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Abstract. Amplitude modulation and packet formation of
Langmuir waves are commonly observed during a nonlinear
interaction between electron beams and plasmas. In this pa-
per, we briefly review the history of Langmuir wave packets
as developed by recent spacecraft observations and computer
simulations. New one-dimensional electrostatic Vlasov sim-
ulations are performed to study their formation processes. It
is found that the formation of Langmuir wave packets in-
volves both an incoherent turbulent process and a coherent
nonlinear trapping process. Existence of cold ions does not
affect nonlinear processes of the weak-electron-beam insta-
bility in which the ion distribution is hardly modified by the
excited Langmuir wave packets.

1 Introduction

Electron-beam-plasma interactions are one of the most fun-
damental processes in space plasmas. It is well known that
electron beam instabilities develop into nonlinear waves and
turbulence. Electron phase-space-density holes (e.g. Berk
and Roberts, 1967) or electrostatic solitary waves (Mat-
sumoto et al., 1994) are coherent nonlinear electrostatic
structures, while harmonic Langmuir waves and Langmuir
wave packets have an incoherent quasi-power-law wavenum-
ber spectrum which indicate a turbulent feature (Yoon et al.,
2003; Gaelzer et al., 2003; Umeda et al., 2003; Umeda, 2006;
Silin et al., 2007). The present study is aimed at the genera-
tion of amplitude-modulated Langmuir waves and Langmuir
wave packets which is called a Langmuir turbulence in space
plasmas.

The amplitude modulation and packet formation of Lang-
muir waves were commonly observed in self-consistent ki-
netic simulations of electron beam instabilities (Muschietti
et al., 1995, 1996; Akimoto et al., 1996; Matsukiyo et al.,
2004; Usui et al., 2005; Umeda, 2006; Silin et al., 2007).
Strongly modulated waveforms and packets of Langmuir
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waves were also observed in various regions of the magneto-
sphere, such as in the auroral ionosphere (Ergun et al., 1991;
Stasiewicz et al., 1996; Bonnell et al., 1997; Pottelette et al.,
1999; Lizunov et al., 2001), in the solar wind (Gurnett et al.,
1993; Bale et al., 1996; Kellogg et al., 1999b), in the electron
foreshock region (Kellogg et al., 1996, 1999a; Soucek et al.,
2005), and in the magnetotail (Kojima et al., 1997).

Several nonlinear theories were adopted to explain mech-
anisms for the amplitude modulation and packet formation
of Langmuir waves. The first is the parametric decay of
Langmuir waves into ion acoustic waves (e.g. Cairns and
Robinson, 1992; Cairns et al., 1998; Pottelette et al., 1999;
Matsukiyo et al., 2004; Soucek et al., 2005) or lower hy-
brid waves (e.g. Stasiewicz et al., 1996; Bonnell et al., 1997;
Lizunov et al., 2001). Note that Cairns et al. (1998) demon-
strated that electron-beam-driven Langmuir wave packets
observed in the magnetosphere lie well outside the region of
parameter space for which the modulational instability can
proceed.

For the Langmuir decay instability, the amplitude of pri-
mary Langmuir waves must be high enough to modify ion
distributions. The observations in the magnetosphere have
shown that the amplitude of Langmuir wave packets some-
times exceeds several hundred mV/m. The observed fre-
quency spectra also show apparent double peaks around the
electron plasma frequency with a small low-frequency com-
ponent (Kellogg et al., 1996; Bale et al., 1996; Soucek et al.,
2005), which indicates the Langmuir decay instability. On
the other hand, The GEOTAIL spacecraft observation in the
magnetotail has shown that the amplitude of Langmuir wave
packets is several hundredµV/m, which is too small for
the Langmuir decay instability. The computer simulations
have also demonstrated that amplitude-modulated Langmuir
waves with a very small amplitude can be generated dur-
ing a very-weak-electron-beam instability without ion dy-
namics (Akimoto et al., 1996; Usui et al., 2005; Umeda,
2006; Silin et al., 2007), which is consistent with the GEO-
TAIL observation. These observations and simulations sug-
gest that Langmuir wave packets with a small amplitude
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672 T. Umeda: Langmuir wave packets

Fig. 1. Time evolution of the wavenumber spectrum for Runs A and
B. The wave intensity is normalized bymeωpeVte/e.

and a large amplitude are generated by different mechanisms
with small amplitude packets generated by electron dynam-
ics while large amplitude packets likely involve ion dynamics
as well.

A possible mechanism for the formation of small-
amplitude Langmuir wave packets is the “kinetic localiza-
tion” (Muschietti et al., 1995, 1996), in which Langmuir
waves are modulated in space due to electron bunching in
the position-velocity phase space. Later, this mechanism de-
veloped into the nonlinear trapping theory based on particle-
in-cell simulation results (Akimoto et al., 1996; Usui et al.,
2005). In the nonlinear trapping theory, Langmuir waves are
modulated in space due to nonlinear trapping of electrons by
the electrostatic potential of the Langmuir waves. However,
a recent Vlasov simulation of a very-weak-electron-beam in-
stability has demonstrated that Langmuir waves are not di-
rectly modulated by the nonlinear trapping but are modulated
by nonlinear interaction between the most unstable primary
Langmuir mode and its sideband modes (Umeda, 2006).
The amplitude-modulated Langmuir waves have a broadband
wavenumber spectrum, which indicates a turbulent feature
rather than a coherent feature. The electron phase-space
distribution function of the amplitude-modulated Langmuir
waves also shows a strong modification of untrapped back-
ground electrons but not any phase-space vortex associ-
ated with trapped beam electrons, implying that it is mostly
the untrapped background electrons, not the trapped beam
electrons, which are responsible for the wave modulations
(Umeda, 2006; Silin et al., 2007).

2 Simulation with periodic boundary

To demonstrate whether the coherent nonlinear trapping pro-
cess can really generate the spatial modulation of Langmuir
waves, a one-dimensional Vlasov simulation has been carries
out (Umeda, 2006). The Vlasov simulation code uses a stan-
dard time-advance scheme call the splitting scheme (Cheng

and Knorr, 1976), while a conservative and non-oscillatory
cubic polynomial interpolation scheme (Umeda et al., 2006)
is adopted for stable time-integration of phase-space distri-
bution functions. The simulation domain is taken along an
ambient magnetic field. We assume that a very weak elec-
tron beam is drifting against the major background electrons
and background ions. The density ratio of the beam compo-
nentR=nb/(ne+nb) is set as 0.1%, where the subscripts “b”
and “e” represent beam electrons and background electrons,
respectively. We assume that the beam and background elec-
trons have the equal thermal velocityVte=Vtb=1.0. The total
electron plasma frequency is assumed asωpe=1.0. The beam
drift velocityVd is set as 8.0Vte. Mobile ions are also evolved
in order to confirm the absence of consequences of ion dy-
namics on the weak-beam instability. The ion-to-electron
mass ratio is set asmi/me=1836, and the ion-to-electron
temperature ratio is set asTi/Te=0.1, where the subscripts
“ i” represents background ions. The density of ions is
given by ni=ne+nb. The number of spatial grid cells is
Nx=16 384. The number of velocity grid cells isNvx =4096
over a velocity range fromvmax=24.0Vte to vmin=−16.0Vte

for electrons and fromvmax=13.0Vt i to vmin= − 13.0Vt i for
ions. The grid spacing is equal to1x=0.4λe (λe≡Vte/ωpe),
and the time step is equal toωpe1t = 0.005. It is noted that
ǫ0=1 is used for simplicity. We imposed the open bound-
ary condition in thevx direction and the periodic boundary
condition in thex direction. Here we show two simulation
results; One is started with a coherent-single-wave-mode per-
turbation (Run A), and another is started with a white-noise
perturbation (Run B).

Figure 1 shows time evolution of the wavenumber spec-
trum for Runs A and B. The wave intensity is normalized

by meωpeVte/e=
√

nemeV
2
te and is plotted on a log scale. In

Run A, an initial perturbation is imposed only at the most
unstable wavenumber in order to achieve the coherent non-
linear trapping by a single sinusoidal wave mode. The most
unstable primary Langmuir mode (kxλe∼0.144) grows from
the imposed initial noise level (∼10−9), while other unstable
modes grow from the round-off noise level of the double-
precision computation (∼10−15). The primary mode satu-
rates atωpet∼1250, while there appear an upper and a lower
sideband mode atkxλe∼ 0.135 and 0.154, respectively, from
ωpet∼2000. Although we have started Run A with a sin-
gle mode perturbation, the final wavenumber spectrum (at
ωpet=4000) has become broadband with several discrete
structures.

In contrast to Run A, there appears a broadband wavenum-
ber spectrum fromωpet∼1200 in Run B, because all the
unstable modes grow from the same initial noise level of
∼10−9. Although the two simulation runs have been started
with different initial wavenumber spectra, the resulting final
wavenumber spectra look similar to each other. The final
spectrum in Run B also shows a broadband feature with sev-
eral discrete peaks at quasi-random wavenumbers. There are
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also several differences. Firstly, the most dominant mode in
Run B (kxλe∼0.142) is not the most unstable primary mode
(kxλe∼0.144). Secondly, the wavenumber spectra have dis-
crete peaks at different wavenumbers. Thirdly, the genera-
tion of the sideband modes is not apparent in Run B.

The spatial modulation of Langmuir waves in Run A is
likely due to the discrete structures in the wavenumber spec-
trum. Does the nonlinear trapping process generate the spa-
tial modulation of Langmuir waves? To answer this question,
we show the energy history of the total electric field for Run
A in the top panel of Fig. 2. We also show the histories of
wave intensity for primary mode (kxλe=0.144), and the most
dominant two sideband modes (kxλe= 0.135 and 0.154) in
the middle panel. The electric field amplitude and energy
are normalized bymeωpeVte/e andnemeV

2
te=m2

eω
2
peV

2
te/e

2,
respectively. One can see that there exist two stages in
Run A. In the first stage, the primary mode linearly grows
and saturate atωpet∼1250. After the saturation of the
primary mode, the total electric field energy oscillate at
0.5ωb, whereωb is the bounce/trapping frequency given by
ωb≡

√
ekL|Ex(kL)|/me∼0.048ωpe. HerekLλe∼0.144 and

|Ex(kL)|∼0.016meωpeVte/e denote the wavenumber and
wave amplitude of the primary mode, respectively. However,
there is no spatial modulation of Langmuir waves, imply-
ing that the spatial amplitude modulation process is different
from the conventional nonlinear frequency shift by the trap-
ping process. As seen in Fig. 2b, the growth rates of the
two sideband modes slightly change after the saturation of
the primary mode. This is because the velocity distribution
function is modified by nonlinear trapping by the primary
mode. However, the upper and lower sideband modes con-
tinue to grow linearly even after the saturation of the primary
mode.

The saturated primary mode keeps almost the same ampli-
tude untilωpet∼2000, while the two sideband modes con-
tinuously grow. The second stage starts when the amplitude
of the sideband modes reaches a certain level (∼10−2.5) at
which the sideband modes can modify the velocity distri-
bution. During the growth and saturation of the sideband
modes, the primary mode becomes unstable again and is am-
plified. The interaction between the primary and sideband
modes results in the strong spatial modulation of Langmuir
waves. The spatial scale of the amplitude modulation is given
by 2π/1k, and the wavenumber difference between the pri-
mary and sideband modes can be estimated as1k∼2ωb

vp

(Umeda, 2006), wherevp denotes the phase velocity of the
primary mode. In the present simulation, we can obtain a
more exact value of the bounce frequency asωb/ωpe∼0.048,
because the coherent nonlinear trapping is achieved by the
single mode perturbation. The wavenumber difference is ob-
tained as1kλe∼0.01.

Figure 2a and b suggest that the spatial modulation of
Langmuir waves is not directly generated by the nonlinear
trapping. However, the nonlinear trapping does play a role to

Fig. 2. Nonlinear evolution of the beam instability for Run
A: (a) The energy history of the total electric field normalized
by nemeV

2
te=m2

eω
2
peV

2
te/e

2. (b) The histories of wave inten-
sity for waves modes atkxλe= 0.144, 0.135, and 0.154 normal-
ized by meωpeVte/e. (c) The x−vx phase-space electron den-
sity atωpet=1250. (d) Thex−vx phase-space electron density at
ωpet=3500.

“filter” the sideband modes. It is well known that the weak-
electron-beam instability is unstable over a wide wavenum-
ber range aroundkL and that the most unstable primary
Langmuir mode grows fastest and saturates earliest. By the
saturation of the primary mode, there appear vortices in the
position-velocity phase space of electrons as seen in the bot-
tom panel of Fig. 2. The velocity space around the phase ve-
locity of the primary modevp is stabilized by a strong nonlin-
ear trapping in the phase space. As a result, unstable modes
with phase velocities inside the trapping velocity range are
stabilized by the nonlinear trapping, while other modes with
phase velocities outside the trapping velocity range can con-
tinue to grow. In other words, the nonlinear trapping process
works as a bandstop filter (Umeda, 2006).
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Fig. 3. Nonlinear evolution of the beam instability for Run
B: (a) The energy history of the total electric field normalized
by nemeV

2
te=m2

eω
2
peV

2
te/e

2. (b) The histories of wave inten-
sity for waves modes atkxλe= 0.144, 0.135, and 0.154 normal-
ized by meωpeVte/e. (c) The x−vx phase-space electron den-
sity atωpet=1250. (d) Thex−vx phase-space electron density at
ωpet=3500.

Does this story apply to the realistic case with a broadband
initial noise? In Fig. 3, we show the temporal development of
the weak-beam instability for Run B, in which a white noise
with uniformly-distributed random phases is imposed as an
initial perturbation. The histories of the total electric field,
wave intensity for waves modes atkxλe= 0.144, 0.135, and
0.154, and thex−vx phase-space electron density are shown
with the same format as Fig. 2. The two-step evolution of
the weak-beam instability seen in Run A is not so apparent
in Run B, because many wave modes are excited in a wide
wavenumber range. The primary mode (kxλe= 0.144) sat-
urates earlier (ωpet∼1100) at a lower saturation level. The
other two modes (kxλe= 0.135 and 0.154) also saturate at
ωpet∼1100 with the primary mode. Linearly unstable wave
modes around the primary mode saturate with the primary

mode in Run B. Thus the excitation of sideband modes is
not identified. Note that several simulation runs with differ-
ent random phases of the initial white noise are performed to
examine the final wavenumber spectrum. The results show
that the final wavenumber spectrum in each run has discrete
peaks at different wavenumbers. This means that it depends
on the initial perturbation which modes dominate in the final
wavenumber spectrum.

These results show that the sideband interaction is appar-
ent in the coherent weak-beam-plasma interaction but not in
the incoherent case. Then, what is the role of coherent non-
linear trapping in the weak-beam instability with a broadband
initial noise? In the bottom panel of Fig. 3, we show the
position-velocity phase space of electrons atωpet=1250. It
is obvious that the saturation of the primary mode involves
the phase-space vortices. However, the trapping velocity
range in Run B is wider than that in Run A because of the ex-
citation of various unstable wave modes. To understand the
saturation process we show in Fig. 4 the temporal develop-
ment of the velocity distribution function averaged overx for
Run B. Atωpet=1000 there is no modification of the veloc-
ity distribution function. However there exists spatial mod-
ulation of wave amplitude due to the initial white noise (not
shown). Atωpet=1250 we found the plateau formation in a
narrow velocity range around the phase velocity of primary
mode. However, it is obvious that wave modes with a phase
velocity vp/Vte∼ 6 and 8 are unstable. The velocity dis-
tribution is strongly modified atωpet=1500. However, the
velocity distribution is still unstable, and wave modes with a
higher phase velocity can be excited at a smaller wavenumber
which was not unstable in the linear stage. Atωpet=1750 we
found the plateau formation in a wide velocity range. How-
ever, there exists a positive gradient in the velocity distribu-
tion function, and thus wave modes with large wavenumbers
(vp/Vte<6) become unstable. Langmuir waves are excited
in a broadband wavenumber range by the modification of
velocity distribution function, which is similar to the side-
band interaction. Thus the coherent nonlinear trapping plays
a role in the generation of a turbulent (incoherent) spectrum.
However, there is not any coherent nonlinear structures is the
steady state as seen in Figs. 2d and 3d. Note that a quasi-
linear approach taken by Silin et al. (2007) is useful to un-
derstand which mode can grow in the nonlinear stage. How-
ever, neither linear nor quasilinear approaches can tell which
modes dominate in the final spectrum. In other words, the
linear and quasi-linear approaches cannot tell the exact satu-
ration level of each wave mode. The amplitude modulation
of Langmuir waves is very complex involving both coherent
nonlinear trapping and quasilinear modification of velocity
distribution function. Thus a self-consistent simulation is a
unique way to analyze the spatial scale of wave packets (e.g.
Silin et al., 2007).

Nonlin. Processes Geophys., 14, 671–679, 2007 www.nonlin-processes-geophys.net/14/671/2007/
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Fig. 4. Electron velocity distribution functions averaged overx at different times for Run B. The velocity is normalized byVte. The
distribution functions are normalized to unity.

3 Simulation with open boundary

We extend the one-dimensional simulation in the previous
section to a more realistic model (Run C). We adopted a
one-dimensional open system in which an electron beam is
injected into the system from a boundary while outgoing
plasmas are absorbed without reflection at boundaries (e.g.
Umeda et al., 2002). As the initial condition, we assume that
the background plasma exists uniformly in the simulation do-
main without the electron beam. When a computer simu-
lation is started, the electron beam is continuously injected
from the left boundary into the background homogeneous
plasma. The injected electron beam and the background elec-
trons form an unstable velocity distribution function. In the
present study, we inject the electron beam with a constant
flux. The background electrons and ions are assumed to be
continuous at the right boundary as if there is no boundary.
The background ions are also assumed to be continuous at
the left boundary, while the flux of background electrons at
the left boundary is modified to keep the charge neutrality.
We used the same simulation parameters as Run B to make a
direct comparison between the periodic and open systems.

The right panel of Fig. 5 shows the energy density of elec-
tric field |Ex(x, t)|2 for Run C. In the left and middle panels,
plots of the energy density of electric field for Runs A and
B are also shown as references. The magnitude is normal-
ized bynemeV

2
te=m2

eω
2
peV

2
te/e

2. Note that the entire simu-
lation domain is not shown in Fig. 5. In the present open
system where a very weak electron beam is continuously in-
jected from the boundary, the beam instability develops in
both space and time (e.g. Umeda et al., 2002). Initially,
the electron beam is injected into the unperturbed plasma,
making the velocity distribution function unstable. However,
the sudden injection of the electron beam at the onset also
generates an impulsive strong perturbation at a high level of
∼10−6, which is a much higher level than that of the initial
perturbation (∼10−10). Thus the weak-beam instability in
Run C saturates earlier (atωpet∼600) than in Run B.

There also exist other differences. In Runs A and B, wave
packets are observed in an almost random manner in both
space and time. The temporal waveform of the Langmuir
wave packets atx/λe∼2000 in Run C is similar to that in
Run B. On the other hand, the temporal waveform of the
Langmuir wave packets atx/λe=500∼1000 becomes quasi-
periodic fromωpet∼2400 in Run C. The period of the gen-
eration of wave packets ist∼450/ωpe, which is longer than
the ion plasma period, i.e.,t=2π

√
mi/me/ωpe∼270/ωpe,

implying the absence of ion dynamics. The nonlinear beam-
plasma interaction takes place uniformly in space in Runs
A and B, while the nonlinear interaction results in the for-
mation of a single Langmuir wave packet in a localized re-
gion close to the beam source (x/λe∼500) in Run C. The
wave packet propagates at the group velocity of the primary
Langmuir mode, which is much slower than the beam ve-
locity. Since the electron beam is continuously injected in
Run C, the free energy source is supplied to Langmuir waves
and positive gradient in the velocity distribution exists for a
longer time. Thus the amplitude of excited Langmuir mode
in Run C becomes much higher than in Runs A and B.

Figure 6 shows time evolution of the wavenumber spec-
trum for Run C. The wave intensity is normalized by

meωpeVte/e=
√

nemeV
2
te and is plotted on a log scale. We

found several discrete peaks atkxλe∼ 0.125, 0.144, and
0.154 in the wavenumber spectrum atωpet∼600. The sat-
uration level of these modes is∼10−2. Although this satu-
ration level is close to the saturation level in the runs with
periodic boundaries (Runs A and B), the wave amplitude in
Runs C and B (or A) is very different. The Langmuir waves
are uniformly excited in Runs A and B, while a single wave
packet is excited in a localized region in Run C. Since the
Fourier transformation of a spatially-localized wave packet
is taken in Fig. 6, the actual amplitude of the wave packet is
much higher (∼0.3meωpeVte/e).

The discrete structure in the wavenumber spectrum in Run
C is similar to that in the run with a uniform and coherent
initial perturbation (Run A), which is likely because the co-
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Fig. 5. Electric field energy density as a function of time and position for Runs (left) A , (middle) B, and (right) C. The electric field energy
density is normalized bynemeV

2
te.

Fig. 6. Time evolution of the wavenumber spectrum for Run C.
The wave intensity is normalized bymeωpeVte/e.

herent behavior of the beam-plasma interaction is enhanced
by a high noise level (∼10−6) due to the sudden injection of
electron beam. However, these modes are not dominant for
ωpet>1000. Other wave modes with a broader wavenumber
band appear inkxλe=0.14∼0.16 atωpet=1200. This may

correspond to the break of the first wave packet and the for-
mation of the second packet in the left panel of Fig. 5. The
amplitude of the wave packet exceeds 0.6meωpeVte/e but is
lower than 1.0meωpeVte/e, implying that the parametric in-
stabilities due to ion dynamics are not essential. The two-step
evolution of the weak-beam instability in Run C is similar to
that in Run A.

For ωpet>2000 we found three discrete peaks in the
wavenumber spectrum. It is unclear whether these are an
artifact of the present boundary condition or a real physics.
However, a typical wavenumber difference of the discrete
structure is about1kλe∼0.023 atωpet=2500, which corre-
sponds to the spatial scale length of wave packetsL/λe∼270.
From Fig. 5 the group velocity of the wave packets is es-
timated asvg∼0.6Vte. Thus a typical timescale of ampli-
tude modulation is estimated ast=L/vg∼450/ωpe, which
is consistent with the time interval of the wave packets at
x/λe=500∼1000. Forωpet>3000 we also found several
discrete structures in the wavenumber spectrum. These struc-
tures are expected to be the incoherent behavior of the beam-
plasma interaction as seen in Run B.

In order to analyze the effect of coherent nonlinear trap-
ping process, phase-space distribution functions of electron
at different times are shown in Fig. 7. At all the time there ex-
ist coherent electron phase-space vortices in the region close
to the beam source, which is different from Run B, in which
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electron phase-space vortices modulated by an initial pertur-
bation appear only at the saturation state (see Fig. 3c). The
effect of the initial perturbation is likely suppressed by the
spatial development of the beam-plasma instability, because
an envelope of a wave packet is formed by the spatial devel-
opment. It is also noted that the size of vortices in Run C
becomes much larger than that in Runs A and B (see Figs. 2c
and 3c).

At ωpet=600 we found electron phase-space vortices with
propagation velocitiesvp/Vt∼ 6 and 8 forx/λe=600∼800.
These vortices correspond to the wavenumber enhancement
at kxλe∼ 0.125 and 0.155, implying that there is a process
similar to the sideband interaction as seen in Run A. At
ωpet=1200 there are very large vortices forx/λe=600∼800.
Later these vortices split into two wave packets as seen in the
left panel of Fig. 5. Atωpet=2000 we found small vortices
with a slow propagation velocity (vp/Vt∼5) between the
first and second packets (atx/λe∼1100). Such vortices are
also found atωpet=2500 andx/λe∼1000, suggesting that
the quasi-periodic amplitude modulation would be gener-
ated by the interaction between the primary Langmuir mode
and wave modes with a slow phase velocity (vp/Vt∼5).
It is also noted that the phase-space distribution function
for x/λe=800∼1000 is different from that forx/λe>1200
where the phase-space distribution function shows a more
turbulent feature. In other words, the incoherent process is
dominant forx/λe>1200, while the coherent nonlinear trap-
ping process is likely dominant in the region close to the
beam source. Forx/λe=800∼1000, Langmuir wave pack-
ets are formed by the interaction between two or three wave
modes with different phase velocities, which is similar to the
sideband interaction.

4 Conclusion and discussion

In this paper we have briefly reviewed mechanisms for the
amplitude modulation and packet formation of Langmuir
waves by performing one-dimensional Vlasov simulations
with different initial and boundary conditions.

In the run with a uniform and coherent initial perturba-
tion, there are two stages for the nonlinear development
of the weak-electron-beam instability. In the first stage, a
weak-electron-beam instability excites Langmuir waves over
a wide wavenumber range which is essentially a linear pro-
cess. The primary Langmuir mode saturates by the nonlinear
trapping of electrons, which involves electron-phase-space
vortices. The nonlinear trapping process filters the unsta-
ble modes with phase velocities inside the trapping veloc-
ity range. In the second stage, the sideband modes grow
to a level comparable to the saturation level of the primary
mode. The sideband modes modify the phase-space distribu-
tion function, making the primary mode unstable again. As a
result, the primary mode and the sideband modes dominate.
Langmuir waves are modulated in space by an interaction

Fig. 7. The x − vx phase-space electron density atωpet = 600,
1200, 2000, 2500, and 3500.

between the primary and sideband modes. The sideband in-
teraction is an extension of the kinetic localization Muschi-
etti et al. (1995, 1996) and is a modification of the nonlinear
trapping theory (Akimoto et al., 1996; Usui et al., 2005). The
nonlinear trapping process does not directly generate the spa-
tial modulation of Langmuir waves, but plays a role to filter
wave modes with wavenumbers close to the most unstable
wave number. A turbulent wavenumber spectrum with sev-
eral discrete peaks results in the spatial modulation of Lang-
muir waves. In contrast, the coherent process is not apparent
in the run with an incoherent white-noise perturbation. A
quasilinear modification of velocity distribution functions is
more essential than in the run with the coherent initial per-
turbation (Silin et al., 2007).

In the run with open boundaries where an electron beam is
injected from a boundary, nonlinear evolution of the beam-
plasma instability is drastically modified from that of the run
with periodic boundaries. The coherent nonlinear trapping
process is enhanced by the localized injection of an elec-
tron beam. The result again looks similar to that of the run
with uniform and coherent initial perturbation. Because of
the spatial development of the beam-plasma instability, the
saturation level also changes. The result suggests that beam-
plasma interactions in nonuniform systems become differ-
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ent from the temporal evolution in uniform periodic sys-
tems when the propagation velocity of waves and free-energy
source is different.

In conclusion, both coherent nonlinear process and inco-
herent turbulent process are important for the formation of
Langmuir wave packets. In the present study we have also
solved ion distributions. However, the effect of ion dynam-
ics is absent, because the amplitude of Langmuir wave pack-
ets is smaller than 1.0meωpeVte/e. Simulation runs with a
high-density electron beam is left as a future work, in which
parametric instabilities due to ion dynamics would play an
important role in the formation of Langmuir wave packets.
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