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Abstract. This paper studies the internal wave band of tem-
perature fluctuation spectra in the coastal zone of Pacific
ocean. It is observed that on the central Mexican Pacific
Shelf in the high-frequency band of temperature spectra the
spectral exponent tends to∼ω−1 at the time of spring tide
andω−2 at the time of neap tide. On the western shelf of
the Japan/East Sea, in the�≪ω≪N∗ range, whereN∗ is the
representative buoyancy frequency and� is the inertial fre-
quency, the rate tends to∼ω−3. These features of spectra
are simulated by the model spectrum of nonlinear internal
waves in the shallow water. Interaction of high-frequency in-
ternal waves with an internal wave of semidiurnal frequency
is considered. It is shown that as a result of the interaction
the spectrum of high-frequency internal waves take the uni-
versal form and the spectral exponent tends to∼ω−1.

1 Introduction

Internal gravity waves play a significant role in the dynamics
of an oceanic coastal zone (Gill and Clarke, 1974; LeBlond
and Mysak, 1978). The spectrum represents one of the major
characteristics of internal waves. It is used as a representa-
tive statistical description of the internal wave field in studies
of nonlinear interaction (e.g. Hibiya et al., 1998), acoustic
propagation (e.g. Colosi et al., 1998), and mixing parameter-
ization (Polzin, 1995). As a result of the analysis of several
time series of temperature and currents belonging to differ-
ent areas of the World Ocean, Garrett and Munk (from here,
GM) (1979) have constructed the generalized spectrum of
internal waves for the open ocean. It has permeated the lit-
erature and is used in ways that sometimes exceed its ap-
plicability. The analysis of some publications (Filonov and
Lavin, 2003; Filonov and Novotryasov, 2005; Hosegood and
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van Haren, 2006) showed that the construction of a univer-
sal spectrum for internal waves on a shelf, similar to the
GM spectrum, was not possible. Such spectrum should de-
pend on fast disintegration of the main internal fluctuation
(for example, semidiurnal) and redistributions of its energy
to fluctuations of high frequencies. During the transforma-
tion the spectrum of internal waves should change its shape
as a function of the barotropic tide intensity (height). The
shape also depends on the choice of measurement site on the
shelf (i.e. on the location of thermocline depth relative to the
surface and bottom) as well as other factors. Moreover, the
spectral exponent depends on the frequency band, and the
nature of nonlinear transformation of waves depends on their
frequency, too. Due to non-linear transformation of internal
waves on the shelf, the spectral exponent changes with the
growth of frequency (Fig. 4).

Thus, because of the impossibility to construct a univer-
sal spectrum for internal waves, some researchers have en-
gaged in studying the structure of a spectrum that depends
on frequency growth that has significant applications, e.g.,
for the modeling of propagation of nonlinear internal waves
on a shelf.

Because it is impossible to construct a universal spectrum
of internal waves in the coastal zone, which would be sim-
ilar to the GM spectrum, some researchers have engaged in
studies of processes that account for these spectral exponents
and attempted to model them. This is, to some extent, the
objective of our work.

Features of spectra of internal waves has been emphasized
in numerous works (van Haren et al., 2002; Filonov and
Lavin, 2003; van Haren and Millot, 2003; van Haren, 2004;
Hosegood and van Haren, 2006), in which the spectral ex-
ponents in different bands of internal waves have asymptotic
values ofω−3, ω−2 orω−1.
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Fig. 1. (a) Study area on the Japan/East ocean shelf, September
2004. The mooring location is shown in Arabic. The circle indi-
cates the location of the moored vessel, from which hourly casts
were conducted on September, 20.(b) Daily mean vertical pro-
files of temperatureT and buoyancy frequencyN . (c) Temperature
variations from the two moorings: buoy 1, continuous line; buoy 2,
dashed line.

2 The model

A spectral model of nonlinear internal gravity waves is de-
veloped. It is assumed thatH/λ≪1, anda/H≪1, where
H is the water depth,λ is a characteristic wave-length,a is
a representative wave amplitude, and wave frequence meets
the conditionω ≪N∗,whereN∗ is a representative buoyancy
frequency. The basic component of this theory is the simple
wave equation. For the first most powerful mode of the weak
nonlinear internal waves the simple wave equation is written
as

∂η/∂t+c∂η/∂x+αη∂η/∂x=0, (1)

and is valid when nonlinearity is small. The parameterα

is used as small parameter in the perturbation method to
produce the evolution equation. Hereη is the wave profile
which, in small-amplitude, long-wave limit, gives the verti-
cal displacement of the pycnocline in the first mode andc is
the phase speed of long internal waves;x is a horizontal coor-
dinate andt is time. Parameter of nonlinearity is determined
by the background density and is related in the Boussinesq
approximation as:

α=



3c

0
∫

−H

ϕ3
zdz



 ×



2

0
∫

−H

ϕ2
zdz





−1

, (2)

wherez is a vertical coordinate, positive upward. The phase
speed of a linear long wavec and the amplitude function of

the wave modeϕ(z) are determined from the solution of the
eigenvalue problem

d2ϕ/dz2+c−2N2(z) ϕ=0, (3)

with boundary condition

ϕ(−H)=ϕ(0)=0, (4)

and with the normalization

ϕmax=1. (5)

Let us consider transformation of the intensity spectrum of
shallow water internal wave’s vertical displacements or the
spectrum of those internal waves. We assume that the wave
field η(t,0)=η(t) at the boundaryx=0 is statistically ho-
mogeneous and is described by the Gaussian statistics with
a zero mean value and covariant functionB0(τ )=σ 2

0R(τ),
whereσ 2

0 =B(0)=η̄2
0 is the root-meansquare value of vertical

displacements andR is the correlation coefficient.
We confine our analysis to the initial stage of waves evo-

lution, which is characterized by the conditionx<x∗, where
x∗=(αH/aω)H is the distance on which shock waves appear.
At this stage, there are no discontinuities and the coherent
nonlinear interaction of harmonics of the initial perturbation
with energy conservation manifests itself. Since the field at
the boundary is statistically homogeneous, we obtain the fol-
lowing relation for the spectra of vertical displacements at
the arbitrary distancex<x∗ following (Gurbatov et al., 1990;
Filonov and Novotryasov, 2005):

Spη(ω; x)=
exp[−(σ0βωx)

2]
2π(βωx)2

∞
∫

−∞

{exp[B0(τ )(βωx)
2] − 1} exp(iωτ) · dτ, (6)

whereβ=α/c2.
Equation 6 allows us to study the transformation of the ini-

tial perturbation spectrum with arbitrary width and spectral
shape. Determination of the equilibrium shape for the spec-
tral distribution or finding a universal law for the spectrum
Spηω; x) at ω→∞ is of special interest. Let us consider
the behavior of the spectrum as frequency increases. In this
case, we can use the saddle-point method to estimate integral
(6). Restricting ourselves to the first two terms of the covari-
ant function expansion in the seriesB0(τ )≈σ 2

0 (1−ντ2/2),

where ν=
∞
∫

−∞
ω2E0(ω)dω/

∞
∫

−∞
E0(ω)dω, and substituting

this expansion into (6), we get

Spη(ω; x)∼ω−3(βx)−3
√

2π/ν exp[−(σ0βνx)
−2/2]. (7)

It follows from the obtained expression (7) that the
spectrum of nonlinear shallow water internal waves for
σ0βx≪1 with ω→∞ decreases according to a power law
Spη(ω ; x)∼ω−3(Gurbatov et al., 1990). Thus, Eq. (6) makes
it possible to conclude that the quadratic nonlinearity pro-
duces the spectral exponent∼ω−3 (physically caused by en-
ergy transfer to higher frequencies). Such is indeed the case
in the middle-frequency band of the spectrum at the Fig. 3.
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Fig. 2. (a) Temperature variations from the mooring located on the
Mexican Pacific (Barra de Navidad) in October, 1995. Letters NT
and ST denote the periods of neap and a spring barotropic tides
respectively. (b) Daily mean vertical profiles of temperature (1),
salinity (2) and calculated on them buoyancy frequency (3) from
the mooring deployed near Barra de Navidad in October 1995.

Tidal and/or inertial internal waves with small but finite
amplitude and linear random waves (RW) with a typical fre-
quencyω∗∼N∗/2 are a common feature of coastal areas.
Let us consider interaction nonlinear internal wave with fre-
quence� (tidal or inertial) and linear RW using asymptotic
theory of evolution of the spectrum of internal waves de-
scribed in terms of the simple wave Eq. (1). Let the verti-
cal displacement of the pycnoclineη(x, t) at the boundary of
the coastal areax=0 be the superposition of internal wave
with frequence� and background linear RW with a typical
frequencyω∗≫� and the varianceσ 2=<ξ2

0>

η0(t)=A cos(�t + ψ)+ ξ0(t), (8)

whereψ− is a random phase with uniform distribution in the
interval[−π, +π ].

The transformation of a wave fieldη is determined by the
modified Eq. (1)

∂η/∂x′−βη∂η/∂θ=0, (9)

wherex′=ct , θ=t−x/c andβ=α/c2.
Henceforth the prime onx′ is omitted. Equation (9) is a

basic model of the interaction of internal waves. Mathemat-
ically, this is a Cauchy initial value problem, where the evo-
lution coordinate (“time”) is essentially a spatial coordinate.
This equation with the initial conditionη(θ, x=0)=η0(t) de-
scribes the transformation of a wave fieldη in the coordinate.
The solution of (9) that satisfies the initial condition atx=0,
is

η=η0(θ+βxη). (10)

We confine our analysis to the wave evolution stage, which
is characterized by conditionsx<xT , wherexT= (βA�)−1

andx<xW , wherexW= (βσω∗)−1. In this stage the shock
internal wave appears and it is not accompanied by genera-
tion of internal solitons. We introduce parametersdT=x/xT
anddW=x/xW , which determine the similarity between an
internal shock-wave and internal wave and consider the case

dT<1, dW<1. For this case spectral amplitude wave fieldη
is

a(ω, x)=(2π)−1

+∞
∫

−∞

η(θ, x)exp(iωθ)dθ (11)

After substituting forϑ=θ+βxη Eq. (11) is reduced to

a(ω, x)=
1

2π

+∞
∫

−∞

η0(ϑ)(1−βx
∂η0

∂ϑ
)exp[iω(ϑ−βxη0)] dϑ (12)

We perform the Fourier transform of the wave fieldη0(ϑ),
which at the boundaryx=0 is determined by (8), taking
a path integral twice, and obtain spectral amplitude of the
wave.

a(ω, x)=(2πiωβx)−1

+∞
∫

−∞

exp[−iωβxA cos(�t + ψ)−

−iωβxξ0(t)]−1}eiωtdt. (13)

We shall consider the wave-tide interaction using formula
(13). Letn∗ be a characteristic number of tidal harmonics
andn∗� the spectral band atx>0. Let the tide be far from the
place of the shock-front formation, assuming thatn∗� ≪ ω∗
and the permutationω≃n∗� beforeξ0(t). In that case the ef-
ficiency of waves influence on the tide is determined by the
parameterdTW≃n�βxσ=dW (n∗�/ω∗)≪1. Consequently,
the tide does not cause a large influence on the waves be-
fore the formation of wave’s fronts. From the expression
dWT =ωβxA=(ω∗/�) dT we are convinced that the tide in-
fluence on the waves can be considerable at some distance,
where the distortion of the tide is faint.

Consider the casedW≪1, i.e., when the steepening of the
waves is weak. It follows from (13) that

a(ω, x) = −(2πiωβx)−1

+∞
∫

−∞

[exp{−iωβxA cos(�τ + ψ)}−

−1] exp(iωτ)dτ+(2π)−1

+∞
∫

−∞

ξ0(τ )exp{−iωβxA cos(�τ + ψ)+

+iωτ }dτ. (14)

From (14), we can affirm that the first component is the
spectral density of the tide and that the second component
is the spectral density of waves distorted by the tide. Per-
forming a Bessel expansion of the exponent in Eq. (14)
and taking into account that<a(ω)a∗(ω′)>=S(ω)δ(ω−ω′),
<ξ0(t+τ)ξ0(t)>=B(τ) we obtain the formula for the spec-
trum of the wave field

Spη(ω, x)=
∞
∑

n=−∞
n 6=0

J 2
n (XAn�)exp{−(Xσn�)2}

(Xn�)2

×δ(ω − n�)+
∞
∑

n=−∞
n6=0

J 2
n
(ωXA)

2π(ωX)2
exp[−(ωXσ)2]
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Fig. 3. Normalized spectra for the temperature fluctuations of the
35 m level (buoy 2, near the Gamov peninsula). The lines show
dependences of the spectrum slope with growth of frequency.

×
+∞
∫

−∞

{exp[B0(s)(ωX)
2]−1}ei(ω−n�)sds, (15)

whereX = βx

The first series in (15) is a superposition of tidal harmonics
distorted by the interaction with the waves. The second series
in the (15) is the spectrum of the linear random wavesSpξ
distorted by the interaction with the tide.

We will determine the spectrum of wavesSpξ , when
dTW≫1. For that, we use the following approximation of
the Bessel function

J 2
n (y)≃(πy)

−1(1+ cos(2y−nπ−π/2)), |y|>|n| (16)

We define the frequency band of the waves as follows:ω ∈
[ωl, ωh], where1ω=ωh−ωl ≫ �. Based on formula (16),
it follows that the boundaries of the wave spectrum under
conditiondTW ≫ 1 are equal to

ω′
l=ωl/(1+dT ), ω′

h=ωh/(1−dT ). (17)

We can write the wave spectrumSpξ for the bandω ∈
[ω′
l=ωh/(1+dT ), ω′

h=ωh/(1−dT )] in the following form:

Spξ (ω, x)≃(πωβxA)−1
∞
∑

n=−∞
S0(ω−n�)(1+ cos(2ωβxA−πn− π/2)) ≃

≃
1

(πωβxA)

1

�

∞
∫

−∞

S0(ω)dω=
σ 2

ωπβxA�.
(18)

Based on this formula, we can observe that the high-
frequency wave spectrum is non-homogeneous and has the
asymptotic formSpξ∼ω−1. Parameters of the spectrum are
full energy waves∼σ 2, amplitude – A and frequency –�

for low-frequency waves (for example, semidiurnal or iner-
tial frequency).

3 Observations

The model has been validated with the values observed in
two regions of the Pacific Ocean: on a shelf of the Japan/East
Sea and on the shelf of the western coast of Mexico. In the
first region, measurements were performed during 10 days
starting 12 September 2004, near the Gamov Peninsula on
the Japan Sea coast of Russia (Figure 1a). Time series of
temperature were collected from two moorings which were
deployed along the coastline at a distance of 800 m from it,
approximately at 40 m depth and separated by a distance of
5.5 km from each other.

The first of them was deployed at 28 m depth and the sec-
ond one, at 35 m depth (below the surface). Each mooring
was equipped with digital thermographs made by a Russian
manufacturer. The devices had a measuring precision of
0.05◦C for temperature. The sampling rate was 1 m. Tem-
perature and salinity vertical profiles were performed on 20–
21 September, from a vessel anchored between the moorings
with Canadian Guideline CTD profiler, whose errors were no
larger than 0.01◦C in temperature and 0.02 psu in salinity. In
total, 25 hourly casts were made.

In the second region, measurements were performed at
the Central Pacific Coast of Mexico, near Barra de Navidad
(Fig. 2). From 1–30 October 1995, time series were col-
lected from a mooring located 2 kilometers away from the
coast with a bottom depth of 52 m. It was equipped with
a SEACAT SBE-16 CTD at 37 m level. The sampling rate
was 1 minute. The temperature and salinity fields near the
mooring were measured for 24 h on 2–3 October 1995 with a
CTD SBE-19 profiler from a small anchored ship. A total of
72 vertical temperature and salinity profiles were carried out
with a time interval of 20 min between any two consecutive
profiles (Fig. 2b). Both devices had a measuring accuracy of
0.005◦C for temperature and of 0.0005 S/m for conductivity.

4 Results and discussion

4.1 The shelf of the Japan/East Sea

On Figure 1b mean profiles of temperature and buoyancy fre-
quency in the survey area are shown. The time series of tem-
perature fluctuations on moorings 1 and 2, smoothed by a
Tukey window (with a 1-h width) are shown in Fig. 1c. It
is clear that fluctuations of temperature had a quasi-periodic
mode with an average period of about 18 h. Cross spectral
analysis of these time series has shown that a phase differ-
ence between fluctuations of inertial frequency was about
4.1 h, corresponding to the mean velocity propagation be-
tween the moorings (close to 0.38 m/s). The phase velocity
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c1 of the first mode of the internal Kelvin wave with fre-
quency 1/18 cycles/h is close to 0.4 m/c. This value was cal-
culated by means of the solution of the eigenvalue problem
(3) and (4), considering the natural profile of the buoyancy
frequency. The velocity was close to 0.38 m/s. We conclude
that internal Kelvin waves propagated in the coastal zone of
the Japan/East Sea. These waves had a large height and were
caused by an intensive typhoon that had passed near the sur-
vey area.

The spectrum of temperature fluctuations normalized by
variance on mooring 1 is shown in Fig. 3. In the low-
frequency part of the spectrum, there are peaks of spectral
density at 18- and 9-h periods, which correspond to inter-
nal waves with inertial period and first overtone. The figure
shows good conformity between the inclination of a spec-
tral exponent and frequency dependence∼ω−1 in a range
of 0.01<ω<0.1 cycle/min and the same conformity between
character of the spectral exponent and frequency dependence
∼ω−3 in a range of 0.001<ω<0.01 cycle/min.

4.2 The Mexican shelf of Pacific Ocean.

Processes of nonlinear transformation of internal waves on
an abrupt shelf off the Mexican coast have been earlier
discussed in several works (Filonov and Konyaev, 2003;
Filonov and Novotryasov, 2005). In this coastal area shelf
slope is the most critical characteristic of daily internal in-
flow. Therefore, these waves are reflected back to the ocean,
and only semidiurnal internal tidal waves propagate to the
coast (Konyaev and Filonov, 2006).

In Fig. 2a the time series of temperature fluctuations, mea-
sured 2 km away from coast at 37 m is displayed. Spectra
of temperature fluctuations were calculated for the time seg-
ments corresponding to neap tide (9–12th, 22–25 days of
measurement) and spring tide (4–7th, 15–18th days of mea-
surement). The segments had a length of 2048 numbers (the
FFT method was used) and were selected so that the variabil-
ity of amplitude of fluctuations within a segment was mini-
mal. The average spectra (for an interval from 0.03 up to
0.5 cycles/min) for two segments at times of neap and spring
barotropic tide (segments NT and ST in Fig. 2a) are shown
in Fig. 4a, b. From this figure it follows that as frequency
increases; the falloff of a spectrum has a power dependence
on ωgf the kind SpT∼ω−p. The inclined line in this fig-
ure shows theω−1 slope. The inclination of a spectrum for
spring tide is close top=1 (Fig. 4b), and for neap tide is
close top=2 (Fig. 4a).

The marked distinctions for the inclination of a spectrum
are connected with the nonstationarity of internal semidiur-
nal waves, caused by monthly variations in the barotropic
tide in the survey area on the Mexican shelf. Thus, the
analysis has shown that during the moments of barotropic
neap tides internal waves are less intense in amplitude and
their nonlinear-dispersive disintegration on a shelf causes the
slope of their spectrum in the analyzed frequency range in

Fig. 4. Normalized spectra of high-frequency temperature fluctua-
tions for neap(a) and spring(b) barotropic tide. The inclined lines
show dependences of the spectrum slope with growth of frequency.

accordance with theSpT∼ω−2 law, which is consistent with
the background spectrum GM of internal waves in Open
Ocean (Garrett and Munk, 1979). More intensive high-
frequency internal waves interact with internal tide during
the moments of spring. The slope of their spectrum behaves
asSpT∼ω−1. The slope of a spectrumω−3 in the middle
band of an internal wave’s frequency was earlier discussed
in several works (van Haren et al., 2002; Filonov and Lavin,
2003; van Haren, 2004), however the slope of spectrumω−1

in a high-frequency band had not yet been discussed in the
scientific literature.

As a conclusion, in the ocean shelf in the presence of in-
tensive internal tidal or inertial waves, the modeled spectrum
of temperature variations in a high-frequency band is non-
uniform and has slopep=1, as demonstrated in Fig. 3 and
4. Hence, the influence of nonlinearity can render essential
influence on the formation of a universal spectrum of internal
waves in a coastal zone of the ocean.
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