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Abstract. We show how a general formulation of the
Fluctuation-Response Relation is able to describe in detail
the connection between response properties to external per-
turbations and spontaneous fluctuations in systems with fast
and slow variables. The method is tested by using the 360-
variable Lorenz-96 model, where slow and fast variables are
coupled to one another with reciprocal feedback, and a sim-
plified low dimensional system. In the Fluctuation-Response
context, the influence of the fast dynamics on the slow dy-
namics relies in a non trivial behavior of a suitable quadratic
response function. This has important consequences for the
modeling of the slow dynamics in terms of a Langevin equa-
tion: beyond a certain intrinsic time interval even the optimal
model can give just statistical prediction.

1 Introduction

One important aspect of climate dynamics is the study of the
response to perturbations of the external forcings, or of the
control parameters. In very general terms, let us consider the
symbolic evolution equation:

dX

dt
= Q(X) (1)

whereX is the state vector for the system, andQ(X) rep-
resents complicated dynamical processes. As far as climate
modeling is concerned, one of the most interesting proper-
ties to study is the so-called Fluctuation-Response relation
(FRR), i.e. the possibility, at least in principle, to understand
the behavior of the system (1) under perturbations (e.g. a
volcanic eruption, or a change of the CO2 concentration) in
terms of the knowledge obtained from its past time history
(Leith, 1975, 1978; Dymnikov and Gritsoun, 2001).
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The average effect on the variableXi(t) of an infinitesimal
perturbationδf(t) in Eq. (1), i.e.Q(X)→Q(X) + δf(t), can
be written in terms of the response matrixRij (t). If δf(t)=0
for t<0 one has:

δXi(t) =
∑

j

∫ t

0
Rij (t − t ′)δfj (t

′)dt ′ (2)

whereRij (t) is the average response of the variableXi at
time t with respect to a perturbation ofXj at time 0.

The basic point is, of course, how to expressRij (t) in
terms of correlation functions of the unperturbed system.
The answer to this problem is the issue of the Fluctuation-
Response theory. This field has been initially developed in
the context of equilibrium statistical mechanics of Hamilto-
nian systems; this generated some confusion and mislead-
ing ideas on its validity. As a matter of fact, it is possible
to show that a generalized FRR holds under rather general
hypotheses (Deker and Haake, 1975; Falcioni et al., 1990):
the FRR is also valid in non Hamiltonian systems. It is in-
teresting to note that, although stochastic and deterministic
systems, from a conceptual (and technical) point of view,
are somehow rather different, the same FRR holds in both
cases, see Appendix A. For this reason, in the following, we
will not separate the two cases. In addition, a FRR holds
also for not infinitesimal perturbation (Boffetta et al., 2003).
From many aspects, the FRR issues in climate systems are
rather similar to those in fluids dynamics: we have to deal
with non Hamiltonian and non linear systems whose invari-
ant measure is non Gaussian (Kraichnan, 2000). On the other
hand, it is obviously impossible to model climate dynamics
with equations obtained from first principles, so typically it
is necessary to work with simple raw models or just to deal
with experimental signals (Ditlevsen, 1999; Marwan et al.,
2003). In addition, in climate problems (and more in gen-
eral in Geophysics) the study of infinitesimal perturbation
is rather academic, while a much more interesting question
is the relaxation of large perturbations in the system due to
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fast changes of the parameters. Numerical simulations show
that, in systems with one single time scale (e.g. low dimen-
sional chaotic model as the Lorenz one), the amplitude of
the perturbation is not so important, (see Appendix A, and
Boffetta et al., 2003). On the contrary, in the case of dif-
ferent characteristic times, the amplitude of the perturbation
can play a major role in determining the response, because
different amplitudes may affect features with different time
properties (Boffetta et al., 2003). Starting from the semi-
nal works of Leith (1975, 1978), who proposed the use of
FRR for the response of the climatic system to changes in
the external forcing, many authors tried to apply this relation
to different geophysical problems, ranging from simplified
models (Bell, 1980), to general circulation models (North et
al., 1999; Cionni et al., 2004) and to the covariance of satel-
lite radiance spectra (Haskins et al., 1999). For recent works
on the application of the FRR to the sensitivity problem and
the predictability see Gritsoun and Dymnikov (1999), Grit-
soun (2001), Gritsoun et al. (2002), Dymnikov and Gritsoun
(2005), Dymnikov (2004), Abramov and Majda (2007), and
Gritsoun and Branstator (2007). In most works, the FRR has
been invoked in its Gaussian version, see below, which has
been used as a kind of approximation, often without a pre-
cise idea of its limits of applicability. In principle, according
to Lorenz (1996), one has to consider two kinds of sensitiv-
ity: to the initial conditions (first kind) and to the parameters
(e.g. external forcing) of the system (second kind). On the
other hand, if one considers just infinitesimal perturbations,
it is possible to describe the second kind problem in terms of
the first one. Unfortunately, this is not true for non infinitesi-
mal perturbations.

In this paper we study, in the FRR framework, systems
with more than one characteristic time. In Sect. 2 we recall
the theoretical basis of the FRR issue. In Sect. 3 we describe
the analysis we have performed on two dynamical systems.
The first one, is a model introduced by Lorenz (1996), which
contains some of the relevant features of climate systems,
i.e. the presence of fast and slow variables (see Fraedrich,
2003, for a discussion about short and long-term properties
of complex multiscale systems like the atmosphere). We con-
sider, at this regard, the problem of the parameterization of
the fast variables via a suitable renormalization of the param-
eters appearing in the slow dynamics equations, and the addi-
tion of a random forcing. The second one is a very simplified
system consisting, basically, of a slow variable which fluctu-
ates around two states, coupled to fast chaotic variables. The
specific structure of this system suggests a modeling of the
slow variable in terms of a stochastic differential equation.
We will see how, even in absence of a Gaussian statistics,
the correlation functions of the slow (fast) variables have, at
least, a qualitative resemblance with response functions to
perturbations on the slow (fast) degrees of freedom. In ad-
dition, although the average response of a slow variable to
perturbations of the fast components is zero, the influence
of the fast dynamics on the slow dynamics cannot be ne-

glected. This fact is well highlighted by a non trivial be-
havior of a suitable quadratic response function (Hohenberg
and Shraiman, 1989). In the framework of the complexity
in random dynamical systems, one has to deal with a simi-
lar behavior: the relevant “complexity” of the system is ob-
tained by considering the divergence of nearby trajectories
evolving with two different noise realizations (Paladin et al.,
1995). This has important consequences for the modeling of
the slow dynamics in terms of a Langevin equation: beyond
a certain intrinsic time interval (determined by the shape of
the quadratic response function) even the optimal model can
give just statistical predictions (for general discussion about
the skills and the limits of predictability of climatic models
see Cane, 2003). The conclusions and the discussion of the
results obtained in this work are contained in Sect. 4, while
the Appendices are devoted to some technical aspects.

2 Theoretical background on FRR

For the sake of completeness we summarize here some
basic results regarding the FRR (see Appendix A for
technical details). Let us consider a dynamical system
X(0)→X(t)=U tX(0) whose time evolution can even be not
completely deterministic (e.g. stochastic differential equa-
tions), with statesX belonging to aN -dimensional vector
space. We assume: a) the existence of an invariant proba-
bility distribution ρ(X), for which some “absolute continu-
ity” type conditions are required (see Appendix A); b) the
mixing1 character of the system (from which its ergodicity
follows).

At time t=0 we introduce a perturbationδX(0) on the
variableX(0). For the quantityδXi(t), in the case of an
infinitesimal perturbationδX(0)=(δX1(0) · · · δXN (0)) one
obtains:

δXi (t) =
∑

j

Rij (t)δXj (0) (3)

where the linear response functions (according to FRR) are

Rij (t) = −
〈
Xi(t)

∂ ln ρ(X)

∂Xj

∣∣∣∣
t=0

〉
. (4)

In the following〈()〉 indicates the average on the unperturbed
system, while() indicates the mean value of perturbed quan-
tities. The operating definition ofRij (t) in numerical simu-
lations is the following. We perturbe the variableXj at time
t=t0 with a small perturbation of amplitudeδXj (0) and then
evaluate the separation componentδXi(t |t0) between the two
trajectoriesX(t) andX′(t) which are integrated up to a pre-
scribed timet1=t0+1t . At time t=t1, the variableXj of the
reference trajectory is again perturbed with the sameδXj (0),

1A dynamical system is mixing if, for t→∞,
〈f (U tX)g(X)〉→〈f (X)〉〈g(X)〉, where the average is over
the invariant probability distribution andf andg areL2 functions.
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and a new sampleδX(t |t1) is computed and so forth. The
procedure is repeatedM≫1 times and the mean response is
then given by:

Rij (τ ) = 1

M

M∑

k=1

δXi(tk + τ |tk)
δXj (0)

.

Usually, in non Hamiltonian systems, the shape ofρ(X) is
not known, therefore relation (4) does not give a very detailed
information. On the other hand the above relation shows that,
anyway, there exists a connection between the mean response
function Rij and some suitable correlation function, com-
puted in the unperturbed systems.

In the case of multivariate Gaussian distribution,
ln ρ(X)=−1

2

∑
i,j αijXiXj+const. where{αij } is a positive

symmetric matrix, the elements of the linear response matrix
can be written in terms of the usual correlation functions,
Cik=〈Xi(t)Xk(0)〉/〈XiXk〉, as:

Rij (t) =
∑

k

αjk

〈
Xi(t)Xk(0)

〉
. (5)

One important nontrivial class of systems with a Gaussian
invariant measure is the inviscid hydrodynamics2, where the
Liouville theorem holds, and a quadratic invariant exists
(Kraichnan, 1959; Kraichnan and Montgomery, 1980; Bohr
et al., 1998). Sometimes in the applications, in absence of
detailed information about the shape ofρ, formula (5) is as-
sumed to hold to some extent. Numerical studies of simpli-
fied models which mimic the chaotic behavior of turbulent
fluids show that, since that stationary probability distribution
is not Gaussian, Eq. (5) does not hold. On the other hand, the
correlation functions and the response functions have similar
quantitative behavior. In particular, in fully developed tur-
bulence, as one can expect on intuitive ground, one has that
the times characterizing the responses approximate the char-
acteristic correlation times (Biferale et al., 2002; Boffetta et
al., 2003). This is in agreement with numerical investigation
(Kraichnan, 1966) at moderate Reynolds number of the Di-
rect Interaction Approximation equations, showing that, al-
thoughRii(t) is not exactly proportional to the autocorrela-
tion functionCii(t), if one compares the correlation times
τC(ki) (e.g. the time after which the correlation function be-
comes lower than 1/2) and the response timeτR(ki) (e.g. the
time after which the response function becomes lower than
1/2), the ratioτC(ka)/τR(ka) remains constant through the
inertial range. In the turbulence context,Xi indicates the
Fourier component of the velocity field corresponding to a
wave vectorki .

We would like briefly to remark a subtle point. From a
rather general argument (see Appendix B), one has that all

2There exist also inviscid hydrodynamic systems with non
quadratic conservation laws, and, therefore, non Gaussian invariant
measure. Such cases can have relevance in the statistical mechanics
of fluids (Pasmanter, 1994).

the (typical) correlation functions, at large time delay, have
to relax to zero with the same characteristic time, related to
spectral properties of the operatorL̂ which rules the time evo-
lution of the probability density functionP(X, t):

∂

∂t
P (X, t) = L̂P(X, t) . (6)

Using this result in a blind way, one has the apparently para-
doxical conclusion that, in any kind of systems, all the cor-
relation functions, relative to degrees of freedom at differ-
ent scales, relax to zero with the same characteristic time.
On the contrary, in systems with many different character-
istic times (e.g. fully developed turbulence), one expects a
whole hierarchy of times distinguishing the behavior at dif-
ferent scales (Frisch, 1995). The paradox is, of course, only
apparent since the above argument is valid just at very long
times, i.e. much longer than the longest characteristic time,
and therefore, in systems with fluctuations over many differ-
ent time-scales, this is not very helpful.

3 Response of fast and slow variables

Systems with a large number of components and/or with
many time scales, e.g. climate dynamics models, present
clear practical difficulties if one wants to understand their
behavior in detail. Even using modern supercomputers, it
is not possible to simulate all the relevant scales of the cli-
mate dynamics, which involves processes with characteris-
tic times ranging from days (atmosphere) to 102–103 years
(deep ocean and ice shields), see Majda et al. (2005) and
Majda and Wang (2006).

For the sake of simplicity, we consider the case in which
the state variables evolve over two very different time scales:

dXs

dt
= f(Xs,Xf ) (7)

dXf

dt
= 1

ǫ
g(Xs,Xf ) (8)

whereXs andXf indicate the slow and fast state vectors,
respectively,ǫ≪1 is the ratio between fast and slow char-
acteristic times, and bothf andg areO(1). A rather general
issue is to understand the role of the fast variables in the slow
dynamics. From the practical point of view, one basic ques-
tion is to derive effective equations for the slow variables,
e.g. the climatic observable, in which the effects of the fast
variables, e.g. high frequency forcings, are taken into account
by means of stochastic parameterization. Under rather gen-
eral conditions (Givon et al., 2004), one has the result that, in
the limit of smallǫ, the slow dynamics is ruled by a Langevin
equation with multiplicative noise:

dXs

dt
= feff(Xs)+ σ̂ (Xs)η (9)

where η is a white-noise vector, i.e. its compo-
nents are Gaussian processes such that〈ηi(t)〉=0 and
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Fig. 1. Lorenz-96 model: autocorrelationCjj (t) (full line) and
self-responseRjj (t) (+) of the fast variableyk,j (t) (k=3, j=3).
The statistical error bars onRjj (t) are of the same size as the
graphic symbols used in the plot.
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Fig. 2. Lorenz-96 model: autocorrelationCkk(t) (full line) and
self-responseRkk(t), with statistical error bars, of the slow variable
xk(t) (k=3).

〈ηi(t)ηj (t ′)〉=δij δ(t−t ′). Although there exist general
mathematical results (Givon et al., 2004) on the possibility
to derive Eq. (9) from Eqs. (7) and (8), in practice one has
to invoke (rather crude) approximations based on physical
intuition to determine the shape offeff and σ̂ (Mazzino et
al., 2005). At this regard, see also the contribution to the
volume by Imkeller and von Storch (2001) about stochastic
climate models. For a more rigorous approach in some
climate problems see Majda et al. (1999, 2001) and Majda
and Franzke (2006).

In the following, we analyse and discuss two models
which, in spite of their apparent simplicity, contain the ba-
sic features, and the same difficulties, of the general multi-
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Fig. 3. Lorenz-96 model: autocorrelationCzk (t) (dashed line)
of the cumulative variablezk(t) compared to the autocorrelation
Ckk(t) of xk(t) (full line).

scale approach: the Lorenz-96 model (Lorenz, 1996) and a
double-well potential with deterministic chaotic forcing.

3.1 The Lorenz-96 model

First, let us consider the Lorenz-96 system (Lorenz, 1996),
introduced as a simplified model for the atmospheric circula-
tion. Define the set{xk(t)}, for k=1, ..., Nk, and{yk,j (t)},
for j=1, ..., Nj , as the slow large-scale variables and the
fast small-scale variables, respectively (beingNk=36 and
Nj=10). Roughly speaking, the{xk}’s represent the synop-
tic scales while the{yk,j }’s represent the convective scales.
The forced dissipative equations of motion are:

dxk

dt
= −xk−1(xk−2 − xk+1)− νxk + F + c1

Nj∑

j=1

yk,j (10)

dyk,j

dt
= −cbyk,j+1(yk,j+2 − yk,j−1)− cνyk,j + c1xk (11)

where:F=10 is the forcing term,ν=1 is the linear damping
coefficient,c=10 is the ratio between slow and fast charac-
teristic times,b=10 is the relative amplitude between large
scale and small scale variables, andc1=c/b=1 is the cou-
pling constant that determines the amount of reciprocal feed-
back.

Let us consider, first, the response properties of fast and
slow variables, see Figs. 1 and 2.

In Fig. 1, the autocorrelationCjj (t) and self-response
Rjj (t) refer to the fast variableyk,j (t), with fixed k andj .
It is well evident how, even in absence of a precise agree-
ment between autocorrelations and self-response functions
(due to the non Gaussian character of the system), one has
that the correlation of the slow (fast) variables have at least a

Nonlin. Processes Geophys., 14, 681–694, 2007 www.nonlin-processes-geophys.net/14/681/2007/
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x k
(t
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t

Fig. 4. Lorenz-96 model: time signal sample of the slow vari-
ablexk(t) (k=3) for the deterministic model (full line) and for the
stochastic model (dashed line). For clarity, the two signals have
been shifted from each other along the vertical axis.

qualitative resemblance with the response of the slow (fast)
variables themselves.

The structure of the Lorenz-96 model includes a rather nat-
ural set of quantities that suggests how to parameterize the
effects of the fast variables on the slow variables, for each
k. Let us indicate withzk=

∑Nj
j=1 yk,j the term containing

all theNj fast terms in the equations for theNk slow modes.
In the following, we will see that, replacing the determinis-
tic terms{zk}’s in the equations for the{xk}’s with suitable
stochastic processes, one obtains an effective model able to
reproduce the main statistical features of the slow compo-
nents of the original system.

It’s worth-noting, from Fig. 3, thatCkk(t) andCzk (t), the
autocorrelation of the cumulative variablezk(t), are rather
close to each other. This suggests thatzk(t) must be corre-
lated toxk(t), in other words, the cumulative effects of the
Nj fast variablesyk,j (t) on xk(t) are equivalent to an effec-
tive slow term, proportional toxk(t).

We look, therefore, for a conditional white noise parame-
terization that takes into account this important information
given by the structure of the Lorenz-96 model equations. Let
us write the effective equations for the slow modes as

dxk

dt
= −xk−1(xk−2 − xk+1)− (ν + ν′)xk + (F + F ′)+ c2 · ηk (12)

whereηk are uncorrelated and normalized white-noise terms.
Some authors, Majda et al. (1999, 2001) and Majda and
Franzke (2006), using multiscale methods, have obtained ef-
fective Langevin equations for the slow variables of systems
having the same structure as the Lorenz-96 model.

Basically we can say that, in the effective model for the
slow variables, one parameterizes the effects of the fast
variables with a suitable renormalization of the forcing,
F→F+F ′, of the viscosity,ν→ν+ν′, and the addition of a

 0.001

 0.01

 0.1

 1

-10 -5  0  5  10  15

ρ(
z k

)

zk

Fig. 5. Lorenz-96 model: PDFs of the cumulative variablezk
(k=3), see definition in the text for the two cases, for the deter-
ministic model (full line) and the stochastic model (dashed line).
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x k
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Fig. 6. Lorenz-96 model: PDFs of the slow variablexk (k=3) for
the deterministic model (full line) and the stochastic model (dashed
line).

random term. In other words, we replace thezk=
∑Nj
j=1 yk,j

terms in Eq. (10) with stochastic processesz̃k depending on
the slow variablesxk:

dxk

dt
= −xk−1(xk−2 − xk+1)− νxk + F + c̃1z̃k (13)

where

z̃k = 1

c̃1

(
−ν′xk + F ′ + c2ηk

)
(14)

with c̃1 is a new coupling constant. We notice that Eq. (13)
has the same form of Eq. (10). With a proper choice ofν′,
F ′ and c2 in Eq. (12),ν′=−0.3, F ′=0.25, c2=0.3, which
implies c̃1=0.25 in Eq. (13), one can reproduce the statistics
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Fig. 7. Lorenz-96 model: autocorrelationCkk(t) (full line) and
self-responseRkk(t), with statistical error bars, of the slow variable
xk(t) for the stochastic model.

of xk andzk to a very good extent, see at this regard Figs. 4,
5 and 6. Of course the above described parameterization of
the fast variables is inspired to the general “philosophy” of
the Large-Eddy Simulation of turbulent geophysical flows at
high Reynolds numbers (Moeng, 1984; Moeng and Sullivan,
1994; Sullivan et al., 1994).

The FR properties of the stochastic Lorenz-96 slow vari-
ables are reported in Fig. 7.

Let us come back to the response problem. Of course the
mean response of a slow variable to a perturbation on a fast
variable is zero. However, this does not mean that the effect
of the fast variables on the slow dynamics is not statistically
relevant. Let us introduce the quadratic response ofxk(t)

with respect to aninfinitesimalperturbation onyk,j (0), for
fixedk andj :

R
(q)
kj (t) =

[
δxk(t)2

]1/2

δyk,j (0)
(15)

Considered that in all simulations the initial impulsive per-
turbations on theyk,j is kept constant,δyk,j (0)=1, with
1≪〈y2

k,j 〉1/2, it is convenient to take the average of Eq. (15)
over allj ’s, at a fixedk, and introduce the quantity:

R
(q)
sf (t) = 1

Nj

Nj∑

j=1

R
(q)
kj (t) (16)

where withs andf we label the slow and fast variables, re-
spectively. In the case of the Lorenz-96 system, all theyk,j
variables, at fixedk, are statistically equivalent, and have
identical coupling withxk, so thatR(q)sf (t)/1 coincides with

R
(q)
kj (t). We report in Fig. 8 the behavior ofR(q)sf (t), for both

Eqs. (10) and (13). As regards to the stochastic model, the
analogous of Eq. (16) is defined as follows. One studies the

 0
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Fig. 8. Lorenz-96 model: quadratic cross-response function

R
(q)
sf
(t) for the deterministic model (full line), for the stochastic

model when the slow variables evolve with the same noise realiza-
tion for all components except one (dashed line), and when the slow
variables evolve with a different noise realization for every compo-
nent (dotted line).

evolution ofδxk(t) as difference of two trajectories obtained
with two different realizations of the{ηk}’s. It is worth stress-
ing that the behavior ofδxk(t) under two noise realizations
can be very different from the behavior ofδxk(t) under the
same noise realization (see Appendix C). This aspect will be
considered again in the next section.

3.2 A simplified model

In order to grasp the essence of systems with fast and slow
variables, we discuss now a toy climate model in which the
“climatic” variable fluctuates between two states. Consider a
four dimensional state vectorq=(q0, q1, q2, q3) whose evo-
lution is given by:

dq0

dt
= 2

√
Hq0 − q3

0 + cq1 (17)

dq1

dt
= 1

ǫ̃
[−σL(q1 − q2)] (18)

dq2

dt
= 1

ǫ̃
[−q1q3 + rLq1 − q2] (19)

dq3

dt
= 1

ǫ̃
[q1q2 − bLq3] (20)

This four equation system will be named the deterministic
DW model. The subsystem formed by Eqs. (18), (19) and
(20) is nothing but the well-known Lorenz-63 model (Lorenz
1963), in which the constant̃ǫ has the function of rescal-
ing the characteristic time. In absence of coupling (c=0) be-
tweenq0 andq1, the unforced motion equation holds for the
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Fig. 9. DW model withǫ̃=1: time signal sample of the slow vari-
ableq0(t). The ratio between fast and slow characteristic times is
ǫ∼0.1 (see text).

slow variablex=q0:

dx

dt
= −∂V

∂x
= 2

√
Hx − x3

with

V (x) = H −
√
Hx2 + 1

4
x4 (21)

The system (21) has one unstable steady state inx0=0 cor-
responding to the top of the hill of heightH , and two stable
steady states inx1/2=±(4H)1/4, i.e. the bottom of the val-
leys. The presence of the coupling (c 6=0) between slow and
fast variables can induce transitions between the two valleys.
The parameters in Eqs. (17), (18), (19), and (20) are fixed
to the following values:σL=10, rL=28, bL=8/3, i.e. the
classical set-up corresponding to the chaotic regime for the
Lorenz-63 system;H=4, the height of the barrier;c=0.5,
the coupling constant that rules the transition time scale of
q0(t) between the two valleys; by setting̃ǫ=1, the ratioǫ be-
tween fast and slow characteristic times, see Eqs. (7) and (8),
isO(10−1).

Since the time scale of theq0(t) well-to-well transitions
may be considerably longer, depending on 1/c, than the char-
acteristic time ofq1(t), of orderO(1), we refer toq0 as the
slow variable, or the low-frequency observable, and toq1 as
the fast variable, or the high-frequency forcing, of the deter-
ministic DW model. It can be easily shown that, forc=0,
small perturbations1q0 around the two potential minima
at ±(4H)1/4 relax exponentially to zero with characteristic
time 1/4

√
H . For sufficiently large values ofc, the climatic

variableq0(t) jumps aperiodically back and forth between
the two valleys, driven by the chaotic signalq1(t), see Figs. 9
and 10.

The main statistical quantities investigated to analyse the
DW model are the following:
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Fig. 10. DW model withǫ̃=1: time signal sample of the fast vari-
ableq1(t).

a) the probability density function of the slow variableq0;

b) the probability density function of the well-to-well tran-
sition timete, ρ(te);

c) the slow and fast auto-correlation functions (ACF)
Cii(t)=〈qi(t)qi(0)〉/〈q2

i 〉, with i=0,1;

d) the slow and fast self-response functions (ARF)
Rii(t)=δqi(t)/δqi(0), with i=0,1;

e) the quadratic cross-response function of the slow vari-
ableq0(t) with respect to the fast variableq1(0).

Of courseR01(t), i.e. the mean response ofq0(t) to a per-
turbation onq1(0), is zero for trivial symmetry arguments.
On the other hand, the quadratic response:

R
(q)

01 (t) =

[
δq0(t)2

]1/2

δq1(0)
(22)

can give relevant physical information. Even in this case,
since in all simulations the initial perturbation onq1(0) is
kept constant,δq1(0)=1≪〈q2

1〉1/2, it is convenient to define
as mean quadratic response of the slow variable (s) with re-
spect to the fast variable (f ) the quantityR(q)sf (t)=1·R(q)01 (t).

The long-time saturation level ofR(q)sf (t) is of the order of the
distance between the two climatic states.

With the current set-up, slow and fast variable have char-
acteristic times which differ by an order of magnitude from
each other, while the statistics ofq0 is strongly non Gaus-
sian. Because of the skew structure of the system, i.e. the
fast dynamics drives the slow dynamics but without counter-
feedback, one expects that, at the least in the limit of large
time scale separation, the joint PDF can be factorized, with
an asymptotic PDF forq0 of the formρ0=K ·e−Veff(q0), where
K is a normalization constant.
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Fig. 11. DW model with ǫ̃=1: autocorrelationC11(t) (full line)
and self-responseR11(t), with statistical error bars, for the fast vari-
ableq1.
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Fig. 12. DW model with ǫ̃=1: AutocorrelationC00(t) (full line)
and self-responseR00(t), with statistical error bars, for the slow
variableq0.

The FR properties of the deterministic DW model, for the
fast and slow variables, are shown in Figs. 11 and 12, respec-
tively.

The slow self-responseR00(t) initially decreases exponen-
tially with characteristic time 1/4

√
H (H=4), i.e. the same

behavior of the relaxation of a small perturbation near the
bottom of a valley forc=0. Then,R00(t) relaxes to zero
much more slowly. It is natural to assume that this is due to
the long-time jumps between the valleys. It is well evident
thatR00 behaves rather differently fromC00, whileR11 and
C11 have, at least, the same qualitative shape. On the other
hand, the autocorrelation (self-response) time scales of the
two variables differ from each other of a factor∼10, compat-
ibly with the fact that the ratio between fast and slow charac-
teristic times isǫ∼0.1, for the current set-up (̃ǫ=1).
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Fig. 13. DW model withǫ̃=0.01, implyingǫ∼10−3: autocorrela-
tionC00(t) (dashed line), self-responseR00(t), with statistical error
bars, and the correlation functionC(t) predicted by the FRR (full
line) which is actually undistinguishable from the response.

Since the statistics is far from being Gaussian, the “cor-
rect” correlation function which satisfies the FR theorem, for
the slow variable, has the form:

C(t) = −
〈
q0(t)

∂ρǫ(q0, q1, q2, q3)

∂q0

∣∣∣∣
t=0

〉
(23)

whereρǫ(q0, q1, q2, q3) is the (unknown) joint PDF of the
state variable of the system at a fixedǫ. In the limit of large
time separation, i.e. for̃ǫ→0, one expects that the asymptotic
PDFρ0(q0, q1, q2, q3) is factorized:

ρ0(q0, q1, q2, q3) = Ke−Veff(q0)ρL(q1, q2, q3) (24)

whereK is a normalization constant, andρL is the PDF of
the Lorenz-63 state variable. Under this condition, the right
correlation function predicted by the FRR has a relatively
simple form:

C(t) =
〈
q0(t)

∂Veff(q0)

∂q0

∣∣∣∣
t=0

〉
(25)

whereVeff indicates the effective potential. Forǫ∼10−1 (cor-
responding tõǫ=1) we have checked numerically that the
joint PDF is not yet factorized, while for a very small ra-
tio between the characteristic times,ǫ∼10−3 (corresponding
to ǫ̃=10−2), the form (24) holds and, takingVeff ∝ V , we
obtain a very good agreement betweenR00(t) andC(t), see
Fig. 13.

The cross-response properties of the DW model, measured
by the quantityR(q)sf (t), are reported in Fig. 18. We will
consider again later this issue when discussing the stochas-
tic modeling. While the mean (slow-to-fast) cross-response
is null (not shown), its fluctuations grow with time. This
means that an initial uncertainty on the fast variables has con-
sequences for the predictability of the slow variable, since it
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Fig. 14. Comparison of the PDFs of the transition timete between
the two climatic states for the DW model (full line) and the WNDW
model (dashed line), for̃ǫ=1 (ǫ∼0.1).

induces a mean separation growth between two initially close
“climatic” states of theq0 variable. At small times,R(q)sf (t)
grows exponentially in time, i.e. it is driven by the chaotic
character of the fast variable while, at very long times, the
well-to-well aperiodic jumps play the dominant role and the
growth speed eventually decreases to zero until saturation
sets in.

Let us now consider a stochastic model for the slow vari-
ableq0(t), obtained by replacing the fast variableq1, in the
equation forq0, with a white noise. One has a Langevin
equation of the kind:

dq0

dt
(t) = 2

√
Hq0(t)− q3

0 + σ · ξ(t) (26)

where ξ(t) is a Gaussian process with〈ξ(t)〉=0 and
〈ξ(t)ξ(t ′)〉=δ(t−t ′). We call Eq. (26) the WNDW model.
The valueσ=19.75 is determined by requiring that the PDFs
of the well-to-well transition times have the same asymptotic
behavior (i.e. exponential tail with the same exponent), see
Fig. 14.

Let us notice that, in this case, because of the skew struc-
ture of the original system, the stochastic modeling is (rel-
atively) simple and, differently from the generic case, the
noise is additive. The time signalq0(t) obtained from the
WNWD model is reported in Fig. 15. One observes strong
similarities in the long-time transition statistics with respect
to the deterministic model, even though the PDFs of the slow
variable are quite different from one another, see Fig. 16.

The FR properties of the WNDW model are reported
in Fig. 17. The slow variable is distributed according to
∼e−V (q0)/K , with K=σ 2/2, and the FR theorem prediction
is verified, i.e. one has a good agreement betweenR00(t) and
the correlation functionC(t).
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Fig. 15. WNDW model: time signal sample of the slow variable
q0(t).
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Fig. 16. PDFs of the slow variableq0 for the DW model with̃ǫ=1,
i.e. ǫ∼0.1 (full line), the WNDW model (dashed line) and the DW
model with ǫ̃=10−2, i.e. ǫ∼10−3 (dotted line). In the limitǫ→0,
the PDFs of the deterministic model and of the stochastic model
collapse.

We redefine, as already seen when discussing the stochas-
tic model approximating the Lorenz-96 system, the quadratic
cross-response functionR(q)sf (t) as the root mean square
growth of the errorδq0(t) induced by two different noise re-
alizations.

In Fig. 18, the behavior ofR(q)sf (t) for the deterministic
DW system and its stochastic model is reported. The WNDW
model is not able to reproduce the two-time behavior of the
deterministic model, mainly due to the impossibility to con-
trol the amplitude of the initial perturbation. Because of that,
the error on the climatic state of the system saturate very
quickly, as soon as the trajectory starts jumping between the
wells.
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Fig. 17. WNDW model: autocorrelationC00(t) (dashed line), self-
responseR00(t), with statistical error bars, and the correlation func-
tionC(t) predicted by the FRR (full line).

4 Discussion and conclusive remarks

In this paper we have presented a detailed investigation of the
Fluctuation-Response properties of chaotic systems with fast
and slow dynamics. The numerical study has been performed
on two models, namely the 360-variable Lorenz-96 system,
with reciprocal feedback between fast and slow variables,
and a simplified low dimensional system, both of which are
able to capture the main features, and related difficulties, typ-
ical of the multiscale systems. The first point we wish to
emphasize is how, even in non Hamiltonian systems, a gen-
eralized Fluctuation-Response Relation (FRR) holds. This
allows for a link between the average relaxation of pertur-
bations and the statistical properties (correlation functions)
of the unperturbed system. Although one has non Gaus-
sian statistics, the correlation functions of the slow (fast)
variables have at least a qualitative resemblance with the re-
sponse functions to perturbations on the slow (fast) degrees
of freedom. The average response function of a slow variable
to perturbations of the fast degrees of freedom is zero, never-
theless the impact of the fast dynamics on the slowly varying
components cannot be neglected. This fact is clearly high-
lighted by the behavior of a suitable quadratic response func-
tion. Such a phenomenon, which can be regarded as a sort
of sensitivity of the slow variables to variations of the fast
components, has an important consequence for the modeling
of the slow dynamics in terms of a Langevin equation. Even
an optimal model (i.e. able to mimic autocorrelation and self-
response of the slow variable), beyond a certain intrinsic time
interval, can give just statistical predictions, in the sense that,
at most, one can hope to have an agreement among the statis-
tical features of system and model. In stochastic dynamical
systems, one has to deal with a similar behavior: the relevant
“complexity” of the systems is obtained by considering the
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Fig. 18. Quadratic cross-response functionR(q)
sf
(t) for the DW

model (full line) and the WNDW model (dashed line). The growth

rates ofR(q)
sf
(t) for the DW model are compatible with the two char-

acteristic times of the system, while for the WNDW modelR
(q)
sf
(t)

quickly saturates in a very short time.

divergence of nearby trajectories evolving under two differ-
ent noise realizations. Therefore a good model for the slow
dynamics (e.g. a Langevin equation) must show a sensitivity
to the noise.

Appendix A

Generalized FRR

In this Appendix we give a derivation, under general rather
hypothesis, of a generalized FRR. Consider a dynamical sys-
tem x(0)→x(t)=U tx(0) with statesx belonging to aN -
dimensional vector space. For the sake of generality, we
will consider the case in which the time evolution can also
be not completely deterministic (e.g. stochastic differential
equations). We assume the existence of an invariant proba-
bility distributionρ(x), for which some “absolute continuity”
type conditions are required (see later), and the mixing char-
acter of the system (from which its ergodicity follows). Note
that no assumption is made onN .

Our aim is to express the average response of a generic
observableA to a perturbation, in terms of suitable correla-
tion functions, computed according to the invariant measure
of the unperturbed system. At the first step we study the
behavior of one component ofx, sayxi , when the system,
described byρ(x), is subjected to an initial (non-random)
perturbation such thatx(0)→x(0)+1x0. This instantaneous
kick3 modifies the density of the system intoρ′(x), related to

3The study of an “impulsive” perturbation is not a severe limita-
tion, e.g. in the linear regime from the (differential) linear response
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the invariant distribution byρ′(x)=ρ(x−1x0). We introduce
the probability of transition fromx0 at time 0 tox at time
t , W(x0,0→x, t). For a deterministic system, with evolu-
tion lawx(t)=U tx(0), the probability of transition reduces to
W(x0,0→x, t)=δ(x−U tx0), whereδ(·) is the Dirac’s delta.
Then we can write an expression for the mean value of the
variablexi , computed with the density of the perturbed sys-
tem:
〈
xi(t)

〉′
=

∫ ∫
xiρ

′(x0)W(x0,0 → x, t) dx dx0 . (A1)

The mean value ofxi during the unperturbed evolution can
be written in a similar way:

〈
xi(t)

〉
=

∫ ∫
xiρ(x0)W(x0,0 → x, t) dx dx0 . (A2)

Therefore, definingδxi=〈xi〉′−〈xi〉, we have:

δxi (t) =
∫ ∫

xi F(x0,1x0) ρ(x0)W(x0,0 → x, t) dx dx0

=
〈
xi(t) F (x0,1x0)

〉
(A3)

where

F(x0,1x0) =
[
ρ(x0 −1x0)− ρ(x0)

ρ(x0)

]
. (A4)

Let us note here that the mixing property of the system is re-
quired so that the decay to zero of the time-correlation func-
tions assures the switching off of the deviations from equi-
librium.

For an infinitesimal perturbationδx(0) = (δx1(0) · · · δxN
(0)), if ρ(x) is non-vanishing and differentiable, the function
in Eq. (A4) can be expanded to first order and one obtains:

δxi (t) = −
∑

j

〈
xi(t)

∂ ln ρ(x)
∂xj

∣∣∣∣
t=0

〉
δxj (0)

≡
∑

j

Rij (t)δxj (0) (A5)

which defines the linear response

Rij (t) = −
〈
xi(t)

∂ ln ρ(x)
∂xj

∣∣∣∣
t=0

〉
(A6)

of the variablexi with respect to a perturbation ofxj . One
can easily repeat the computation for a generic observable
A(x):

δA (t) = −
∑

j

〈
A(x(t))

∂ ln ρ(x)
∂xj

∣∣∣∣
t=0

〉
δxj (0) . (A7)

For Langevin equations, the differentiability ofρ(X) is
well established. On the contrary, one could argue that in a

one understands the effect of a generic perturbation.

chaotic deterministic dissipative system the above machin-
ery cannot be applied, because the invariant measure is not
smooth at all. Typically the invariant measure of a chaotic at-
tractor has a multifractal character and its Renyi dimensions
dq are not constant (Paladin and Vulpiani, 1987). In chaotic
dissipative systems the invariant measure is singular, how-
ever the previous derivation of the FRR is still valid if one
considers perturbations along the expanding directions. For
a mathematically oriented presentation see Ruelle (1998). A
general response function has two contributions, correspond-
ing respectively to the expanding (unstable) and the contract-
ing (stable) directions of the dynamics. The first contribution
can be associated to some correlation function of the dynam-
ics on the attractor (i.e. the unperturbed system). On the con-
trary this is not true for the second contribution (from the
contracting directions), this part to the response is very dif-
ficult to extract numerically (Cessac and Sepulchre, 2007).
In chaotic deterministic systems, in order to have a differ-
entiable invariant measure, one has to invoke the stochastic
regularization (Zeeman, 1990). If such a method is not feasi-
ble, one can use the direct approach by Abramov and Majda
(2007). For a study of the FRR in chaotic atmospheric sys-
tems, see Dymnikov and Gritsoun (2005) and Gritsoun and
Branstator (2007).

Let us notice that a small amount of noise, that is always
present in a physical system, smoothen theρ(x) and the FRR
can be derived. We recall that this “beneficial” noise has
the important role of selecting the natural measure, and, in
the numerical experiments, it is provided by the round-off
errors of the computer. We stress that the assumption on the
smoothness of the invariant measure allows to avoid subtle
technical difficulties.

Appendix B

A general remark on the decay of correlation
functions

Using some general arguments one has that all the (typical)
correlation functions at large time delay have to relax to zero
with the same characteristic time, related to spectral proper-
ties of the operator̂L which rules the time evolution of the
P(X, t):

∂

∂t
P (X, t) = L̂P(X, t) . (B1)

In the case of ordinary differential equations

dXi/dt = Qi(X) i = 1, · · · , N (B2)

the operator̂L has the shape

L̂P(X, t) = −
∑

i

∂

∂Xi

(
Qi(X)P (X, t)

)
. (B3)
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For Langevin equations i.e. in Eq. (B2)Qi is replaced by
Qi+ηi where{ηi} are Gaussian processes with<ηi(t)>=0
and<ηi(t)ηj (t ′)>=23i,j δ(t − t ′), one has

L̂P(X, t) = −
∑
i
∂
∂Xi

(
Qi(X)P (X, t)

)

+
∑
ab3i,j

∂2

∂Xi∂Xi
P(X, t) .

(B4)

Let us introduce the eigenvalues{αk} and the eigenfunc-
tions{ψk} of L:

L̂ψk = αkψk . (B5)

Of courseψ0=Pinv andα0=0, and typically in mixing sys-
temsRe αk<0 for k=1,2, .... Furthermore assuming that co-
efficient{g1, g2, ...} and{h1, h2, ...} exist such that functions
g(X) andh(X) are uniquely expanded as

g(X) =
∑

k=0

gkψk(X) , h(X) =
∑

k=0

hkψk(X) , (B6)

so we have

Cg,f (t) =
∑

k=1

gkhk < ψ2
k > eαk t , (B7)

where Cg,f (t)=<g(X(t))h(X(t))>−<g(X)><h(X)>.
For “generic” functionsg and f , i.e. if they are not or-
thogonal toψ1 so thatg1 6=0 andh1 6=0, at large time the
correlationCg,f (t) approaches to zero as

Cg,f (t) ∼ e−t/τc , τc = 1

|Re α1|
. (B8)

In some cases, e.g. very intermittent systems like the
Lorenz model atr≃166.07,Re α1=0 so the decay is not ex-
ponentially fast.

Appendix C

Lyapunov exponent in dynamical systems with noise

In systems with noise, the simplest way to introduce the
Lyapunov exponent is to treat the random term as a time-
dependent term. Basically one considers the separation of
two close trajectories with the same realization of noise.
Only for sake of simplicity consider a one-dimensional
Langevin equation

dx

dt
= −∂V (x)

∂x
+ σ η , (C1)

whereη(t) is a white noise andV (x) diverges for| x | →∞,
like, e.g., the usual double well potentialV=−x2/2+x4/4.

The Lyapunov exponentλσ , associated with the separation
rate of two nearby trajectories with the same realization of
η(t), is defined as

λσ = lim
t→∞

1

t
ln |z(t)| (C2)

where the evolution of the tangent vector is given by:

dz

dt
= −∂

2V (x(t))

∂x2
z(t). (C3)

The quantityλσ obtained in the previous way, although well
defined, i.e. the Oseledec theorem (Bohr et al., 1998) holds,
it is not always a useful characterization of complexity.

Since the system is ergodic with invariant probability dis-
tribution P(x)=C1e

−V (x)/C2, whereC1 is a normalization
constant andC2=σ 2/2, one has:

λσ = limt→∞ 1
t

ln |z(t)|
= − limt→∞ 1

t

∫ t
0 ∂

2
xxV (x(t

′))dt ′

= −C1
∫
∂2
xxV (x)e

−V (x)/C2 dx

= −C1
C2

∫
(∂xV (x))

2e−V (x)/C2 dx < 0 .

(C4)

This has a rather intuitive meaning: the trajectoryx(t) spends
most of the time in one of the “valleys” where−∂2

xxV (x)<0
and only short intervals on the “hills” where−∂2

xxV (x)>0,
so that the distance between two trajectories evolving with
the same noise realization decreases on average. The previ-
ous result for the 1-D Langevin equation can easily be gen-
eralized to any dimension for gradient systems if the noise is
small enough (Loreto et al., 1996).

A negative value ofλσ implies a fully predictable process
only if the realization of the noise is known. In the case of
two initially close trajectories evolving under two different
noise realizations, after a certain timeTσ , the two trajecto-
ries can be very distant, because they can be in two different
valleys. Forσ→0, due to the Kramers formula (Gardiner,
1990), one hasTσ∼e1V/σ2

, where1V is the difference be-
tween the values ofV on the top of the hill and at the bottom
of the valley.

Let us now discuss the main difficulties in defining the no-
tion of “complexity” of an evolution law with a random per-
turbation, discussing a simple case. Consider the 1-D map

x(t + 1) = f [x(t), t] + σw(t), (C5)

wheret is an integer andw(t) is an uncorrelated random pro-
cess, e.g.w are independent random variables uniformly dis-
tributed in[−1/2,1/2]. For the largest LEλσ , as defined in
(C2), now one has to study the equation

z(t + 1) = f ′[x(t), t] z(t), (C6)

wheref ′=df/dx.
Following the approach in (Paladin et al., 1995) letx(t) be

the trajectory starting atx(0) andx′(t) be the trajectory start-
ing fromx′(0)=x(0)+δx(0). Letδ0≡|δx(0)| and indicate by
τ1 the minimum time such that|x′(τ1)−x(τ1)|≥1. Then, we
put x′(τ1)=x(τ1)+δx(0) and defineτ2 as the time such that
|x′(τ1+τ2)−x(τ1+τ2)|>1 for the first time, and so on. In
this way the Lyapunov exponent can be defined as

λ = 1

τ
ln

(
1

δ0

)
(C7)
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being τ=
∑
τi/N whereN is the number of the intervals

in the sequence. If the above procedure is applied by con-
sidering the same noise realization for both trajectories,λ in
Eq. (C2) coincides withλσ (if λσ>0). Differently, by con-
sidering two different realizations of the noise for the two
trajectories, we have a new quantity

Kσ = 1

τ
ln

(
1

δ0

)
, (C8)

which naturally arises in the framework of information the-
ory and algorithmic complexity theory: note thatKσ / ln 2 is
the number of bits per unit time one has to specify in order to
transmit the sequence with a precisionδ0, The generalization
of the above treatment toN -dimensional maps or to ordinary
differential equations is straightforward.

If the fluctuations of the effective Lyapunov expo-
nent γ (t) (in the case of Eq. C5γ (t) is nothing but
ln |f ′(x(t))|) are very small (i.e. weak intermittency) one has
Kσ=λ+O(σ/1).

The interesting situation happens for strong intermittency
when there are alternations of positive and negativeγ during
long time intervals: this induces a dramatic change for the
value ofKσ . Numerical results on intermittent maps (Pal-
adin et al., 1995) show that the same system can be regarded
either as regular (i.e.λσ<0), when the same noise realiza-
tion is considered for two nearby trajectories, or as chaotic
(i.e.Kσ>0), when two different noise realizations are con-
sidered. We can say that a negativeλσ for some value of
σ in not an indication that “noise induces order”; a correct
conclusion is that noise can induce synchronization.
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