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Abstract. Many approaches for the design of unknown input observers were developed to estimate
the state of a linear time-invariant dynamical system driven by both known and unknown inputs.
These observers are often used for component failure detection, for instrument fault detection in
systems subject to plant parameter variations or uncertainties and for fault detection and isolation for
systems subject to unknown inputs. In this paper, a method for the design of fault detection observers
is developed for linear time-invariant systems subject to arbitrary unknown inputs. A constructive
numerical algorithm using generalized inverse of matrices is included. Moreover, an example
illustrates the applicability of the proposed method.
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1.    INTRODUCTION

Many approaches for the design of unknown input
observers (UIOs) were developed to estimate the state of
a linear time-invariant dynamical system driven by both
known and unknown inputs (Kudva et al., 1980), (Kurek
et al., 1983), (Guan et al., 1991) and (Hou et al., 1992).
Generally, the estimation is established by eliminating
the unknown inputs from the system. This technique may
be also applied for singular systems (Miller et al., 1982),
(Chen  et al., 1991) and (Ragot et al., 1993). Our
principal aim, in this communication, consists to
compare the actual behaviour of a system to a reference
one in order to detect and localize the faults when they
occur.

Generally, the generation of residuals is issued from the
process knowledge; for example analytical models,
knowledge base, sensor and actuator signals, ... The most
popular approach is based on the analytical redundancies
which use the mathematical model of the process. At
each moment, the residuals represent the inconsistency
between the actual plant variables and the model
variables; they are ideally zero but become non-zero if
the actual system differs from the ideal one (this may be
due to sensor or actuator faults, modelling errors, non
exact parameters of the model, ...). When only few
sensors are available, the analytical redundancies have to
be generated on a long time interval. In this case one
commonly use system observers to estimate state time
histories for processes with incomplete set of state
measurements (Gertler, 1991). Then, the fault detection
is achieved by testing the magnitude of these residuals.

The detection and the isolation of sensor and actuator
failures have received during the last decade, a lot of
attention in the literature in the field of automatic control.
Moreover, the use of multiple observers has been

extended in order to improve the localization of the
faulty elements of a process. The first development in
this area is probably due to Clark (1978) which uses as
many observers as there are outputs, the ith one is driven
by the ith output of the process and all the inputs. The
same strategy may be applied for inputs (Viswanadham
et al., 1987); the method consists in constructing as many
observers as there are inputs, the ith one is driven by the
ith input and all the outputs. When it is desired to isolate
faults on actuators, some algorithms based on unknown
input observers have been proposed; such strategies have
also been reviewed by several authors and the reader
should refer to the papers given in reference (Frank et al.,
1989) and (Chen et al., 1991).
Some results dealing with the computational aspects
were given by O'reilly (1983) who proposed an approach
which consists in reducing the problem of the observer
matrices computation by expressing all of them in terms
of an arbitrary one; Ge et al. (1988) who treated these
aspects for component failure detection using robust
observers; Saif et al. (1993), for instrument fault
detection and identification in linear dynamical systems
subject to plant parameter variations or uncertainties.
Chang et al. (1993) gave also, a solution to the problem
of designing an observer for fault detection and isolation
for linear time-invariant system subject to arbitrary
unknown inputs by using the vector projection theory and
propose an algorithm for the matrix calculation. The aim
of this paper is also to point out the problem of solving
the equations of the observer and to propose an
appropriate algorithm for linear systems subject to
unknown inputs.

This paper is organized as follows: the section 2 deals
with the general structure of an unknown input observer
giving the constraint conditions that the observer
matrices have to satisfy; the section 3 derives an
algorithm for the matrix computations from the



constraint conditions; the section 4 deals with residual
analysis; section 5 presents an application of the design
of the unknown input observer in detecting actuator
faults and the section 6 illustrates, by an example, the
matrix computations and the procedure of actuator failure
detection.

2.    UNKNOWN INPUT OBSERVER APPROACH

Consider the linear time-invariant system:

x
.
(t)  = A x(t) + B u(t) + D d(t) (1a)

y(t) = C x(t) (1b)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rr is the input
vector, y(t) ∈  Rm is the output vector and d(t) ∈ Rk+1

(the dimension k + 1 will be justified in the section 5) is
the disturbance vector whose elements are unknown
functions of t. A, B, C and D are constant matrices with
appropriate dimensions; without lost of generality, C is
assumed to be full row rank and D to be full column
rank.

Our aim is to estimate the state vector x(t) in spite of the
presence of the unknown perturbation d(t). So, let us use
the full order observer described by:

z
.
(t)  = N z(t) + L y(t) + G u(t) (2a)

x̂(t)  = z(t) - E y(t) (2b)

where z(t) ∈ Rn and x̂(t)  ∈ Rn is an estimation of the

system state vector x(t).

It is desired that, at steady state, x̂   approaches
asymptotically x. Therefore, we define the state
estimation error:

e(t) =  x(t) - x̂(t) (3)

The dynamic equation governing this error can be
reduced to e

.
(t)  = N e(t) if one purposely chooses:

P = I + E C (4a)
L C = P A - N P (4b)
G = P B (4c)
P D = 0 (4d)
N stable (4e)

Our aim is to establish a systematic procedure in order to
determine the matrices defining the observer (2) and
verifying the above conditions (4).

Necessary and sufficient conditions for the existence of
this type of observers are very classical and will not be
discussed here. They are as follows :

rank(C D) = rank(D) = k+1 with m > k+1

3.   THE UNKNOWN INPUT OBSERVER DESIGN

Since C has full row rank, suitable coordinate
transformation on  the states can be found such that the
given system (1) is restricted system equivalent to
(O'Reilly, 1983):

x
.
(t)  = A x(t) + B u(t) + D d(t) (5a)

y(t) = (Im  0m(n-m)) x(t) (5b)

In order to simplify the presentation, the notation used in
equation (1) remain unchanged although the matrix A

and the state x are different. According to the reduced
form of C, the following equalities can be deduced:

E C = (E | 0n(n-m)) (6a)

L C = (L | 0n(n-m)) (6b)

These expressions (6a) and (6b) will be used in the
following to determine respectively the structure of the
matrices P and L. Let us determine the matrices
characterizing the observer (4).

3.1.   Determination of P

We remark, taking into account the equations (6a), (4a)
and (4d), that (E | 0n(n-m)) = P - I and P has to be

orthogonal to D. Therefore, we propose the following
structure of P which allows us to determine the other
matrices:

P = 





P1 0m.(n-m)

P2 I(n-m).(n-m)

 (7)

where P1 ∈  Rm.m, P2 ∈  R(n-m).m. Taking into account

(4d) and (7), D can be partitioned as follows:

D = 



D1

D2

 (8)

where D1 ∈ Rm.(k+1), D2 ∈ R(n-m).(k+1), one may write the

equation (4d) under the form:

P1 D1 = 0m.(k+1) (9a)

P2 D1 + D2 = 0(n-m).(k+1) (9b)

As D1 and D2 are known and rank(D) = k+1, we remark

respectively from the equations (9a) and (9b) that m.(m-
(k+1)) and (n-m).(m-(k+1)) parameters in P1 and P2 can

be chosen and that the others can be deduced. More
precisely, from the equations (9a) and (9b), the matrices
P1 and P2 may be computed as:

P1 = K1 (I - D1 D1
+
 ) (10a)

P2 = - D2 D1
+
  + K2 (I - D1 D1

+
 ) (10b)

where D1
+
  is a generalized inverse matrix of D1, K1 and

K2 are arbitrary matrices (we will define this choice

later) with K1 ∈ Rm.m and K2 ∈ R(n-m).m. If D1 is a non

singular matrix then P1 is null and P2 = - D2 D 1
-1

 .

3.2   Determination of E

From (4a) and using (7), one may write:

(E | 0) = 





P1 - Im.m 0m.(n-m)

P2 0(n-m).(n-m)

  (11)

From which we deduce:

E = 





P1 - Im.m

P2

  (12)

3.3.   Determination of N



The matrices A and N can be respectively partitioned as:

A = 





A11 A12

A21 A22

   N = 





N11 N12

N21 N22

 

with A11 ∈ Rm.m, A21 ∈ R(n-m).m, A12 ∈ Rm.(n-m), A22 ∈

R(n-m).(n-m), N11 ∈ Rm.m, N21 ∈ R(n-m).m, N12 ∈ Rm.(n-m)

and N22 ∈ R(n-m).(n-m).

The matrices P A and N P are then expressed as:

P A = 





P1 A11 P1 A12

P2 A11 + A21 P2 A12 + A22

 (13)

N P = 





N11 P1 + N12 P2 N12

N21 P1 + N22 P2 N22

 (14)

From (13) and (14) and taking into account the
expression of C, the following equations have to be
satisfied:

P1 A12 = N12 (15a)

P2 A12 + A22 = N22 (15b)

Taking into account (10a) and (10b), equations (15a) and
(15b) can be written:

K1 (I - D1 D1
+
 ) A12 = N12 (16a)

A22 + (-D2 D1
+
  + K2 (I - D1 D1

+
 )) A12 = N22 (16b)

So, with the above expression (16) of N12 and N22, the

matrix N can be written:

N = 





N11 K1 (I - D1 D1

+
) A12

N21 K2 (I - D1 D1
+
) A12 + A22 - D2 D1

+
 A12

 

(17)
Otherwise:

N = R + (N
_

    K) Q = R + F Q (18)

where:

R = 





0 0

0 A22 - D2 D1
+
 A12

  N
_

  = 





N11

N21

  

Q = 





I 0

0 (I - D1 D1
+
) A12

 K = 





K1

K2

 

The matrix F is chosen such that N, which fix the
dynamic of the observer, has a desired set of stable
eigenvalues. Consequently, a simple partition of F gives
the matrices N

_
  and K.

3.4.   Determination of L

The expression of L can be deduced from (4b). Indeed,
taking into account (6b), this equation is reduced to:

(L | 0) = P A - N P (19)

Summarizing the different matrix computations the
design of the observer is achieved by the following
algorithm:

Algorithm

System equations

x
.
(t)  = A x(t)+ B u(t) + D d(t)

y(t) = C x(t)
Observer equations

z
.
(t)  = N z(t) + L y(t) + G u(t)

x
^
(t)  = z(t) - E y(t)

- Partition D and A
  (according to the dimension of y and d)

- Compute R = 





0 0

0 A22 - D2 D1
+
 A12

 

       and Q = 





I 0

0 (I - D1 D1
+
) A12

 .

- Determine F by the method of eigenvalues assignment
such that N = R + F Q has a desired set of stable
eigenvalues.

- Deduce K (K1 and K2) and N
_

 (N11 and N21) .

- Compute P1 = K1 (I - D1 D1
+
 )

P2 = - D2 D1
+
  + K2 (I - D1 D1

+
 ).

- Deduce P,  N12  and N22.

- Compute G = P B and E = 





P1 - Im.m

P2

  .

- Deduce L from (L | 0) = P A - N P.

Remark : according to all the previous partitions of
matrices, it is easy to verify that if K1 is a null matrix, the

first m states of z do not depend on u and y. That implies
that output estimations are exactly equal to the
measurements.

4.    ANALYSIS OF THE RESIDUALS

Let us analyse the aptitude of the observer to reconstruct
the state of the process and its ability to detect faults on
actuators and sensors. In the presence of sensor faults
p(t) and actuator faults a(t), the system (1) is equivalent
to the one shown by the fig. 1.

a(t)

u(t)
System

Observer

up(t)

d(t)

p(t)

y(t) yp(t)

y(t)^

Fig. 1. UIO in the presence of faults

The signals up(t) and yp(t) are respectively the perturbed

input and output. In this condition, the system (1) and the
observer (2) become respectively:



x
.
(t)  = A x(t) + B u(t) + D d(t) + Fa a(t) (20a)

y(t) = C x(t) + Fp p(t) (20b)

z
.
(t)  = N z(t) + L y(t) + G u(t) (21a)

x̂(t)  = z(t) - E y(t) (21b)

where Fp and Fa are matrices with appropriate

dimensions. The output estimation error is defined by:

ε(t) = y(t) - ŷ (t)  (22)

Taking into account the remark formulated in the
previous section, it is obvious that, if K1 is a null matrix,

the output estimation error will not be very useful for
detecting actuator faults. So, in order to design efficient
fault detection observers it is necessary to introduce a
supplementary constraint: the computation of the matrix
F using eigenvalues assignment must be done taking into
account that the matrix K1 must be different from a null

matrix. Therefore, using Laplace transform, equation
(22) can be expressed as:

ε(s) = Tp p(s) + Ta a(s) (23)

where:

Tp = (I - C (s I - N)-1 L) Fp    and  Ta = C (s I - N)-1 Fa

We remark that this estimation error is insensitive to the
unmeasured perturbation d(t) and depends on the two
types of faults which can be correctly detected if the
elements of the matrices Ta and Tp are not null and

isolated if the columns of the matrices Ta and Tp are

independent. Thus, once the observer has been designed,
it is then easy to test the isolability condition of faults. In
fact, the failure signatures are closely related to the
structure of the matrices Ta and Tp As suggested by

Gertler et al. (1992), equation (23) may be characterized
by an occurrence matrix which contains 0 and 1, at any
given position, whether the matrices Ta and Tp contain

zero or non zero elements. The examination of the
columns of the occurrence matrix allows us to define
which fault can be detected and isolated.

5. APPLICATION TO THE ISOLATION OF
ACTUATOR FAULTS

Our aim here is to detect and identify actuator faults
using a bank of UIOs. The detection and identification
scheme is constructed to be sensitive to these faults and
to isolate them (Chen et al., 1991). The scheme is not
affected by uncertainties (parameter variations, process
noises, ...): their influences are eliminated from the state
estimation error (Viswanadham et al., 1987). So, the idea
is to associate a part of the input u to the uncertainties
(these inputs will be considered as unknown inputs) and
to construct estimators which are insensitive to failures in
the actuators corresponding to the unknown inputs. We
can formulate this proposition by writing the system (1)
as follows:

x
.
(t)  = A x(t) + Bi up

i
(t)  + Bi upi(t) + H v(t) i = 1, ..., r

(26a)
y(t) = C x(t) (26b)

where v ∈ Rk is an unknown input (the dimension of v

justifies that of the vector d(t) given in (1a)), H is its
distribution matrix, B i is the ith column of B and Bi is the

n(r-1) matrix obtained from B by deleting Bi, ui is the ith

entry of u and ui is the input obtained from u by deleting
ui.

Denoting di = (upi    vT)T and Di = (B i    H), the system

(26) becomes:

x
.
(t)  = A x(t) + Bi up

i
(t)  + Di di(t) (27a)

y(t) = C x(t) (27b)

where Di ∈ Rn.(k+1)

As the estimation of the system state is not affected by
failures in the unknown inputs, we assume that rank(Di)
= k + 1 and that rank(C Di) = k + 1 (see section 3) to
construct r UIOs given by:

z
.
 i(t) = Ni zi(t) + Li y(t) + Gi ui(t) (28a)

x̂ i(t) = zi(t) - Ei y(t) (28b)

where Ni ∈ Rn.n, Li ∈ Rn.m, Gi ∈ Rn.(r-1), Ei ∈ Rn.m for

i = 1, ..., r. The matrices of each observer that might
satisfy the following conditions

Pi = I + Ei C (29a)
Li C = Pi A - Ni Pi (29b)
Gi = Pi Bi (29c)
Pi Di = 0 (29d)
Ni stable (29e)

are computed according to the algorithm given in the
third section.

Then, we construct a set of residuals (εi(t) = y(t) - ŷ i(t))

using the proposed elimination strategy by considering ui

as an unknown input. These residuals are used to detect
and identify the actuator faults. By nature of
construction, the residuals are insensitive to ui whereas

variations and failures in ui will affect the outputs y(k).

By monitoring these sets of residuals, the actuator
failures can be isolated. Indeed, if all sensors are well
functioning and all residuals are statistically null except
the ith one, then the ith actuator is faulty (fig. 2).

SensorsActuators

UIO1

UIOr

.

.

.

yu

y ^
1

y ^r

pu
System

Fig. 2. The decision logic

The residual εi(t) may be used to detect and identify the

faulty actuators by comparing its magnitude with a
threshold. Let us denote si the signature of the residual

εi(t), we can write:

εi(t)  < threshold: no failure => s i = 0. (30a)

εi(t)  > threshold: the i th actuator has failed => si = 1.

(30b)

If the failure affects the known input ui then the residual
is sensitive to this anomaly; on the other hand, when the
failure affects the unknown input ui, the residual remains

close to zero. If two or more actuators fail
simultaneously, the above decision logic is not able to



isolate faults; for such situation, Chen and al. (1991)
have proposed a scheme in which each UIO is driven by
r-t inputs if t actuators have simultaneously failed.

6.    NUMERICAL RESULTS

In this section, we give a numerical example to illustrate
the technique of the matrix computation and the detection
and isolation of actuator faults. The system is driven by
two known inputs u1 and u2 (figures 3a and 3b) and one

perturbation; its state has four components and the
dimension of the measurement vector is equal to three
(figure 4). The matrices of the system (27) are:

A = 









1.0223 0.0952 0.0385 -0.0704

0.0384 0.8822 0.1715 -1.3474

-0.0006 -0.0033 0.974 -0.0736

0.0141 0.0285 -0.0912 0.9732

 

B = 









-0.0349 -0.0066

-0.7320 -0.1114

0.1783 -0.0648

-0.0052 0.0031

 C = 








1 0 0 0

0 1 0 0

0 0 1 0

 H = 









1

0.5

0

0

 

0

5

10

0 100 200 300 400 500

Fig. 3a. First input u1

0

10

20

30

0 100 200 300 400 500

Fig. 3b. Second input u2

-500

0

500

0 100 200 300 400 500

Fig. 4. System outputs

A fault with constant magnitude has been added to the
first input between the instants 100 and 150. For this
example, the eigenvalue assignment problem has enough
degrees of freedom. So, the matrix K may entirely be
imposed. In the following, we have chosen:

K = 









1 0 1

1 1 0

1 1 1

0 1 1

 .

One of the two inputs is alternately considered as
unknown. In both cases, the observer matrices and the

output error estimation εi have been determined and

computed.

- Case 1: up
i
  = up

1
 

N1= 









0.5968 0.2083 -0.1171 0.6396

0.0359 0.6731 0.0261 -0.1475

-0.1088 0.1170 0.7370 0.3445

-0.1010 0.1132 -0.0588 1.1431

 

P1 = 









0.2689 -0.5377 0.8968 0

-0.0620 0.1240 -0.2068 0

0.1448 -0.2897 0.4831 0

0.0729 -0.1458 0.2911 1

  

L1 = 









0.0765 -0.0974 0.1699

-0.0195 0.0261 -0.0452

0.0413 -0.0526 0.0918

0.0422 -0.0128 -0.0203

 

E1 = 









-0.7311 -0.5377 0.8968

-0.0620 -0.8760 -0.2068

0.1448 -0.2897 -0.5169

0.0729 -0.1458 0.2911

  

G1 = 









0.5441

-0.1255

0.2931

0.1508

 

-2

0

2

4

0 100 200 300 400 500

Fig. 5. Output error estimation ε1 with up
i
  = up

1
 

We remark from the figure 5 that an anomaly occurs
between the moments 100 and 150. The fault has affected
all the components of the residual. This is due to the fact
that P1 and P2 are not null; so, to the choice of K.

- Case 2: up
i
  = up

2
 



N2= 









0.9246 0.0483 0.1560 -0.3257

0.0277 0.7077 0.0283 -0.0464

0.1606 0.0555 1.0006 -0.4185

0.1032 0.0349 0.1283 0.5170

 

P2 = 









-0.1013 0.2026 0.8120 0

-0.0144 0.0289 0.1158 0

-0.1302 0.2604 1.0435 0

-0.1413 0.2825 1.1614 1

  

L2 = 









-0.0276 0.0290 0.2808

-0.0036 0.0034 0.0372

-0.0355 0.0374 0.3611

-0.0194 0.0591 0.2608

 

E2 = 









-1.1013 0.2026 0.8120

-0.0144 -0.9711 0.1158

-0.1302 0.2604 0.0435

-0.1413 0.2825 1.1614

  

G2 = 









-0.0746

-0.0106

-0.0958

-0.1027

 

In this case the residual is null. It can be interpreted by
the fact that u2 is not affected by faults and that the

anomaly is associated to the unknown input. So, we can
conclude that the first actuator has failed between the
moments 100 and 150.

7.   CONCLUSION

We have developed a method which allows one to
determine systematically the matrices describing a fault
detection observer in the presence of unknown inputs.
The detection and isolation of faulty actuators have been
done using a classical extension, taking into account
unknown inputs, of the generalized observer scheme.
This method has been experimented on various different
systems and seems to give interesting results.
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