the Mexico City metropolitan area may affect the surrounding region.10

Mexico City has been the location of several air pollution field studies in the last half-

century. The majority of these studies have focused on the elemental composition of

PM (Raga et al., 2001); approximately half of the total aerosol mass in Mexico City was

observed to be organic matter (Chow et al., 2002; Edgerton et al., 1999; Salcedo et al.,

2006). PM2.5 analyzed at six locations in urban Mexico City from 2–19 March 2003 had15

an average organic carbon (OC) concentration of 9.98µg m
−3

and an elemental carbon

(EC) concentration of 5.82µg m
−3

(Chow et al., 2002). These levels are comparable to

those observed in downtown Los Angeles, California (LA) (Schauer et al., 1996) and in

three Chinese megacities, Beijing, Shanghai, and Guangzhou, during the summertime

(Feng et al., 2006).20

The primary sources contributing to fine particle OC in Mexico City have not pre-

viously been studied and source reconciliation has been limited. One multivariate

analysis of PM2.5 mass based on inorganic species found major primary sources to

be industry, wind-blown soil, and biomass burning (Johnson et al., 2006). There is

reason to believe, however, that additional sources to PM2.5 are important, although25

they may not have inorganic chemical signatures. Emissions inventories for gas-phase

pollutants in Mexico City have pointed towards motor vehicles as their most substantial

source (Schifter et al., 2004) which makes it likely that motor vehicles are also a major

source of ambient PM. Several studies of fine particle OC have identified diurnal trends
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in ambient concentration that correspond temporally to traffic patterns, which support

this hypothesis (Chow et al., 2002; Marr et al., 2006; Salcedo et al., 2006). To compre-

hensively understand the sources of OC, source apportionment should be based on

specific organic compounds.

The goal of the research presented in this paper was to determine the important5

sources of organic aerosol in Mexico City and quantitatively assess their mass con-

tributions. This was accomplished through quantification of OC, EC, water-soluble or-

ganic carbon (WSOC), and solvent-extractable organic molecular markers in PM2.5 and

chemical mass balance (CMB) modeling. This study assessed the temporal variability

of organic species and important aerosol sources. The geographic variability of OC10

was evaluated by comparing samples collected at an urban site in Mexico City and

a peripheral site, located on the outskirts of the metropolitan area. This study aims

to provide a concrete understanding of the primary sources of OC in Mexico City to

compliment future analysis of secondary organic aerosol (SOA) processing.

2 Methods15

2.1 Sample collection

The data discussed in this paper was obtained from filter samples collected in Mexico

City, D.F. and its environs from 17–30 March 2006. The urban site (MILAGRO site

T0) was located in downtown Mexico City (9.488 N, –99.147, 2240 m a.s.l.) and was

selected to characterize fresh aerosols generated in the metropolitan area. At this20

site, PM samplers were located on the roof of building #20 approximately 20 m above

ground level on the campus of Instituto Mexicano del Petróleo (IMP, Mexican Institute

of Petroleum), located on the northern edge of the city. IMP is surrounded by a mixture

of residential, commercial, and light industrial areas which include high motor vehicle

traffic corridors. Activities surrounding this area included significant amounts of idling25

or slow-moving traffic, especially during morning rush hour periods.
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The peripheral site (MILAGRO site T1), was selected in order to characterize a mix-

ture of fresh and aged aerosols. The peripheral site was located on the outskirts of

Mexico City, approximately 35 km northeast of T0 (19.703 N, –98.982, 2273 m a.s.l.).

Samplers were located at ground level on the campus of Universidad Tecnologica

de Tecamac. This site was located in a rural agricultural area where significant re-5

suspension of dust occurred. Compared to the urban site, vehicular traffic along adja-

cent roadways was light to moderate. Rain events occurred on 23 and 25–30 March

2006.

Particles were collected using a medium-volume PM2.5 sampler (URG Corp., Chapel

Hill, NC, USA) with a Teflon-coated aluminum cyclone inlet that selected aerosol with10

aerodynamic diameter less than 2.5µm. Air flow through the filter was controlled by

critical orifices and was measured before and after sample collection with a rotameter.

Particles were collected on quartz fiber filters (QFF) (90 mm, Tissuquartz, Pall Life Sci-

ences). Prior to sample collection QFF were baked at 550C for a minimum of 18 h to

remove organic species. Before and after particle collection, QFF were stored in alu-15

minum foil-lined Petri dishes sealed with Teflon tape. The sample date corresponded

to the day that particle collection began. Daytime samples were collected from 06:00 to

18:00 CST, nighttime samples from 18:00 to 06:00, and 24-h samples began at 06:00.

At the urban site, errors in labeling 12-h samples occurred from 19 March 18:00 to

21 March 18:00. The 19 March 18:00 sample was a field blank making PM data not20

available. The chronology of 20 and 21 March samples was reconciled by comparison

to co-located chemical measurements.

2.2 Chemical analysis

EC and OC were measured in the laboratory using a Thermal Optical Analyzer (Sun-

set Laboratory, Forest Grove OR) by the ACE-Asia method (Schauer et al., 2003).25

Reported ambient concentrations of EC and OC have been field blank subtracted. The

uncertainty for EC and OC measurements was calculated as the sum of the instrument

uncertainty, the standard deviation of the field blanks, and five percent of the measure-
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ment. At the peripheral site, WSOC was measured using an online particle-into-liquid

instrument coupled to a Total Organic Carbon analyzer (Sullivan et al., 2004).

Solvent-extractable organic species were quantified using gas chromatography mass

spectrometry (GCMS) (Sheesley et al., 2004). Filters were spiked with isotopically-

labelled internal recovery standards and extracted with methanol and methylene chlo-5

ride using Soxhlets. The filter extract was derivatized using diazomethane which

converted carboxylic acids to methyl esters (Schauer et al., 2002). A second de-

rivitization with N,O-bis-(trimethylsilyl)trifluoroacetamide and 1% Trimethylchlorosilane

(Fluka, Buchs, Switzerland) silylated hydroxyl substituents which allowed quantifica-

tion of cholesterol and levoglucosan (Nolte et al., 2002) was also performed. Reported10

ambient concentrations have been field blank subtracted. The uncertainty of the or-

ganic species mass concentrations was based upon the standard deviation of the field

blanks, experimentally determined analytical uncertainty, and projected uncertainty as-

sociated with filter extraction.

2.3 Source apportionment15

The contributions of primary aerosol sources to ambient OC were calculated using

software available from the United States Environmental Protection Agency (EPA-

CMB version 8.2). The CMB model solved for the effective-variance least-squares

solution to the linear combination of the product of the source contribution and its

concentration of a set of molecular marker species observed in ambient aerosol20

(Watson et al., 1984). This model has been successfully used to apportion source

contributions to ambient PM (Schauer et al., 2002). Detailed chemical profiles for

primary sources were compiled from available literature and encompassed vegeta-

tive detritus (Rogge et al., 1993a); natural gas (Rogge et al., 1993b); motor ve-

hicles including diesel, gasoline, and representative gasoline smoker (Lough et al.,25
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2007); and woodsmoke based on the average reported in (Sheesley, 2007
1
) with data

from (Fine et al., 2004a). The chemical species included in the model were EC,

C28-C34 n-alkanes, levoglucosan, 17α(H)-22,29,30-trisnorhopane, 17β(H)-21α(H)-

30-norhopane, 17α(H)-21β(H)-hopane, benzo(b)fluoranthene, benzo(k)fluoranthene,

benzo(e)pyrene, indeno(1,2,3-cd)pyrene, and benzo(ghi)perylene.5

3 Results and discussion

3.1 EC and OC

The 24-h average PM2.5 EC and OC concentrations for urban and peripheral Mexico

City are plotted in Fig. 1. At the urban site, OC concentrations ranged from 6.18–

16.25µg C m
−3

and EC concentrations ranged from 2.37–9.15µg C m
−3

as shown in10

Table 1. The average OC and EC concentrations at the urban site were 9.79µg C m
−3

and 4.03µg C m
−3

, respectively. These values are comparable to previous studies in

urban Mexico City (Chow et al., 2002; Edgerton et al., 1999; Salcedo et al., 2006) and

to other megacities (Feng et al., 2006; Schauer et al., 1996). At the peripheral site,

carbonaceous aerosol components were roughly half as abundant. OC concentrations15

ranged from 2.71–9.38µg C m
−3

and EC ranged from 0.70–2.79µg C m
−3

. The aver-

age OC concentration was 5.71µg C m
−3

while EC was 1.82µg C m
−3

. The decrease

in carbonaceous aerosol concentrations from the urban site to the peripheral site was

expected because of reduced primary sources in the outskirts of the city.

3.2 Molecular markers20

A series of polyaromatic hydrocarbons (PAH), n-alkanes, n-alkanoic and aromatic car-

boxylic acids, and highly-specific molecular markers were measured for 24-h samples

1
Sheesley, R. J., Scahuer, J. J., Zheng, M., and Wang, B.: North Carolina Paper, in review,

2007.
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at the urban and peripheral sites. A molecular marker for organic PM is a compound

that is highly specific to a single source category and is stable in the atmosphere.

Levoglucosan, an anhydrous carbohydrate, is a well-established biomarker for the

combustion of biomass materials (Simoneit, 2002). The pyrolysis product of cellulose,

a major component of plant material, is levoglucosan and this compound accounts5

for approximately 15% of primary fine particle OC resulting from biomass burning

(Sheesley, 2007
1
). Levoglucosan partitions to the particle-phase in the atmosphere

and does not degrade (Fraser & Lakshmanan, 2000). This biomarker has been used

to quantify ambient PM derived from biomass burning (Simoneit et al., 1999).

In this study, 24-h average concentrations of levoglucosan are presented in Fig. 210

for urban and peripheral sites. Levoglucosan was detected in all samples at both

sites as shown in Table 1. At the urban site, levoglucosan concentrations ranged

from 74–260 ng m
−3

, except for 20 and 21 March when concentrations reached 738

and 860 ng m
−3

and 29 and 30 March when concentrations reached 536 ng m
−3

and

379 ng m
−3

, respectively. At the peripheral site, the average levoglucosan concentra-15

tion was 404 ng m
−3

from 17–22 March and dropped to 134 ng m
−3

from 23–30 March.

Biomass burning was more consistent at the peripheral site while more episodic emis-

sions affected the urban area. There was little correlation between levoglucosan con-

centrations at the urban site and the peripheral site (R
2
=0.07) and this data suggests

that primary biomass combustion at the urban and peripheral sites were isolated from20

each other.

Hopanes are a well-established molecular marker for fossil fuel-derived PM in the

ambient atmosphere (Simoneit, 1999). Fossil fuel combustion encompasses several

primary aerosol source categories: motor vehicles, coal-burning power plants, and fuel

oil-burning power plants. In general, hopanes are less likely to be impacted by industrial25

point sources than other organic species, like PAH. Further distinction between mobile

and industrial source categories is possible if additional marker species are present.

Picene, for example, is specific to coal-burning (Oros and Simoneit, 2000) and can be

used to infer whether or not coal-fired power plants are a major contributor to ambient
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OC. Fossil fuel source categories can also be distinguished from one another based

on their temporal variability. It is expected that industrial point sources, like power

plants, have consistent emissions from day to day and vary only on longer time scales.

Emissions from motor vehicles, however, vary on much shorter time scales; diurnal

(Chow et al., 2002; Marr et al., 2006; Salcedo et al., 2006) and weekly (Bae et al.,5

2004) emission trends have been observed in urban areas. It is expected that driving

patterns differ on weekends, especially with regard to commuter traffic. In Mexico

City, the “Hoy no circula” (HNC, “Not driving today”) restrictions are enforced only on

weekdays which may correlate to different types of vehicles being driven on weekends

(Salcedo et al., 2006). In the absence of industrial sources, hopanes have been used10

to trace PM generated by both gasoline and diesel-powered motor vehicles (Schauer

et al., 1999; Schauer et al., 2002).

The 24-h average concentrations for a series of three hopanes, 17α(H)-22,29,30-

trisnorhopane, 17β(H)-21α(H)-30-norhopane, and 17α(H)-21β(H)-hopane, are pre-

sented in Fig. 3 for urban and peripheral sites. Hopanes were detected in all of the15

24-h average samples at both sites. The average total concentration of these three

compounds at the urban site was 1.48 ng m
−3

and was 0.50 ng m
−3

at the peripheral

site as shown in Table 1. A study of the same hopane series that took place in urban

LA reported concentrations ranging from 0.8–1.4 ng m
−3

in PM2.5 for a 3.5 h sampling

time (Fine et al., 2004b)20

The ambient concentrations of these three hopanes were consistently lower on the

weekends compared to the weekdays over the course of this study. Weekends are

defined as Saturday and Sunday and include 18, 19, 25, and 26 March; the average

of all weekend samples was compared to the average of all weekday samples. The

average weekday hopane concentration exceeded the average weekend concentration25

by 13% at the urban site and 30% at the peripheral site. This temporal trend gives

credence to the hypothesis that motor vehicles are the major source of hopanes at the

urban site in Mexico City. Picene was not detected at either site over the course of the

study which further eliminates coal-fired power plants as a major source of OC at the
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urban or peripheral sites. The observations in this study and previous studies (Chow

et al., 2002; Marr et al., 2006; Salcedo et al., 2006; Schifter et al., 2004) suggest that

motor vehicles are a substantial source of OC in Mexico City and it is concluded that

observed particle-phase hopanes predominantly resulted from motor vehicle sources

in this study.5

3.3 Source apportionment

A molecular marker CMB analysis was used to determine the relative contribution of

major sources to ambient fine organic aerosol in urban and peripheral Mexico City.

Contributions of vegetative detritus, diesel engines, gasoline vehicles, smoking vehi-

cles, woodsmoke, and non-apportioned or other sources of ambient OC for a 24-h10

sampling period are presented in Fig. 4 and summarized in Table 2. Natural gas com-

bustion was considered to be a potential aerosol source, but contributed a negligible

amount to OC at both urban and peripheral sties. Soil was not included as a poten-

tial source of OC in this study because a source profile specific to Mexico City and its

environs was not available and Si and Al measurements were not made. If soil was a15

source of OC, its contribution would remain unapportioned.

Vegetative detritus accounted for approximately 0.2µg m
−3

of OC at both locations

in Mexico City, which corresponds to 2.1% of OC at the urban site and 3.0% of OC

at the peripheral site. The mass contribution of vegetative detritus is comparable to

that in downtown LA determined to be 0.24µg m
−3

during a source apportionment20

study in 1982 (Schauer et al., 1996). The contribution of vegetative detritus to OC

was significantly higher at the peripheral site during the beginning of the study when

precipitation events did not occur (0.28, standard deviation 0.04, n=6) compared to

the end of the study which was marked by rain events (0.11, standard deviation 0.04,

n=8). This result suggests that the vegetative detritus contribution to OC changes with25

weather conditions.

The PM2.5 collected at the urban and peripheral sites was heavily influenced by

motor vehicles. The relative contributions of diesel engines, gasoline vehicles, and
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smoking vehicles to OC were calculated by the CMB model based on average source

profiles generated by a comprehensive study of motor vehicle emissions (Lough et al.,

2007). A smoking vehicle is a high-emitting vehicle that releases visible amounts of

smoke and/or produces more than 50 mg of EC per mile (Lough et al., 2007).

On average, the sum of the contributions from diesel engines, gasoline vehicles, and5

smoking vehicles accounted for 47% of observed OC at the urban site. Here, diesel

engines were the major source of EC and consistently accounted for 88% of the ob-

served ambient concentration. The contribution of motor vehicles on OC was reduced

by a factor of three at the peripheral site relative to the downtown site. This reduction

in the absolute contribution of motor vehicles to OC at the periphery is expected be-10

cause motor vehicle traffic is lighter. Here, motor vehicles accounted for 31% of OC on

average and diesel engines produced 82% of EC.

Gasoline vehicles exhibited a weekly trend in the downtown area. Properly function-

ing (non-smoking) vehicles accounted for 37% (standard deviation 7%) of gasoline-

powered motor vehicle OC on weekdays and 67% (standard deviation 8%) on week-15

ends. This result suggests that different types of cars were driven on weekends and

weekdays. A similar trend was observed on the periphery of the city, but was less

pronounced. This implies that the peripheral site is influenced by local motor vehicle

traffic and that that weekly vehicular patterns are similar in the downtown area and the

perimeter of the city.20

Woodsmoke was an important primary source of OC in downtown Mexico City, sec-

ond only to motor vehicles. In the urban area, woodsmoke accounted for 5–30% of

observed OC on a daily basis and its mass contribution ranged from 0.52–3.68µg m
−3

as shown in Table 2. The contribution of woodsmoke to OC on the periphery of Mex-

ico City ranged from 11–50% and its mass contribution ranged from 0.89–3.55µg m
−3

.25

These results are comparable to a source apportionment study that occurred in down-

town LA during 1982, where the average annual contribution of woodsmoke to fine

particle OC was determined to be 1.85±0.31µg m
−3

(Schauer et al., 1996).

At the urban site, woodsmoke contributions to ambient OC were pronounced on
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20, 21, 29, and 30 March compared to other days. The irregular occurrence of wood

burning as a major source of OC indicates that it was a point source that sporadi-

cally affected the urban site. The woodsmoke contribution to OC at the peripheral

site was not as temporally irregular. Rather, the woodsmoke contributions were high-

est for the first six days during which the average contribution was 2.83µg m
−3

and5

subsequently decreased to an average value of 1.05µg m
−3

for the remainder of the

study. This temporal trend is analogous to vegetative detritus. Elevated amounts of

woodsmoke aerosol at the downtown site did not correspond to elevated woodsmoke

aerosol on the perimeter of the city. This was particularly noticeable on 29 and 30

March when woodsmoke contributions reach 2.70 and 2.30µg m
−3

at the urban site10

while woodsmoke contributions fell below average at the peripheral site. This temporal

discrepancy suggests that the woodsmoke events that affected the urban area did not

affect the periphery.

At the peripheral site, woodsmoke contributions to OC were highly correlated with

vegetative detritus contributions (R
2
=0.85). At this site, woodsmoke and vegetative15

detritus likely comprised a single source: biomass burning. Open burning of biomass

material generates aerosols containing carbonaceous plant material or vegetative de-

tritus that are suspended into the atmosphere by thermally-driven convection. It is likely

that this type of process is responsible for the woodsmoke aerosol on the perimeter of

the city. The woodsmoke contribution at the urban site has a much weaker correlation20

with vegetative detritus (R
2
=0.28), either because of additional sources of vegetative

detritus at the urban site or the different nature of biomass burning within the urban

area. It has been suggested that cottage industries, such as adobe brick-making and

tile-making, are primary sources of biomass burning in the urban area (Raga et al.,

2001). These controlled wood-burning processes are not expected to suspend signif-25

icant amounts of vegetative detritus like an open biomass burn would. The results of

this study suggest that the aerosol generated by biomass burning on the perimeter of

the city is chemically different than the point-source wood-burning events that pollute

the downtown area.

9646

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/9635/2007/acpd-7-9635-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/9635/2007/acpd-7-9635-2007-discussion.html
http://www.egu.eu


ACPD

7, 9635–9661, 2007

Source

apportionment of fine

organic aerosol

during MILAGRO

E. A. Stone et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Other sources of aerosol, which were not included in the CMB model, contributed

to a major portion of OC at both the urban and peripheral sites. OC unapportioned to

primary sources accounted for 6–63% of ambient OC at the urban site and 10–46% at

the peripheral site as shown in Table 2. The true source of the unapportioned OC could

include unknown or uncharacterized primary sources such as soil. In a study where the5

primary sources of OC were limited, the unapportioned OC was attributed to secondary

sources (Sheesley et al., 2004). Secondary transformation of gas-phase volatile or

semi-volatile organic species may occur by photochemical oxidation. The addition of

oxygen to carbonaceous compounds decreases volatility and increases partitioning to

the condensed, or aerosol, phase. Oxidation products are expected to be more water-10

soluble than their precursors because of increased polarity and potential for hydrogen-

bonding. The mass contribution of secondary sources to OC would be expected to

correlate with the mass concentration of WSOC. It is notable that fine particle WSOC

is also produced by biomass burning; 71% of organic aerosol in a biomass event has

been found to be water-soluble (Sannigrahi et al., 2006).15

In this study, ambient fine particle WSOC concentrations were measured only at

the peripheral site. The biomass contribution to OC was estimated to be 71% water-

soluble (Sannigrahi et al., 2006). The sum of the unapportioned OC and the biomass

contribution to WSOC are compared to ambient WSOC measurements in Figure 5. A

positive correlation is observed (R
2
=0.75). The slope deviates from unity and indicates20

that the modeled WSOC overestimates ambient observations by 17%. This may be

caused by the presence of additional primary sources, an overestimation of WSOC in

woodsmoke, or experimental artifacts. The robustness of the correlation, however, sug-

gests that the unapportioned OC is water-soluble. This result precludes soil from being

an important primary source because the OC in soil is primarily hydrophobic since hy-25

drophilic compounds would be washed out by precipitation. Secondary sources are

considered to be the major uncharacterized source of OC at the urban and peripheral

sites.
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3.4 Daytime v nighttime

EC and OC concentrations in the urban site averaged over a 12-h period for 18–24

March 2006 are shown in Fig. 6. The daytime samples correspond to daylight hours

and were collected from 06:00 to 18:00 local time and vice versa for nighttime samples.

There is no pattern of EC and OC at night compared to daytime. This result indicates5

that EC and OC concentrations were more strongly influenced by primary sources and

meteorology than time of day.

The source contributions to daytime and nighttime OC are presented in Fig. 6. There

are no statistically significant differences between sources of OC during the nighttime

and daytime, as shown in Table 2. However, there is an average reduction in the diesel10

engine contribution to OC by 13% during the nighttime, suggesting that diesel traffic is

heavier during the daytime. Additionally, the contribution of vegetative detritus to OC is

23% greater at night than during the day.

The chemical composition of the aerosol was not statistically different between day

and night, but showed variability in relation to primary sources. Pinonic acid, for ex-15

ample, is an expected secondary organic species that has been formed in chamber

studies by the photochemical oxidation of α-pinene (Yu et al., 1999). This compound

is expected to form only during daylight hours. However, a previous study reported el-

evated pinonic acid concentrations at night relative to daytime and attributed this result

to the semi-volatile nature of this compound and enhanced partitioning to the particle20

phase at lower temperatures (Cahill et al., 2006). Pinonic acid was observed in every

12-h sample collected at the urban site in Mexico City. The 12-h daytime average was

not statistically different from the nighttime average. The 12-h daytime average pinonic

acid concentration ranged from 2.7–8.5 ng m
−3

and the nighttime concentration ranged

from 5.3–28.2 ng m
−3

. The maximum 12-h average nighttime concentration occurred25

on 21 March and the maximum daytime concentration occurred on the following day.

The time period of elevated pinonic acid corresponded to maximum OC contributions

from secondary sources and immediately followed the period of elevated woodsmoke.
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This result suggests that pinonic acid is formed in the atmosphere and is associated

with woodsmoke events. It also supports the conclusion of this study that secondary

sources contributed to ambient OC at the urban and peripheral sites.

4 Conclusions

Ambient aerosol collected at urban and peripheral sites in Mexico City were heavily im-5

pacted by primary emissions from motor vehicles and biomass combustion in addition

to secondary aerosol formed in the atmosphere. Motor vehicles contributed on average

47% of ambient OC at the urban site and 31% at the peripheral site. The daily con-

tribution of motor vehicles to PM2.5 was fairly consistent over the course of the study

but varied between weekdays and weekends. Woodsmoke episodes occurred spo-10

radically at the urban site and accounted for 5-30% of ambient OC, whereas biomass

burning more regularly affected the perimeter of the city and accounted for 11–50% of

OC. Mutually inconsistent temporal patterns and chemical signatures of woodsmoke

indicate that the peripheral site was influenced by local aerosol sources rather than

urban outflow. The unapportioned OC plus the water-soluble fraction of woodsmoke15

correlated well with WSOC which implicated SOA as an important component of both

urban and peripheral OC. Comparison of 12-h samples collected in daylight to those

collected at night revealed that primary source contributions were not strongly depen-

dant on time of day. This study provides a quantitative understanding and analysis of

important sources to OC collected at urban and peripheral sites in Mexico City during20

the MILAGRO field campaign from 17–30 March 2006.
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Table 1. Summary of organic carbon analyses at urban and peripheral sties, based on a 24-h

sampling time.

Urban site Peripheral site

Average Std Min Max Average Std Min Max

Organic carbon (µg C m
−3

) 9.79 3.45 6.18 16.25 5.71 1.76 2.71 9.38

Elemental carbon (µg C m
−3

) 4.03 2.16 2.37 9.15 1.82 0.60 0.70 2.79

Water-soluble OC (µg C m
−3

) nm nm nm nm 2.88 0.82 2.04 5.24

Levoglucosan (ng m
−3

) 248.1 188.4 73.6 612.5 249.7 149.9 116.5 489.9

Hopanes and Steranes (ng m
−3

)

17α(H)-22,29,30-trisnorhopane 0.20 0.08 0.10 0.36 0.07 0.03 0.03 0.11

17β(H)-21α(H)-30-norhopane 0.78 0.31 0.41 1.51 0.25 0.06 0.17 0.34

17α(H)-21β(H)-hopane 0.50 0.18 0.30 0.94 0.18 0.04 0.11 0.26

22S-homohopane 0.26 0.10 0.14 0.48 0.08 0.02 0.05 0.12

22R-homohopane 0.20 0.10 0.03 0.39 0.08 0.02 0.05 0.12

22S-bishomohopane 0.15 0.06 0.03 0.27 0.05 0.03 < 0.02 0.09

22R-bishomohopane 0.11 0.05 0.03 0.21 0.04 0.02 < 0.02 0.06

αββ-20R-C27-cholestane 0.14 0.07 0.08 0.33 0.05 0.03 < 0.02 0.09

αββ-20S-C27-cholestane 0.12 0.09 < 0.02 0.36 0.05 0.02 < 0.02 0.08

ααα-20S-C27-cholestane 0.13 0.06 0.02 0.24 0.11 0.11 < 0.02 0.47

αββ-20R-C28-ergostane 0.09 0.05 0.03 0.20 0.05 0.04 < 0.02 0.12

αββ-20S-C28-ergostane 0.07 0.05 < 0.02 0.17 0.04 0.03 < 0.02 0.09

αββ-20R-C29-sitostane 0.23 0.16 0.12 0.72 0.11 0.05 0.03 0.20

αββ-20S-C29-sitostane 0.20 0.14 0.06 0.60 0.11 0.04 0.05 0.18

PAH (ng m
−3

)

Phenanthrene 0.29 0.12 0.15 0.51 0.10 0.08 < 0.05 0.21

Fluoranthene 0.48 0.13 0.27 0.72 0.25 0.10 0.11 0.40

Pyrene 0.54 0.19 0.30 0.97 0.29 0.12 0.11 0.49

Benzo(GHI)fluoranthene 0.55 0.19 0.27 0.85 0.26 0.10 0.14 0.46

Cyclopenta(cd)pyrene 0.48 0.27 0.24 1.09 0.25 0.11 0.11 0.50

Benz(a)anthracene 0.35 0.13 0.17 0.63 0.21 0.07 0.11 0.35

Chrysene 0.65 0.21 0.41 1.03 0.38 0.13 0.23 0.66

Retene 0.74 0.90 0.09 2.63 0.35 0.45 < 0.05 1.17

Benzo(b)fluoranthene 0.53 0.19 0.33 0.85 0.44 0.11 0.27 0.64

Benzo(k)fluoranthene 0.46 0.16 0.29 0.72 0.29 0.08 0.17 0.41

Benzo(e)pyrene 0.56 0.19 0.33 0.94 0.40 0.12 0.23 0.61

Benzo(a)pyrene 0.51 0.17 0.30 0.77 0.29 0.12 0.15 0.56

Indeno(1,2,3-cd)pyrene 0.44 0.17 0.27 0.85 0.31 0.08 0.23 0.52

Benzo(GHI)perylene 1.03 0.43 0.54 2.02 0.52 0.18 0.26 0.79

Dibenz(ah)anthracene 0.11 0.05 0.06 0.21 0.10 0.06 < 0.05 0.20

Coronene 0.58 0.29 0.08 1.12 0.30 0.10 0.15 0.47

Aromatic carboxylic acids (ng m
−3

)

1,2-benzenedicarboxylic acid 10.16 6.65 3.89 26.64 2.92 1.25 1.13 5.30

1,3-benzenetricarboxylic acid 1.12 0.92 0.33 3.40 0.22 0.22 < 0.10 0.56

1,4-benzenetricarboxylic acid 12.81 8.53 3.14 37.80 6.38 3.63 2.40 14.42

1,2,3-Benzenetricarboxylic acid 0.25 0.40 0.03 1.60 0.13 0.07 < 0.10 0.24

4-methyl-1,2-benzenedicarboxylic acid 1.18 1.03 0.30 4.30 0.44 0.20 0.23 0.76

Std = standard deviation
nm = not measured
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Table 2. Source contributions in (µg C m
−3

) of primary sources determined by CMB.

Vegetative detritus Diesel engine Gasoline vehicle Smoker vehicle Woodsmoke Other R
2

χ
2

Urban site

17 March 0.14 ± 0.05 0.79 ± 0.13 0.84 ±0.21 1.54 ± 0.48 1.67 ± 0.45 1.41 ± 1.32 0.98 0.59

18 March 0.32 ± 0.08 0.88 ± 0.18 1.53 ± 0.43 0.96 ± 0.77 1.48 ± 0.50 5.85 ± 1.98 0.97 0.48

19 March 0.21 ± 0.04 1.34 ± 0.16 1.14 ± 0.25 0.78 ± 0.45 1.08 ± 0.31 2.36 ± 1.21 0.98 0.56

20 March 0.31 ± 0.08 0.93 ± 0.16 0.78 ± 0.35 0.99 ± 0.64 3.41 ± 1.37 4.95 ± 2.61 0.97 0.48

21 March 0.37 ± 0.09 1.61 ± 0.26 1.18 ± 0.46 2.05 ± 0.91 3.68 ± 1.42 7.36 ± 3.14 0.97 0.61

22 March 0.26 ± 0.07 0.87 ± 0.17 0.78 ± 0.25 1.33 ± 0.61 1.11 ± 0.32 7.33 ± 1.44 0.98 0.38

23 March 0.25 ± 0.07 1.54 ± 0.22 1.57 ± 0.43 1.56 ± 0.88 0.88 ± 0.32 3.83 ± 1.92 0.98 0.35

24 March 0.00 ± 0.05 1.03 ± 0.16 0.97 ± 0.22 2.58 ± 0.64 0.91 ± 0.26 3.12 ± 1.34 0.98 0.49

25 March 0.06 ± 0.05 1.55 ± 0.22 2.07 ± 0.40 0.89 ± 0.65 1.00 ± 0.29 3.65 ± 1.61 0.96 1.11

26 March 0.14 ± 0.05 1.39 ± 0.20 3.00 ± 0.57 0.92 ± 0.91 0.84 ± 0.25 2.18 ± 1.99 0.97 0.90

27 March 0.07 ± 0.05 1.03 ± 0.14 0.79 ± 0.18 1.92 ± 0.51 0.89 ± 0.24 3.51 ± 1.13 0.98 0.66

28 March 0.26 ± 0.06 2.20 ± 0.28 2.00 ± 0.40 2.77 ± 0.89 0.52 ± 0.16 2.58 ± 1.80 0.97 0.98

29 March 0.18 ± 0.04 2.21 ± 0.27 1.02 ± 0.31 2.18 ± 0.64 2.70 ± 0.80 1.04 ± 2.07 0.96 1.34

30 March 0.39 ± 0.07 3.31 ± 0.40 1.82 ± 0.42 4.10 ± 1.06 2.30 ± 0.67 0.77 ± 2.63 0.98 0.77

Peripheral site

17 March 0.22 ± 0.04 0.59 ± 0.11 1.07 ± 0.24 0.54 ± 0.37 1.55 ± 0.43 0.85 ± 1.19 0.98 0.51

18 March 0.34 ± 0.06 0.38 ± 0.10 1.11 ± 0.26 0.00 ± 0.34 2.93 ± 0.75 3.19 ± 1.53 0.97 0.89

19 March 0.27 ± 0.05 0.54 ± 0.10 0.57 ± 0.18 0.10 ± 0.25 2.61 ± 0.65 1.97 ± 1.23 0.97 0.95

20 March 0.29 ± 0.05 0.93 ± 0.14 0.89 ± 0.25 0.36 ± 0.35 3.55 ± 0.85 1.90 ± 1.65 0.98 0.79

21 March 0.28 ± 0.06 0.50 ± 0.11 0.74 ± 0.27 0.23 ± 0.40 3.17 ± 0.96 1.39 ± 1.82 0.98 0.45

22 March 0.28 ± 0.06 0.93 ± 0.16 0.73 ± 0.27 0.18 ± 0.40 3.17 ± 0.96 4.09 ± 1.86 0.98 0.38

23 March 0.10 ± 0.02 0.21 ± 0.05 0.40 ± 0.10 0.38 ± 0.19 1.08 ± 0.28 0.54 ± 0.65 0.96 1.14

24 March 0.10 ± 0.02 0.49 ± 0.09 0.48 ± 0.11 0.56 ± 0.23 0.95 ± 0.25 2.23 ± 0.71 0.96 1.14

25 March 0.09 ± 0.02 0.33 ± 0.06 0.79 ± 0.17 0.13 ± 0.25 1.03 ± 0.28 1.24 ± 0.79 0.97 0.91

26 March 0.08 ± 0.02 0.53 ± 0.10 0.54 ± 0.14 0.49 ± 0.24 1.46 ± 0.37 2.07 ± 0.88 0.98 0.71

27 March 0.11 ± 0.02 0.54 ± 0.10 0.85 ± 0.18 0.35 ± 0.29 0.89 ± 0.25 2.27 ± 0.84 0.97 0.85

28 March 0.11 ± 0.02 0.76 ± 0.12 0.88 ± 0.18 0.52 ± 0.31 0.89 ± 0.25 1.81 ± 0.89 0.97 1.02

29 March 0.10 ± 0.02 0.75 ± 0.12 0.86 ± 0.18 0.41 ± 0.30 0.90 ± 0.25 2.38 ± 0.88 0.97 0.89

30 March 0.11 ± 0.02 0.84 ± 0.12 0.74 ± 0.17 0.45 ± 0.28 1.22 ± 0.33 2.33 ± 0.93 0.97 1.11

Urban site (12-h average)

18 March 6:00 0.23 ± 0.05 0.70 ± 0.13 0.94 ± 0.25 0.47 ± 0.41 1.43 ± 1.04 5.16 ± 1.89 0.98 0.70

18 March 18:00 0.42 ± 0.08 1.06 ± 0.22 2.15 ± 0.49 1.46 ± 0.79 1.55 ± 1.75 6.47 ± 3.34 0.96 1.10

19 March 6:00 0.21 ± 0.04 1.34 ± 0.16 1.14 ± 0.27 0.78 ± 0.47 1.08 ± 0.80 1.81 ± 1.76 0.98 0.56

20 March 6:00 0.25 ± 0.05 0.60 ± 0.11 0.76 ± 0.20 0.24 ± 0.33 0.81 ± 0.73 4.82 ± 1.42 0.97 0.78

20 March 18:00 0.40 ± 0.08 1.27 ± 0.23 0.88 ± 0.44 1.61 ± 0.69 5.56 ± 2.98 5.54 ± 4.43 0.96 1.30

21 March 06:00 0.45 ± 0.09 1.90 ± 0.30 1.24 ± 0.55 2.25 ± 0.89 5.93 ± 3.58 6.95 ± 5.42 0.94 1.82

21 March 18:00 0.32 ± 0.06 1.32 ± 0.23 1.29 ± 0.28 1.64 ± 0.60 0.67 ± 0.66 8.55 ± 1.84 0.97 0.81

22 March 06:00 0.15 ± 0.03 0.80 ± 0.15 0.50 ± 0.13 0.53 ± 0.29 1.07 ± 0.29 7.69 ± 0.91 0.96 1.02

22 March 18:00 0.38 ± 0.08 0.94 ± 0.19 1.09 ± 0.27 2.15 ± 0.63 1.21 ± 1.06 6.63 ± 2.25 0.97 0.74

23 March 06:00 0.28 ± 0.06 2.22 ± 0.29 2.35 ± 0.48 2.18 ± 0.91 1.10 ± 1.00 2.54 ± 2.75 0.98 0.57

23 March 18:00 0.17 ± 0.05 0.87 ± 0.15 0.80 ± 0.19 1.01 ± 0.40 0.67 ± 0.62 5.06 ± 1.42 0.96 1.16
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Fig. 1. Daily (24-h) EC and OC ambient mass concentrations for the urban and peripheral

sites.
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Fig. 2. Daily average levoglucosan ambient mass concentrations for the urban and peripheral

sites.
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Fig. 3. Daily ambient mass concentrations for a series of hopanes at the urban and peripheral

sites.
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Fig. 4. Source contributions to ambient OC at the urban and peripheral sites determined by

CMB.
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Fig. 5. A comparison of ambient real-time WSOC concentrations to the sum of the CMB other

contribution to OC and the water-soluble fraction of woodsmoke measured at the peripheral

site.

9660

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/9635/2007/acpd-7-9635-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/9635/2007/acpd-7-9635-2007-discussion.html
http://www.egu.eu


ACPD

7, 9635–9661, 2007

Source

apportionment of fine

organic aerosol

during MILAGRO

E. A. Stone et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Urban site PM
2.5 

12-h average

0

5

10

15

20

25

0

5

10

15

20

25

Urban site PM
2.5 

12-h average

C
o
n
c
e
n
tr

a
ti
o
n
 (
µg 

C
 m

-3
)

Elemental carbon

Organic carbon

March 18 March 19 March 20 March 21 March 22 March 23

D
a

y

N
ig

h
t

D
a

y

N
ig

h
t

D
a

y

N
ig

h
t

D
a

y

N
ig

h
t

D
a

y

N
ig

h
t

D
a

y

Vegetative detritus

Diesel engines

Gasoline vehicle

Smoker vehicle

Woodsmoke

Other

S
o
u
rc

e
 c

o
n
tr

ib
u
ti
o
n
 t

o
 O

C
 (
µg 

C
 m

-3
)

March 18 March 19 March 20 March 21 March 22 March 23

D
a

y

N
ig

h
t

D
a

y

N
ig

h
t

D
a

y

N
ig

h
t

D
a

y

N
ig

h
t

D
a

y

N
ig

h
t

D
a

y

Fig. 6. EC and OC ambient mass concentrations and source contributions to OC for select

12-h samples at the urban site. (Data for the night of 19 March is not available.).
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