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Abstract. We show how a general formulation of the  The average effect on the varialdg(r) of an infinitesimal
Fluctuation-Response Relation is able to describe in detaiperturbationsf(z) in Eq. (1), i.e.Q(X)—Q(X) + §f(¢), can
the connection between response properties to external pebe written in terms of the response matR; (¢). If 5f()=0
turbations and spontaneous fluctuations in systems with fador <0 one has:
and slow variables. The method is tested by using the 360- t
variable Lorenz-96 model, where slow and fast variables aréX; (t) = Z/ Rij(t — t)8f;(t)dt’ 2
coupled to one another with reciprocal feedback, and a sim- j 70
plified low dimensional system. In the Fluctuation-Responseyhere R;;(t) is the average response of the varialileat
context, the influence of the fast dynamics on the slow dy-time s with respect to a perturbation af; at time 0.
namics relies in a non trivial behavior of a suitable quadratic The basic point is, of course, how to expréds (1) in
response function. This has important consequences for thgyyms of correlation functions of the unperturbed system.
modeling of the slow dynamics in terms of a Langevin equa-The answer to this problem is the issue of the Fluctuation-
tion: beyond a certain intrinsic time interval even the optimal Response theory. This field has been initially developed in
model can give just statistical prediction. the context of equilibrium statistical mechanics of Hamilto-
nian systems; this generated some confusion and mislead-
ing ideas on its validity. As a matter of fact, it is possible
1 Introduction to show that a generalized FRR holds under rather general
hypotheses (Deker and Haake, 1975; Falcioni et al., 1990):
One important aspect of climate dynamics is the study of thethe FRR is also valid in non Hamiltonian systems. It is in-
response to perturbations of the external forcings, or of thderesting to note that, although stochastic and deterministic
control parameters. In very general terms, let us consider theystems, from a conceptual (and technical) point of view,

symbolic evolution equation: are somehow rather different, the same FRR holds in both
cases, see Appendix A. For this reason, in the following, we

aX — Q(X) (1) will not separate the two cases. In addition, a FRR holds

dt also for not infinitesimal perturbation (Boffetta et al., 2003).

where X is the state vector for the system, a@dX) rep- From many aspects, the FRR issues in climate systems are

resents complicated dynamical processes. As far as climatéther similar to those in fluids dynamics: we have to deal

modeling is concerned, one of the most interesting properw'th non Hamiltonian and non linear systems whose invari-

ties to study is the so-called Fluctuation-Response relatiorf 1t Méa@sure is non Gaussian (Kraichnan, 2000). On the other

(FRR), i.e. the possibility, at least in principle, to understandand. it is obviously impossible to model climate dynamics

the behavior of the system (1) under perturbations (e.g. 6.\/vith equations obtaineq fro.m first principles, so fcypically it
volcanic eruption, or a change of the €Eoncentration) in Is necessary to work with simple raw models or just to deal

terms of the knowledge obtained from its past time historyVith experimental signals (Ditlevsen, 1999; Marwan et al.,

(Leith, 1975, 1978; Dymnikov and Gritsoun, 2001). 2003). In addition, in climate problems (and more in gen-
eral in Geophysics) the study of infinitesimal perturbation

Correspondence td5. Lacorata is rather academic, while a much more interesting question

(g.lacorata@isac.cnr.it) is the relaxation of large perturbations in the system due to
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682 G. Lacorata and A. Vulpiani: FRR with fast and slow dynamics

fast changes of the parameters. Numerical simulations showlected. This fact is well highlighted by a non trivial be-
that, in systems with one single time scale (e.g. low dimen-havior of a suitable quadratic response function (Hohenberg
sional chaotic model as the Lorenz one), the amplitude ofand Shraiman, 1989). In the framework of the complexity
the perturbation is not so important, (see Appendix A, andin random dynamical systems, one has to deal with a simi-
Boffetta et al., 2003). On the contrary, in the case of dif- lar behavior: the relevant “complexity” of the system is ob-
ferent characteristic times, the amplitude of the perturbationtained by considering the divergence of nearby trajectories
can play a major role in determining the response, becausevolving with two different noise realizations (Paladin et al.,
different amplitudes may affect features with different time 1995). This has important consequences for the modeling of
properties (Boffetta et al., 2003). Starting from the semi-the slow dynamics in terms of a Langevin equation: beyond
nal works of Leith (1975, 1978), who proposed the use ofa certain intrinsic time interval (determined by the shape of
FRR for the response of the climatic system to changes irthe quadratic response function) even the optimal model can
the external forcing, many authors tried to apply this relationgive just statistical predictions (for general discussion about
to different geophysical problems, ranging from simplified the skills and the limits of predictability of climatic models
models (Bell, 1980), to general circulation models (North etsee Cane, 2003). The conclusions and the discussion of the
al., 1999; Cionni et al., 2004) and to the covariance of satel+esults obtained in this work are contained in Sect. 4, while
lite radiance spectra (Haskins et al., 1999). For recent workshe Appendices are devoted to some technical aspects.

on the application of the FRR to the sensitivity problem and

the predictability see Gritsoun and Dymnikov (1999), Grit- )

soun (2001), Gritsoun et al. (2002), Dymnikov and Gritsoun2 1 heoretical background on FRR

(2905)’ Dymnikov (2004), Abramov and Majda (2007), and For the sake of completeness we summarize here some
Gritsoun and Branstator (2007). In most works, the FRR ha%asic results regarding the FRR (see Appendix A for
been invoked in its Gaussian version, see below, which ha ochnical details). Let us consider a dynamical system

b_een used as a k!nd of approm_maﬂon, qftgn without a pre_X(O)—>X(t)=U’X(O) whose time evolution can even be not
cise idea of its limits of applicability. In principle, according

to Lorenz (1996), one has to consider two kinds of Sens:i,[iv_completely deterministic (e.g. stochastic differential equa-

ity: to the initial conditions (first kind) and to the parameters tions), with statesy Pelongmg FO aN-dlmen5|pnaI _vector
. . space. We assume: a) the existence of an invariant proba-
(e.g. external forcing) of the system (second kind). On the,

bility distribution p(X), for which some “absolute continu-

other hand, if one considers just infinitesimal perturbations,.. . . . i
it is possible to describe the second kind problem in terms ofty. type conditions are required (see Appendix A); b) the

the first one. Unfortunately, this is not true for non infinitesi- g:ig\r/]v%) character of the system (from which its ergodicity
mal perturbatlons. . At time =0 we introduce a perturbatiofiX (0) on the

In this paper we study, in the FRR framework, systems . N

. s variable X (0). For the quantitys X;(¢), in the case of an
with more than one characteristic time. In Sect. 2 we recall

the theoretical basis of the FRR issue. In Sect. 3 we describiinitesimal perturbatiodX (0)=(5X1(0) ---6Xy(0) one

the analysis we have performed on two dynamical systems(.)btams:
The first one, is a model introduced by Lorenz (1996), whichsx, () = Z Rij (18X ;(0) 3)
contains some of the relevant features of climate systems, 7

i.e. the presence of fast and slow variables (see Fraedrich, ) ) )
2003, for a discussion about short and long-term propertie¥/here the linear response functions (according to FRR) are
of complex multiscale systems like the atmosphere). We con-
aln p(X)
= Xi(t) —/— . (4)
t=0

sider, at this regard, the problem of the parameterization ofr;; (1) = X
J
[h the following{(()) indicates the average on the unperturbed

the fast variables via a suitable renormalization of the param-
eters appearing in the slow dynamics equations, and the add
tion of a random forcing. The second one is a very simplifiedSystem whilé)) indicates the mean value of perturbed quan-
system consisting, basically, of a slow variable which ﬂuctu—tities T,he operating definition d; (1) in numerical simu-
ates around two states, coupled to fast chaotic variables. Th tioﬁs is the following. We perturllge the variable at time
specific structure of this system suggests a modeling of thef:t0 with a small pertu.rbation of amplitudsX ; (0) and then

slow variable in terms of a stochastic differential equa_tlo_n'evaluate the separation compon&ki (¢ 1o) between the two

i : . raj ri ndX’(¢) which are integr re-
the correlation functions of the slow (fast) variables have, a?t gjectoriesX (1) and X'(r) ch are integrated up to a pre

least, a qualitative resemblance with response functions tscrlbed tlmal.:toJrA.t' At t!mEtztl' the v_arlabIer of the
R eference trajectory is again perturbed with the samg0),
perturbations on the slow (fast) degrees of freedom. In ad-
dition, although the average response of a slow variable to  1p  dynamical system is mixing if, for r— o0,
perturbations of the fast components is zero, the influence r (U’ X)g(X))— (f(X))(g(X)), where the average is over

of the fast dynamics on the slow dynamics cannot be nethe invariant probability distribution anfl andg are L, functions.
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and a new sampléX (¢|r1) is computed and so forth. The the (typical) correlation functions, at large time delay, have
procedure is repeated>>1 times and the mean response is to relax to zero with the same characteristic time, related to
then given by: spectral properties of the operatowhich rules the time evo-
” lution of the probability density functio® (X, ¢):
1 X+ o) 3 .

R”(t)_M;W' 5P(X,t):LP(X,t). (6)

Usually, in non Hamiltonian systems, the shapg €X) is Usir_lg this resuI'F ina inn_d way, one has the apparently para-
not known, therefore relation (4) does not give a very detaileddox'(_:al conclgsmn that,_ in any kind of systems, all the_cor-
information. On the other hand the above relation shows that'€/ation functions, relative to degrees of freedom at differ-

anyway, there exists a connection between the mean respon?é‘t scales, relax .to zero with Fhe same gharactensuc time.
function R;; and some suitable correlation function, com- On the contrary, in systems with many different character-
puted in the unperturbed systems. istic times (e.g. fully developed turbulence), one expects a
In the case of multivariate Gaussian distribution whole hierarchy of times distinguishing the behavior at dif-
In p(X):—% Zi,j ai; X: X j+const where{a;;} is a positive ferent scales (Frisch, 1995). The paradox is, of course, only

symmetric matrix, the elements of the linear response matrip@PParent since the above argument is valid just at very long
can be written in terms of the usual correlation functions,t'mes’ I.e. much longer than the longest characteristic time,
Cir=(X; () X1 (0))/(X; X1), as: and therefore, in systems with fluctuations over many differ-
l ' R ent time-scales, this is not very helpful.
Rij(h) = Y aj{Xi(0X,(0)) (5)
k 3 Responseof fast and slow variables

One important nontrivial class of systems with a Gaussian . .
invariant measure is the inviscid hydrodynarijashere the Systems with a large number of comp'onents and/or with
Liouville theorem holds, and a quadratic invariant exists many t|me_ scale_s_, €.g. c_Ilmate dynamics models, presgnt
(Kraichnan, 1959; Kraichnan and Montgomery, 1980: Bohrclear practical difficulties if one wants to understand their
et al., 1998). Sometimes in the applications, in absence c).pehavior in detail. Even using modern supercomputers, it

detailed information about the shapegfformula (5) is as- Is not possible to simulate all the relevant scales of the cli-
sumed to hold to some extent. Numerical studies of simpli-mate dynamics, which involves processes with characteris-

fied models which mimic the chaotic behavior of turbulent UC Imes ranging fr_om da_lys (atmospher_e) (F200° years
fluids show that, since that stationary probability distribution (d6€P 0céan and ice shields), see Majda et al. (2005) and
is not Gaussian, Eq. (5) does not hold. On the other hand, th¥@da and Wang (2006). _ o
correlation functions and the response functions have similar FOr the sake of simplicity, we consider the case in which
quantitative behavior. In particular, in fully developed tur- the state variables evolve over two very different time scales:
bulence, as one can expect on intuitive ground, one has thad X
the times characterizing the responses approximate the char;
acteristic correlation times (Biferale et al., 2002; Boffetta et 1
al., 2003). This is in agreement with numerical investigation il -0(Xs, X ) (8)
(Kraichnan, 1966) at moderate Reynolds number of the Di- €
rect Interaction Approximation equations, showing that, al-where X; and X ¢ indicate the slow and fast state vectors,
thoughR;; (1) is not exactly proportional to the autocorrela- respectively,e <1 is the ratio between fast and slow char-
tion function C;;(r), if one compares the correlation times acteristic times, and bothandg are O(1). A rather general
tc(k;) (e.g. the time after which the correlation function be- issue is to understand the role of the fast variables in the slow
comes lower than/R) and the response timg (k;) (e.g.the  dynamics. From the practical point of view, one basic ques-
time after which the response function becomes lower tharfion is to derive effective equations for the slow variables,
1/2), the ratiozc (k,)/tr (k) remains constant through the €.g. the climatic observable, in which the effects of the fast
inertial range. In the turbulence contex; indicates the  variables, e.g. high frequency forcings, are taken into account
Fourier component of the velocity field corresponding to aby means of stochastic parameterization. Under rather gen-
wave vectork; . eral conditions (Givon et al., 2004), one has the result that, in
We would like briefly to remark a subtle point. From a the limit of smalle, the slow dynamics is ruled by a Langevin
rather general argument (see Appendix B), one has that afquation with multiplicative noise:

=f(Xs, Xy) ("

2There exist also inviscid hydrodynamic systems with non dﬁ = feif(X;) +0(X5)9 9)
quadratic conservation laws, and, therefore, non Gaussian invariant
measure. Such cases can have relevance in the statistical mechanigbere n is a white-noise vector, i.e. its compo-
of fluids (Pasmanter, 1994). nents are Gaussian processes such thatt))=0 and

www.nonlin-processes-geophys.net/14/681/2007/ Nonlin. Processes Geophys., 14, 681-694, 2007
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Fig. 3. Lorenz-96 model: autocorrelatiofi;, (r) (dashed line)
of the cumulative variable; (+) compared to the autocorrelation
Cri (t) of xi(¢) (full line).

Fig. 1. Lorenz-96 model: autocorrelatiofi;; () (full line) and
self-responseR ;; (¢) (+) of the fast variabley ;(¢) (k=3, j=3).
The statistical error bars oR;;(¢) are of the same size as the
graphic symbols used in the plot.

scale approach: the Lorenz-96 model (Lorenz, 1996) and a

1 ' ' ' ' double-well potential with deterministic chaotic forcing.
0.8 | )
3.1 The Lorenz-96 model
06 f :
= First, let us consider the Lorenz-96 system (Lorenz, 1996),
< 04t 1 . L S
& introduced as a simplified model for the atmospheric circula-
S 02¢t E tion. Define the setx; (1)}, for k=1, ..., Ny, and{y; ; (1)},
& [ for j=1,..., N;, as the slow large-scale variables and the
0 Y fast small-scale variables, respectively (beiNg=36 and
02} : i N;=10). Roughly speaking, thi}'s represent the synop-
: tic scales while theyy ;}'s represent the convective scales.
04y ‘ ‘ ‘ ‘ C ] The forced dissipative equations of motion are:
0 0.5 1 1.5 2 2.5
t dxy N
— = —xp_1(xp_2 — x —vxy+ F+c i (10
o k—1(Xk—2 — Xk41) k 1;)%,/ (10)
Fig. 2. Lorenz-96 model: autocorrelatiafiy (z) (full line) and
self-respons&y (), with statistical error bars, of the slow variable dyy ;
x4 (1) (k=3). Tl —cbyx, j+1(Vk, j+2 — Yk, j—1) — cvyk,j +cixe (11)

where: F=10 is the forcing termy=1 is the linear damping

(ni(Hn;("))=8;;8(t—t").  Although there exist general coefficient,c=10 is the ratio between slow and fast charac-
mathematical results (Givon et al., 2004) on the possibilityteristic times,,=10 is the relative amplitude between large
to derive Eq. (9) from Egs. (7) and (8), in practice one hasscale and small scale variables, ané-c/b=1 is the cou-
to invoke (rather crude) approximations based on physicapling constant that determines the amount of reciprocal feed-
intuition to determine the shape &f ando (Mazzino et  back.
al.,, 2005). At this regard, see also the contribution to the Let us consider, first, the response properties of fast and
volume by Imkeller and von Storch (2001) about stochasticslow variables, see Figs. 1 and 2.
climate models. For a more rigorous approach in some In Fig. 1, the autocorrelatiorC;;(s) and self-response
climate problems see Majda et al. (1999, 2001) and Majdar;(¢) refer to the fast variabley, ;(¢), with fixed k and ;.
and Franzke (2006). It is well evident how, even in absence of a precise agree-

In the following, we analyse and discuss two models ment between autocorrelations and self-response functions
which, in spite of their apparent simplicity, contain the ba- (due to the non Gaussian character of the system), one has
sic features, and the same difficulties, of the general multi-that the correlation of the slow (fast) variables have at least a

Nonlin. Processes Geophys., 14, 681-694, 2007 www.nonlin-processes-geophys.net/14/681/2007/
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Fig. 4. Lorenz-96 model: time signal sample of the slow vari- g4 5 | orenz-96 model: PDFs of the cumulative variabje
ablexy (1) (k=3) for the deterministic model (full line) and for the (k=3), see definition in the text for the two cases, for the deter-

stochastic model (dashed line). For clarity, the two signals haveninistic model (full line) and the stochastic model (dashed line).
been shifted from each other along the vertical axis.

qualitative resemblance with the response of the slow (fast)
variables themselves.

The structure of the Lorenz-96 model includes a rather nat-
ural set of quantities that suggests how to parameterize the 0.1
effects of the fast variables on the slow variables, for each —,
k. Let us indicate witmkzzy-:"l Yk, j the term containing &
all the N; fast terms in the equations for th& slow modes.

In the following, we will see that, replacing the determinis- 0oL ]
tic terms{zx}'s in the equations for théx;}'s with suitable

stochastic processes, one obtains an effective model able to

reproduce the main statistical features of the slow compo- 0.001 I ) ) o
nents of the original system. -10 5 0 5 10 15

It's worth-noting, from Fig. 3, thaCy (r) andC, (1), the X

autocorrelation of the cumulative variakdg(z), are rather

close to each other. This suggests thdt) must be corre- _ _

lated tox;(¢), in other words, the cumulative effects of the Fig- 6. Lorenz-96 model: PDFs of the slow variablg (k=3) for

N; fast variablesy ;(r) onx;(7) are equivalent to an effec- the deterministic model (full line) and the stochastic model (dashed
J J P

tive slow term, proportional te (¢). line).
We look, therefore, for a conditional white noise parame-

terization that takes into account this important information random term. In other words, we replace the: Z;\'il Vi)

g|ven_by tr?e sftfruc'Fure of th? Lor?nz-r?G TOdel e((jquanons. I‘erterms in Eg. (10) with stochastic processgslepending on
us write the effective equations for the slow modes as the slow variables:

dxy , ,
T = ez = X)) — O Vs A (F 4 F) fc2 (12)  dx o 1(s — X)) — x4 F G 13)
wheren; are uncorrelated and normalized white-noise terms.
Some authors, Majda et al. (1999, 2001) and Majda andvhere
Franzke (2006), using multiscale methods, have obtained ef-
fective Langevin equations for the slow variables of systemstx = = (—v'xx + F' + cank) (14)
having the same structure as the Lorenz-96 model. 1

Basically we can say that, in the effective model for the with ¢1 is a new coupling constant. We notice that Eq. (13)
slow variables, one parameterizes the effects of the fashas the same form of Eq. (10). With a proper choice/of
variables with a suitable renormalization of the forcing, F’ andcz in Eqg. (12),v'=-0.3, F'=0.25, ¢»=0.3, which
F— F+F’, of the viscosityv—v+v’, and the addition of a  impliesc1=0.25 in Eq. (13), one can reproduce the statistics

www.nonlin-processes-geophys.net/14/681/2007/ Nonlin. Processes Geophys., 14, 681-694, 2007
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Fig. 7. Lorenz-96 model: autocorrelatiofiy;(¢) (full line) and Fig. 8. Lorenz-96 model: quadratic cross-response function

self-response&y (t), with statistical error bars, of the slow variable Rs(q)(t) for the deterministic model (full line), for the stochastic

xy (t) for the stochastic model. model when the slow variables evolve with the same noise realiza-
tion for all components except one (dashed line), and when the slow

. ) variables evolve with a different noise realization for every compo-
of x andz to a very good extent, see at this regard Figs. 4,nent (dotted line).

5 and 6. Of course the above described parameterization of

the fast variables is inspired to the general “philosophy” of

the Large-Eddy Simulation of turbulent geophysical flows atevolution oféx (¢) as difference of two trajectories obtained
high Reynolds numbers (Moeng, 1984; Moeng and Sullivan,with two different realizations of thg;}'s. Itis worth stress-

1994; Sullivan et al., 1994). ing that the behavior ofx(¢) under two noise realizations
The FR properties of the stochastic Lorenz-96 slow vari-can be very different from the behavior & (t) under the
ables are reported in Fig. 7. same noise realization (see Appendix C). This aspect will be

Let us come back to the response problem. Of course theonsidered again in the next section.
mean response of a slow variable to a perturbation on a fast
variable is zero. However, this does not mean that the effecB.2 A simplified model
of the fast variables on the slow dynamics is not statistically

relevant. Let us introduce the quadratic response,ofy N order to grasp the essence of systems with fast and slow
with respect to arinfinitesimalperturbation ony ;(0), for variables, we discuss now a toy climate model in which the
fixed k and: “climatic” variable fluctuates between two states. Consider a
12 four dimensional state vectqr=(qo, q1, g2, ¢3) Whose evo-
» [SXk(t)z] lution is given by:
ki 8yr.; (0 dqo
Y. ©) e 2VHgo — g5 + cq1 (17)
Considered that in all simulations the initial impulsive per-
turbations on they ; is kept constantdy; ;(0)=A, with dg1 1
A<<(y,f’/>l/2, it is convenient to take the average of Eq. (15) ;= g[—UL (91— q2)] (18)
over allj’s, at a fixedk, and introduce the quantity:
dgo 1
@ AN 5 = slmnastria— g2l (19)
R 1) == R ®) (16)
e 995 _ 219192 — brga) (20)
. . — = zlq192 — bLg3
where withs and f we label the slow and fast variables, re- dt g L4

spectively. In the case of the Lorenz-96 system, allythe

variables, at fixedk, are statistically equivalent, and have This four equation system will be named the deterministic

. . ) _ @) o . DW model. The subsystem formed by Egs. (18), (19) and
identical coupling withr, so thatR, " (r)/A coincides with 50y js nothing but the well-known Lorenz-63 model (Lorenz
R,(g)(t). We report in Fig. 8 the behavior da‘s(;{)(t), for both 1963), in which the constar has the function of rescal-
Egs. (10) and (13). As regards to the stochastic model, théng the characteristic time. In absence of coupling@) be-
analogous of Eqg. (16) is defined as follows. One studies théweengg andgs, the unforced motion equation holds for the

Nonlin. Processes Geophys., 14, 681-694, 2007 www.nonlin-processes-geophys.net/14/681/2007/
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do(t)
o

-4 L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500

t

Fig. 9. DW model with€=1: time signal sample of the slow vari-
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20 T T T T T T T T T

qa(t)

15 20 25 30 35 40 45 50

Fig. 10. DW model withe=1: time signal sample of the fast vari-

ablego(r). The ratio between fast and slow characteristic times isableq (t).

€~0.1 (see text).

slow variablex=gq:

d aV

il = —2J/Hx —x3
dt 0x

with

1
V(x)=H —vHx?+ Zx4 (21)
The system (21) has one unstable steady statg#0 cor-
responding to the top of the hill of heiglit, and two stable
steady states iny,==+(4H)Y/4, i.e. the bottom of the val-
leys. The presence of the coupling40) between slow and

a) the probability density function of the slow varialglg

b) the probability density function of the well-to-well tran-
sition timez,, p(t.);

¢) the slow and fast auto-correlation functions (ACF)
Cii(N=(q:(1)qi(0))/{g?), with i=0, 1;

d) the slow and fast self-response functions (ARF)
Rii(1)=84i(t)/34i(0), with i=0, 1;

e) the quadratic cross-response function of the slow vari-
ablego(r) with respect to the fast variabig (0).

fast variables can induce transitions between the two valleys. Of COUrseRou(7), i.. the mean response4j() to a per-
The parameters in Egs. (17), (18), (19), and (20) are fixedurbation ong1(0), is zero for trivial sSymmetry arguments.

to the following values:o; =10, r; =28, by =8/3, i.e. the

classical set-up corresponding to the chaotic regime for the

Lorenz-63 systemH =4, the height of the barrier;=0.5,

@)y
the coupling constant that rules the transition time scale offor () =

qo(t) between the two valleys; by settidg-1, the ratioec be-

tween fast and slow characteristic times, see Egs. (7) and (8f,

is 0(10°1).

Since the time scale of thg)(r) well-to-well transitions
may be considerably longer, depending gn,than the char-
acteristic time ofy1(¢), of order 0 (1), we refer togg as the
slow variable, or the low-frequency observable, angitas

On the other hand, the quadratic response:

[W] 172
8q1(0)

an give relevant physical information. Even in this case,
since in all simulations the initial perturbation @a(0) is
kept constantig1(0)=A<(¢?)Y/2, it is convenient to define

as mean quadratic response of the slow variaBlevith re-

spect to the fast variablg ] the quantityRS(;{) H)=A- Rg’l) ).

(22)

The long-time saturation level aﬁg) (¢) is of the order of the

the fast variable, or the high-frequency forcing, of the deter-distance between the two climatic states.

ministic DW model. It can be easily shown that, ie£0,

With the current set-up, slow and fast variable have char-

small perturbationsAgg around the two potential minima acteristic times which differ by an order of magnitude from
at +(4H)Y4 relax exponentially to zero with characteristic each other, while the statistics gf is strongly non Gaus-
time 1/4v/H. For sufficiently large values af, the climatic ~ sian. Because of the skew structure of the system, i.e. the
variablego(r) jumps aperiodically back and forth between fast dynamics drives the slow dynamics but without counter-
the two valleys, driven by the chaotic sigmalr), see Figs. 9  feedback, one expects that, at the least in the limit of large
and 10. time scale separation, the joint PDF can be factorized, with
The main statistical quantities investigated to analyse thean asymptotic PDF fajg of the formpg=K -¢~"ef(90) where
DW model are the following: K is a normalization constant.
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688 G. Lacorata and A. Vulpiani: FRR with fast and slow dynamics

1 T T T T T T T T T 1 T T T
08 1 0.8 1
o~ 06 . S o6 1
= ~ \
P i Rl
o S ]
~ 04T 1 S
= =
— Rl
o2t | 2 |
0
02 . . . . . . . . . 0.2 . . .
0 02 04 06 08 1 12 14 16 18 2 0 5 10 15 20

t t

Fig. 11. DW model withe=1: autocorrelatiorC11(¢) (full line) Fig. 13. DW model with¢=0.01, implyinge~10-3: autocorrela-

and self-responsky(t), with statistical error bars, for the fast vari- tion Coo(?) (dashed line), self-respon®&go(¢), with statistical error
ablegs. bars, and the correlation functian(z) predicted by the FRR (full
line) which is actually undistinguishable from the response.

1
' Since the statistics is far from being Gaussian, the “cor-
08 | rect’ correlation function which satisfies the FR theorem, for
06 the slow variable, has the form:
S | 9pe(qo, 91, 42, 43)
S c) = —<qo(r) : (23)
~ 04 990 =0
& 0z | where o (o, 91, g2, g3) is the (unknown) joint PDF of the
' state variable of the system at a fixedIn the limit of large
0 time separation, i.e. f@&— 0, one expects that the asymptotic
PDF po(qo, 91, g2, ¢3) is factorized:
_0_2 L L L L L L L L L _ —Ve ( )
o 2 4 6 8 10 12 12 16 18 20  Po(qo.q1,92,93) = Ke” "% pr(q1, g2, 43) (24)

t whereK is a normalization constant, ang is the PDF of
the Lorenz-63 state variable. Under this condition, the right
correlation function predicted by the FRR has a relatively

Fig. 12. DW model withe=1: AutocorrelationCqg(?) (full line .
g ¢ 00(0) ( ) simple form:

and self-respons®gg(t), with statistical error bars, for the slow

variablegg. 3 Vest (qo)

c) = <qo(r> ——
dqo0

) 25)

The FR properties of the deterministic DW model, for the =0
fast and slow variables, are shown in Figs. 11 and 12, respecvhereVer indicates the effective potential. For10~* (cor-
tively. responding t&€=1) we have checked numerically that the

The slow self-responskyg(z) initially decreases exponen- joint PDF is not yet factorized, while for a very small ra-
tially with characteristic time M/H (H=4), i.e. the same tio between the characteristic times;10~2 (corresponding
behavior of the relaxation of a small perturbation near theto €=10-2), the form (24) holds and, takinBest o V, we
bottom of a valley forc=0. Then, Roo(¢) relaxes to zero oObtain a very good agreement betwe(t) andC(t), see
much more slowly. It is natural to assume that this is due toFig. 13.
the long-time jumps between the valleys. It is well evident The cross-response properties of the DW model, measured
that Rgg behaves rather differently frofigo, while R11 and by the quantityR_gjqc)(t), are reported in Fig. 18. We will
C11 have, at least, the same qualitative shape. On the othegzonsider again later this issue when discussing the stochas-
hand, the autocorrelation (self-response) time scales of théc modeling. While the mean (slow-to-fast) cross-response
two variables differ from each other of a factolO, compat-  is null (not shown), its fluctuations grow with time. This
ibly with the fact that the ratio between fast and slow charac-means that an initial uncertainty on the fast variables has con-
teristic times iss~0.1, for the current set-ug&l). sequences for the predictability of the slow variable, since it

Nonlin. Processes Geophys., 14, 681-694, 2007 www.nonlin-processes-geophys.net/14/681/2007/
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Fig. 14. Comparison of the PDFs of the transition timeoetween ~ Fi9- 15 WNDW model: time signal sample of the slow variable
the two climatic states for the DW model (full line) and the WNDW 40(0)-
model (dashed line), f&f=1 (¢~0.1).

induces a mean separation growth between two initially close 0.6 1
“climatic” states of theyg variable. At small timesRs(;i) (1)

grows exponentially in time, i.e. it is driven by the chaotic
character of the fast variable while, at very long times, the 04}
well-to-well aperiodic jumps play the dominant role and the
growth speed eventually decreases to zero until saturation 03
setsin.

p(do)

02t
Let us now consider a stochastic model for the slow vari-

ablego(z), obtained by replacing the fast varialgle in the 01} f

equation forgg, with a white noise. One has a Langevin L

equation of the kind: 0,

dqo

=2 = 2VHqo(t) = g3 + o - ) (26)

. . . Fig. 16. PDFs of the slow variablgg for the DW model witfe=1,
where £(r) is a Gaussian process witkg(r)=0 and ;"4 1 (il line), the WNDW model (dashed line) and the DW

(EWE))=8(t—1"). We call Eq. (26) the WNDW model. ,qe| withe=10-2, i.e. c~10~3 (dotted line). In the limite—0,

The valuer=19.75 is determined by requiring that the PDFS the pDFs of the deterministic model and of the stochastic model
of the well-to-well transition times have the same asymptoticcollapse.

behavior (i.e. exponential tail with the same exponent), see
Fig. 14.

Let us notice that, in this case, because of the skew struc- We redefine, as already seen when discussing the stochas-
ture of the original system, the stochastic modeling is (rel-tic model approximating the Lorenz-96 system, the quadratic
atively) simple and, differently from the generic case, the cross-response functioRi})(t) as the root mean square
noise is additive. The time signagh(z) obtained from the  growth of the errosgo(¢) induced by two different noise re-
WNWD model is reported in Fig. 15. One observes strongalizations.
similarities in the long-time transition statistics with respect In Fig. 18, the behavior oRi‘“(z) for the deterministic
to the deterministic model, even though the PDFs of the slowDW system and its stochastic model is reported. The WNDW
variable are quite different from one another, see Fig. 16. model is not able to reproduce the two-time behavior of the

The FR properties of the WNDW model are reported deterministic model, mainly due to the impossibility to con-
in Fig. 17. The slow variable is distributed according to trol the amplitude of the initial perturbation. Because of that,
~e~V@)/K with K=0?/2, and the FR theorem prediction the error on the climatic state of the system saturate very
is verified, i.e. one has a good agreement betw&gp(y) and  quickly, as soon as the trajectory starts jumping between the
the correlation functiort (z). wells.
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Fig. 17. WNDW model: autocorrelatiofgg(¢) (dashed line), self-  Fig. 18. Quadratic cross-response functimﬁ‘})(t) for the DW
responseRoo(?), with statistical error bars, and the correlation func- model (full line) and the WNDW model (dashed line). The growth

tion C(r) predicted by the FRR (full line). rates ofR‘g’;) (r) for the DW model are compatible with the two char-

acteristic times of the system, while for the WNDW mo@éy;) ®)

. . . uickly saturates in a very short time.
4 Discussion and conclusive remarks q y y

In this paper we have presented a detailed investigation of th@jyergence of nearby trajectories evolving under two differ-
Fluctuation-Response properties of chaotic systems with fastnt nojse realizations. Therefore a good model for the slow

and slow dynamics. The numerical s_tudy has been performegynamiCS (e.g. a Langevin equation) must show a sensitivity
on two models, namely the 360-variable Lorenz-96 systemyq ihe noise.

with reciprocal feedback between fast and slow variables,

and a simplified low dimensional system, both of which are

able to capture the main features, and related difficulties, typappendix A

ical of the multiscale systems. The first point we wish to

emphasize is how, even in non Hamiltonian systems, a genseneralized FRR
eralized Fluctuation-Response Relation (FRR) holds. This

allows for a link between the average relaxation of pertur-|n this Appendix we give a derivation, under general rather
bations and the statistical properties (correlation functions)hypothesis, of a generalized FRR. Consider a dynamical sys-
of the unperturbed system. Although one has non Gaustem x(0)— x(t)=U’x(0) with statesx belonging to an-

sian statistics, the correlation functions of the slow (fast)dimensional vector space. For the sake of generality, we
variables have at least a qualitative resemblance with the reyill consider the case in which the time evolution can also
sponse functions to perturbations on the slow (fast) degreege not completely deterministic (e.g. stochastic differential
of freedom. The average response function of a slow variablequations). We assume the existence of an invariant proba-
to perturbations of the fast degrees of freedom is zero, nevemjlity distribution p (x), for which some “absolute continuity”
theless the impact of the fast dynamics on the slowly varyingype conditions are required (see later), and the mixing char-
components cannot be neglected. This fact is clearly highacter of the system (from which its ergodicity follows). Note
lighted by the behavior of a suitable quadratic response functhat no assumption is made oh

tion. Such a phenomenon, which can be regarded as a sort our aim is to express the average response of a generic
of sensitivity of the slow variables to variations of the fast gpservabled to a perturbation, in terms of suitable correla-
components, has an important consequence for the modelingon functions, computed according to the invariant measure
of the slow dynamics in terms of a Langevin equation. Evenof the unperturbed system. At the first step we study the
an optimal model (i.e. able to mimic autocorrelation and self-yehavior of one component af sayx;, when the system,
response of the slow variable), beyond a certain intrinsic timegescribed byp(x), is subjected to an initial (non-random)
interval, can give just statistical predictions, in the sense thatperturbation such that(0)— x(0)+AXo. This instantaneous

at most, one can hope to have an agreement among the stati§zk3 modifies the density of the system ini(x), related to
tical features of system and model. In stochastic dynamical

systems, one has to deal with a similar behavior: the relevant 3The study of an “impulsive” perturbation is not a severe limita-
“complexity” of the systems is obtained by considering the tion, e.g. in the linear regime from the (differential) linear response
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the invariant distribution by’ (x)=p (x— AXxg). We introduce
the probability of transition fronxg at time O tox at time
t, W(Xg, 0—x,t). For a deterministic system, with evolu-
tion lawx(z)=U"x(0), the probability of transition reduces to
W (X0, 0—X, 1)=8(Xx—U"Xp), wheres(-) is the Dirac’s delta.

691

chaotic deterministic dissipative system the above machin-
ery cannot be applied, because the invariant measure is not
smooth at all. Typically the invariant measure of a chaotic at-
tractor has a multifractal character and its Renyi dimensions
d, are not constant (Paladin and Vulpiani, 1987). In chaotic

Then we can write an expression for the mean value of thalissipative systems the invariant measure is singular, how-

variablex;, computed with the density of the perturbed sys-

tem:
<x,~(t)>/ - f f xip (X)W (X0, 0 = X, 1) dxdxo .  (AL)

The mean value aof; during the unperturbed evolution can
be written in a similar way:

<x,-(t)> = //x,-,o(xo)W(Xo,O—> X, 1) dX dXo . (A2)
Therefore, definingx;=(x;)’ —(x;), we have:

(1) = / / xi F(Xo, AXo) p(X0) W (X0, 0 — X, 1) dX dXo

= <x,~ (1) F(Xo, Axo)> (A3)
where
P, axg) = | 220 =50 20000 (nd)
P (Xo)

Let us note here that the mixing property of the system is re-
quired so that the decay to zero of the time-correlation func-
tions assures the switching off of the deviations from equi-

librium.

For an infinitesimal perturbatiatx(0) = (8x1(0) - - - 8x
(0)), if p(x) is non-vanishing and differentiable, the function
in Eqg. (A4) can be expanded to first order and one obtains:

8_x,~(t)=—z< LLYIC alnp(x) ><ij(0)
j Xj t=0
= Z R;;(1)8x,(0) (A5)
J
which defines the linear response
Rij(1) = —<x1 02 ";" ® > (A6)
xA/ t=0

of the variablex; with respect to a perturbation af,. One

can easily repeat the computation for a generic observablg, P(X.n=LPX.1).

A(X):

SA() = — Z<A(x( ) ———

J

aln p(X) (A7)

>5)Cj (O) .
t=0

For Langevin equations, the differentiability pfX) is

well established. On the contrary, one could argue that in a_

one understands the effect of a generic perturbation.

www.nonlin-processes-geophys.net/14/681/2007/

ever the previous derivation of the FRR is still valid if one
considers perturbations along the expanding directions. For
a mathematically oriented presentation see Ruelle (1998). A
general response function has two contributions, correspond-
ing respectively to the expanding (unstable) and the contract-
ing (stable) directions of the dynamics. The first contribution
can be associated to some correlation function of the dynam-
ics on the attractor (i.e. the unperturbed system). On the con-
trary this is not true for the second contribution (from the
contracting directions), this part to the response is very dif-
ficult to extract numerically (Cessac and Sepulchre, 2007).
In chaotic deterministic systems, in order to have a differ-
entiable invariant measure, one has to invoke the stochastic
regularization (Zeeman, 1990). If such a method is not feasi-
ble, one can use the direct approach by Abramov and Majda
(2007). For a study of the FRR in chaotic atmospheric sys-
tems, see Dymnikov and Gritsoun (2005) and Gritsoun and
Branstator (2007).

Let us notice that a small amount of noise, that is always
presentin a physical system, smoothengdlr and the FRR
can be derived. We recall that this “beneficial” noise has
the important role of selecting the natural measure, and, in
the numerical experiments, it is provided by the round-off
errors of the computer. We stress that the assumption on the
smoothness of the invariant measure allows to avoid subtle
technical difficulties.

Appendix B

A general remark on the decay of correlation
functions

Using some general arguments one has that all the (typical)
correlation functions at large time delay have to relax to zero
with the same characteristic time, related to spectral proper-
ties of the operatoE which rules the time evolution of the
P(X,1):

(B1)
In the case of ordinary differential equations
dXi/dt=Q;(X) i=1,---,N (B2)
the operatoL. has the shape
LP(X,1) = —Z e (Q (X)P(X, z)) (B3)

Nonlin. Processes Geophys., 14, 681-694, 2007
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For Langevin equations i.e. in Eq. (B2); is replaced by
Q;+n; where{n,;} are Gaussian processes withy; (r)>=0
and<n; (t)n;(t")>=2A,; ;j8(t —t'), one has
LPX.0) = = X g (QiX)P(X.1)) )
2

+ Y Aijaax PX 1)

Let us introduce the eigenvalués;} and the eigenfunc-
tions{y} of L:

Ly = gy .

Of courseyo=P;,, andap=0, and typically in mixing sys-
temsRe a; <0 fork=1, 2, .... Furthermore assuming that co-
efficient{g1, g2, ...} and{hy, ho, ...} exist such that functions
g(X) andh(X) are uniquely expanded as

(BS)

gX) = nglﬁk(X) , h(X) = thlﬁk(X) ) (B6)
k=0 k=0
so we have
Cof() =) gihi < Yf > ™', (B7)
k=1
where  C, r()=<g(X()h(X(1)>—<g(X)><h(X)>.

For “generic” functionsg and f, i.e. if they are not or-
thogonal toy1 so thatgi#0 andi1#0, at large time the
correlationC, ¢ (t) approaches to zero as

1
Co () ~e % | 1

.= . B8
|Re a1] (B8)
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where the evolution of the tangent vector is given by:

dz 32V (x(1))
dr 9x2
The quantityr, obtained in the previous way, although well
defined, i.e. the Oseledec theorem (Bohr et al., 1998) holds,
it is not always a useful characterization of complexity.

Since the system is ergodic with invariant probability dis-
tribution P(x)=C1e~V®/C2 whereCy is a normalization
constant and’>=02/2, one has:

2(1). (C3)

Ao = iMoo 2IN12(0)]
— iMoo 2 f5 82,V (x(¢'))dt’
—C1 [ 32,V (x)e”VW/C2 gx

= _% L3V (x))2e=V®/C2 gx < 0.

(C4)

This has a rather intuitive meaning: the trajecto(y) spends
most of the time in one of the “valleys” whered?, V (x) <0

and only short intervals on the “hills” whered?, v (x)>0,

so that the distance between two trajectories evolving with
the same noise realization decreases on average. The previ-
ous result for the 1-D Langevin equation can easily be gen-
eralized to any dimension for gradient systems if the noise is
small enough (Loreto et al., 1996).

A negative value of., implies a fully predictable process
only if the realization of the noise is known. In the case of
two initially close trajectories evolving under two different
noise realizations, after a certain tirilg, the two trajecto-
ries can be very distant, because they can be in two different
valleys. Foro—0, due to the Kramers formula (Gardiner,

2 . .
In some cases, e.g. very intermittent systems like thel990), one hag,~e*"/?", whereAV is the difference be-

Lorenz model at~166.07, Re «1=0 so the decay is not ex-
ponentially fast.

Appendix C

Lyapunov exponent in dynamical systemswith noise

In systems with noise, the simplest way to introduce the
Lyapunov exponent is to treat the random term as a time-
dependent term. Basically one considers the separation g
two close trajectories with the same realization of noise.
Only for sake of simplicity consider a one-dimensional ;; 4+ 1) = f'[x(¢), 1] 2(¢),

Langevin equation
dx 3V (x)
dr ax

wheren(t) is a white noise andf (x) diverges fof x | — oo,
like, e.g., the usual double well potentidl=—x2/2+x%/4.

+on, (C1)

tween the values df on the top of the hill and at the bottom
of the valley.

Let us now discuss the main difficulties in defining the no-
tion of “complexity” of an evolution law with a random per-
turbation, discussing a simple case. Consider the 1-D map

x(t+1) = flx@®),t]+ow(), (C5)

wherer is an integer and (¢) is an uncorrelated random pro-
cess, e.gw are independent random variables uniformly dis-
ibuted in[—1/2, 1/2]. For the largest LE.;, as defined in
C2), now one has to study the equation

(C6)

where f'=df/dx.

Following the approach in (Paladin et al., 19951ét) be
the trajectory starting at(0) andx’(¢) be the trajectory start-
ing fromx’(0)=x(0)+38x(0). Letdo=|5x(0)| and indicate by
71 the minimum time such that’(z1)—x(t1)|>A. Then, we

The Lyapunov exponent, , associated with the separation PUtx’(t1)=x(r1)+4x(0) and definer; as the time such that
rate of two nearby trajectories with the same realization of X’ (t1+72)—x(r1+712)|>A for the first time, and so on. In

n(t), is defined as
. 1
Ao = lim ZInjz()| (C2)
t—oo t

Nonlin. Processes Geophys., 14, 681-694, 2007

this way the Lyapunov exponent can be defined as

1 A
A==1n <—>
T )

(C7)
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