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Abstract. A shallow-water model was used to understand marginal seas with lengthy coastal zones, impact of uncer-
model error induced by non-Gaussian wind uncertainty. Al-tainty of external forcing and/or subgrid parameterizations,
though the model was simple, it described a generic sysmay be as significant as errors in initial conditions. The
tem with many degrees of freedom randomized by externamodel blow-up often sets in much faster than the model loses
noise. The study focused on the nontrivial collective behav-its predictability due to errors in initial conditions (Jiang
ior of finite-amplitude perturbations on different scales andand Malanotte-Rizzoli, 1999; Boffetta et al., 2000; Bogden,
their influence on model predictability. The error growth 2001; Auclair et al., 2003, among others).

strongly depended on the intensity and degree of spatial in- Starting from the pioneering work of Lorenz (1963), the
homogeneity of wind perturbations. For moderate but highlydynamics of the prediction error (PE) due to uncertainty in
inhomogeneous winds, the error grew as a power law. Thignitial conditions has been deeply investigated in the theoret-
behavior was a consequence of varying local characterisical and numerical studies. The dynamics of model-related
tic exponents and nonlinear interactions between differentrrors has been paid much less attention to, probably due
scales. Coherent growth of perturbations was obtained foto the large variety of possible modeling errors. Although
different scales at various stages of error evolution. For thesome general trends have emerged (Capotondi and Holland,
nonlinear stage, statistics of prediction error could be ap-1997; Chu et al., 1999; Orrell et al., 2001; Vannitsem and
proximated by a Weibull distribution. An approach based Toth, 2002; Nicolis, 2003, 2004, among others), more refined
on the Kullback-Leibler distance (the relative entropy) andtheoretical investigations and additional experiments with an
probability-weighted moments was developed for identifi- hierarchy of ocean models of different levels of complexity
cation of Weibull statistics. Bifurcations of the variance, are necessary to get a more general view of the impact of
skewness and kurtosis of the irreversible predictability timemodel-related error (particularly finite-amplitude) on model
(a measure of model prediction skill) were detected whenpredictability.

the accepted prediction accuracy (tolerance) exceeded some |n the present paper, the dynamics of a model-related error
threshold. (hereafter, prediction error (PE)) generated by uncertainty in
wind forcing and its impact on predictability are studied in
the context of stochastic model stability (stability answered
in terms of probabilistic measures, such as expected values
or distribution functions (Freidlin and Wentzell, 1998)) for a

When circulation is simulated by a fine resolution regional SIMPlified regional model destabilized near an unstable equi-
model in an area with open boundaries, the circulation dy-iPrium state (an unstable fixed point in model phase space)
namics often depends crucially on specified open bound?Y Stochastic wind. _ - S
ary conditions, wind forcing and sub-scale parameteriza- " 9eneral, the stochastic stability and predictability dif-
tions. For atmospheric predictability, it is generally assumedf€r from one another. However, if a time scale quantifies the
that the model forecasting is most sensitive to uncertaintyM0del predictability, and if this scale indicates the time when

of initial conditions. However, for oceanic predictability in the forecast uncertainty exceeds some boundary or when in-
formation on the initial condition is lost, the stochastic sta-

Correspondenceto: L. M. Ivanov bility and predictability are interchangeable. Since such time
(Imivanov@nps.edu) scales are widely used in meteorology (see, for example,

1 Introduction
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Toth, 1991) and oceanography (Robinson et al., 1996), the&luced in Sect. 5. Section 6 investigates the sensitivity of the
stochastic stability concept seems to be a useful tool for thegoot mean square prediction error to variations of stochas-
predictability analysis of large ocean models, and “the irre-tic wind and the tolerance level (the accepted prediction ac-
versible predictability time” (a prediction time scale) (Chu et curacy). Section 7 analyzes finite-amplitude induced phase
al., 2002) is a quantitative measure of model predictability. transitions of predictability. Section 8 develops a technique
Numerical computations discussed below can have dor identification of the probability density function of the ir-
twofold interpretation. First, the obtained results can be in-reversible predictability time. Herein, we demonstrate that
terpreted as stability of a circulation regime relative to a high-the statistics of this time is rather Weibullian than Gaussian.
frequency component of wind forcing. Second, if we pa- The predictability horizon is estimated in Sect. 9. Section 10
rameterize uncertainty of wind forcing as a stochastic noiseprovides the conclusions. Appendix A contains analytical
the computation results are interpretable in the predictabil+epresentations for the wind error source term.
ity context. Therefore, hereafter, perturbations excited by
stochastic wind in an ocean basin will also be called a pre-

diction error. 2 Predictability measures
The principal motivation of the proposed study is formu-
lated as follows. We examine the sensitivity of a reference solution relative

First, it is well-known from numerical modeling that wind to stochastic variations of wind forcing. Such sensitiv-
is one of the main energy sources of ocean currents and thaify may be measured by the traditional non-dimension root
naturally, prediction errors associated with wind forcing un- mean square difference between perturbed (“pert”) and non-
certainty may grow quickly in numerical models (Robinson perturbed (“ref”) solution presented by a varialdfe which
et al., 1996; Berloff and McWilliams, 1999; Chu et al., 1999; may stand for energy, temperature, salinity, the stream func-
Sura et al., 2001; Burillo et al., 2002, and others). Behav-tion etc. (Holland and Malanotte-Rizzoli, 1989; Brasseur
ior of such model-related errors are highly dependent on theéet al., 1996; Robinson et al., 1996; Wirth and Ghil, 2000,
properties of the underlying dynamical regime [attractor] re-among others),
produced by the numerical model and statistics of wind un-  _ 5 )
certainty. Circulation patterns with oscillations near quasi- < () >=< Ipen(t) > /Iies(t) @
equmbr_lum states and tra_nsmon dynamics between themand the irreversible predictability time (IPT) (Ivanov et al.,
are typical for many marginal seas, such as the Black Se:_ang4) defined as
(Stanev and Staneva, 2000), and for large-scale jet-like cur-
rents like Kuroshio (Masuda et al., 1999). The proposed _ . - _
study focuses on the case of evolution of finite-amplituder &) = ,'QB (t ‘1 ) > 82) ’ @)
non-Gaussian perturbations induced by stochastic wind error
when the ocean is near a quasi-stable equilibrium state (evewhere Iper= || Wper—Wret|, Iref= | Wrefll, hereafter<...> is
small perturbations can destroy such a state and stimulate tie ensemble averaging, = &/Iref is the non-dimension
transition to another one). Therefore, the obtained results artolerance (the accepted prediction accurady)js the Eu-
important for understanding the regional model predictabil-clidean norm. According to Eq. (2) the irreversible pre-
ity (Robinson et al., 1996) when local attractor features deterdictability time is a time at which the prediction errdt/2
mine the phase-spatial organization of the local error growthreaches a predetermined legebr the first time, i.e. any re-
rate. turns of model predictability are impossible aftaE).

Second, in ocean models, unresolved dynamics is often The IPT is clearly interpretable in a model phase space,
represented in terms of random forcing. For example, impacwhere perturbed and non-perturbed (reference) solutions are
of mesoscale eddies on large-scale currents can be approxepresented b’ and X trajectories, respectively, and the
imated as a space-time correlated, random-forcing procesgquation/ (1)=£2 describes a spheroidal surfagé&) mov-
(Berloff, 2005). Therefore, the results obtained in the presening along the trajectorX’ (Fig. 1a). A distance*Xo—XM
study may be useful for interpretation of a wide spectrum ofbetween the trajectories at time momept(the initial er-
problems related to model predictability in the atmosphereror) usually grows with time due to model inaccuracy, and
and ocean. becomes larger thad (crossing S(g)) after a timez(g)

The rest of the paper is organized as follows. Section 2(Fig. 1a). This time is defined as the IPT.
explains a predictability metrics used to quantify the model For a steady reference solution (represented by a fixed
predictability for both small- and large-amplitude perturba- point in the model phase space), the IPT becomes the clas-
tions. Features of the reference solution (the control run) aresical first passage time (FPT). The classical FPT is a time at
discussed in Sect. 3. The surface wind is decomposed intahich a trajectory reaches a boundary for the first time (Gar-
two parts: steady (“climatic”) part and stochastic one causediner, 1985). Therefore, the IPT can also be defined as the
by unknown synoptic variability. Statistics of the wind un- FPT for varying boundaries (compare Fig. 1a and Fig. 1b).
certainty is given in Sect. 4. The model phase space is introThe FPT plays an essential role in many applied fields. We

Nonlin. Processes Geophys., 14, 655-670, 2007 www.nonlin-processes-geophys.net/14/655/2007/
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Fig. 1. Definitions of (&) IPT and(b) FTP. Phase trajectorie¥
(the reference solution) with the initial position &, and X’ (a
perturbed solution) with the initial position of jare denoted by
solid and dashed curves, respectively. A time wiértrossess (g)
in the point Ais the IPT (a) or FPT (b).

657

Fig. 2. Basin geometry. The, andxo axes point toward east and
north, respectively.

In practice the same momenisare estimated from an or-

dered random samp[e)f;’:l of size N (Hosking and Wallis,

can suppose that the IPT may become a useful tool for thq_997) by

analysis of ocean model predictability too.

Statistics of the IPT (Ivanov et al., 1994; Chu and Ivanov,
2005) can be represented by the probability density func—&l —

tion (z-PDF) or the cumulative distribution function-CDF)
[P(&,t—19)]. T-CDF is the probability that>r—zg for a
given tolerance level.

In practical applications, statistics of IPT-CDF or t-
PDF) may be identified froma-moments,

o0
rl(é):l/‘(t—to)l’lP(é,t—to)dt, I=1,...,L. (3)
10

Knowing these moments we may computemean , t-
variance ¢-var) , T-skewness-sk) andz-kurtosis ¢-ku).
For example,

T-mean= 11, T-var= 1, — (11)? etc.

If the cumulative distribution function P has a heavy tail
for large values of —1q, high-orderc-moments (=2, ..., L)

. N
S gty (5)
n=1

WhereCl"*l are the binomial coefficients.

The probability-weighted moments always exist and are
robust relative to sampling error. Therefore, the robust es-
timate of t-CDF or t-PDF for small forecast ensembles is
possible. This is one of advantages of the IPT. An appropri-
ate method for estimating distribution functions from knowl-
edge of the probability weighted moments will be discussed
in Sect. 8.

The moments of IPT as functions &f,— X/ satisfy the
Pontryagin-Kolmogorov-Stratonovich equations (Pontryagin
et al., 1969), which are linear elliptic differential equations.
Their asymptotic solutions can be obtained in many cases.
For example, Chu et al. (2002) calculated analytically first
two moments of IPT for a low-order nonlinear atmospheric
model (Lorenz, 1984). Therefore, the analytical estimate of

sometimes do not exist because the integral in Eq. (3) doegodel predictability in the IPT context is another advantage
not converge. In this case we suggested (lvanov and Chuyf our approach.

2007) to identify -CDF or t-PDF from the probability-
weighted momentsy) defined originally by Greenwood et
al. (1979),

/1
0
whereX (P) is the quantile function (i.e., the inverse of cu-
mulative distribution function).

a= | X(P)YQA—-P)\dP, 1=1,...L |, (4)

www.nonlin-processes-geophys.net/14/655/2007/

3 Thereference solution

We consider a rectangular semi-closed basin with the hori-
zontal dimensionsL1=1050 km and.>=1000 km, and with
constant deptti{ =2 km, which is situated on a mid-latitude
B-plane. The basin has rigid™) and open(I"’) boundaries.
The geometry of the basin and its sizes are shown in Fig. 2.

Nonlin. Processes Geophys., 14, 655-670, 2007



658

L. M. lvanov and P. C. Chu: Stochastic stability of models with uncertain wind forcing

Our numerical model is the nonlinear shallow-water equa-al. (1997). The structure of open boundary conditions on
tions with nonlinear bottom friction, wind and boundary day-0 and day-60 is demonstrated in Figs. 3a and b, respec-

forcing
dDu

o1 Y+ L(Dug, Duy)— f Dup=—g DVt +W1—a EY2u3, (6)
dDu

o1 2+ L(Duy, Dup)+ f Duy=—g DVt +Wo—a EY2uz, (7)

and the mass conservation equation

0
3_él: + (V1Duy + VoDuy) =0, (8)

where L(...,...)

vation; the drag coefficient=2.5x 10~3; the gravityg; and
E=u%+u§.

The Coriolis parameter varies linearly with a beta

plane approximatiotf = fo+Bx2, where fo=2%2 sin(g,) and
B=(2Q2/a) codp,). Here, Q and a are the rate of ro-
tation and the radius of the Earth, respectiveps=35".
For the chosen model parametersy,=7.3x10°s™1,
B=2.0x10"1m-1s1

A flow in the semi-closed basin bounded byu I'’ is
forced by both the zonal wind forcing/; (W»>=0) varying

,...) is the nonlinear advective operator;
[V4, Vz]z[aixl, aixz]; u1 andu» are the zonal and meridional
velocities, respectivelyD=H+¢, ¢ is the sea surface ele-

tively. The initial condition represents a non-closed anti-
cyclonic gyre shown in Fig. 3a. The corresponding initial
surface elevation is not shown because its structure is obvi-
ous.

After 30 days of integration the model reaches a spin up
when the spatially averaged kinetic energy oscillates with a
period of 120 days. Amplitude of this oscillation reduces
with time exponentially with rate of 1000 day. The spa-
tially averaged kinetic energy for the first 60 days is shown
in Fig. 4a only because this time period is used for sensi-
tivity studies. The circulation pattern formed after day-30
presents a multi-gyre structure with maximum velocities up
to 0.9..1.0m/s (Fig. 3b) and high surface elevation near 1m
(not shown).

4 Wind forcing uncertainty

Governing Eqgs. (6-8) are perturbed by adding the stochastic
wind forcingw= (w1, wp) to W= (W3, W»). The stochastic
wind forcing is traditionally parameterized in the following
form

w(ry, x2. 1) = 2 Cy U (a1, x2, )| U1, x2. 1),

Pw

(10)

with latitude as

Wi = — % cog 22), )
Pw L2

wherepaj is the air density (1.3 kg M), C4(2x1073) is the
drag coefficient, and/is the stochastic wind.
Following Sura et al. (2001 is represented by

where p,,=1025kg m3, w, is the wind stress,
W —1.0x103m?s 2 ,and a prescribed net flux (char-

Pw K .o . .
acterized by the normal velocityi,(xo, ) and surface Whereu(r)=[u1(t), u2(2)] are white Gaussian vector pro-
elevation G (x2, 1) along the boundary™). Zero normal  cesses with zero mean and unit varianc®is the wind vari-

velocity and zero Neumann conditions for the surfacea@nce; the spatial structure function G characterizes a degree
elevation are imposed on the rigid boundary of spatial inhomogeneity of wind perturbations above an area

The chosen model configuration is suitable for the analysisAf interest.
of ocean model predictability affected by different kinds of ~ Two different structure functions are used. The first one
stochastic uncertainties: errors inserted in initial conditionsis given by
(lvanov and Chu, 2007), wind (the present study) and open X2
boundary condition's Cross-correlations between these er- Galx1, x2) = COS(L_Z)'
rors can also be studied.

Model (6-8) is similar to that used by Veronis (1966) for
the analysis of nonlinear wind-driven circulation in a closed
basin. Butin contrast to Veronis (1966) we parameterize bot-
tom friction by the quadratic drag law (Pedlosky, 1987). L1 Lo\ 17 Y2

The barotropic mode of Princeton Oceanographic ModelG2(1. x2) = ascale[ﬂﬂlﬂzerf<2—ﬂl> erf<2_/32>]
(Blumberg and Mellor, 1987) was applied to Egs. (6—8) with ’ 2
the following model parameters: spatial resolution — 50 km; exp| — (1—L1/2)"  (x2—L2/2) .(13)
time step — 2 min. 2p7 283
o oS on ity Tt o cress 18 e, ot s th err UICIOcaels a salng e

ter; (81, B2) are the decorrelation scaleS, shows the im-

Livanov, L. M. and Chu, P. C.: Effects of stochastic open bound- Pact of the localized atmospheric eddy activity near the point
ary uncertainty on predictability of regional ocean models, Mon. (L1/2, L»/2) on the surface wind perturbations (Sura et al.,
Weather Rev., in preparation, 2007.) 2001).

U=[U1(x1, x2, 1), Up(x1, x2, 1),] = ()0 GY?(x1, x2), (1)

(12)

In this case only the amplitude of wind stress (Eq. 9) is dis-
torted by the non-Gaussian white noise.
The second one is chosen as

Nonlin. Processes Geophys., 14, 655-670, 2007 www.nonlin-processes-geophys.net/14/655/2007/
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Fig. 3. Spatial structure of the reference solution at the initial g@tand after integration for 60 dayb). Open boundary conditiong )
corresponding to the reference solution are shown to the right of the circulation patterns.

In most numerical experiments the scaling constagiie 2000
is chosen to adjust the weight function in Eq. (13) to 1 for @ ,
B.=P1=P2=600km. However, a number of computations  1800f
usep, between 100 km and 600 km. , ,

The noise in the surface wind with?=28.0nfs 2 cor- 1600+
responds to typical observed atmospheric conditions in the _ ; ;
North Atlantic region (Wright, 1988). Therefore, the [o400f [ ey
stochastic forcing (Egs. 10-13) is a conceptual tool to study fg ; ;
the effect of noise on simple and more complex wind-driven w200p [
regional ocean models.

To understand statistics of wind forcing, Eq. (10) is re-
written into

1000 f oo

OO vt

w(x1, x2. 1) = 22 102G (x1, x2) |1 ()] (2
Puw 600
= 24 €466 (x1, x2) b, (14)

Pw

20 40
t (days)

Fig. 4. Characteristics of the reference solutiofs) the kinetic
wherew= ()| u(t). Then, the probability density function  energy averaged over the semi-closed babirthe relative variance
f (w1, wp) is calculated using the elementary zero-memory s,, computed for the initial state of the reference solution (solid
transformations, which are discussed in most textbooks oturve) and after integration for 60 days (dashed curve).
probability theory (see, for example, Stratonovich, 1963).

Accordingly to the general theory
In the polar coordinate systemz, 6}[wi=zcog0),

fib1, W) = flgy (W1, W2), g5 "(b1, W2)] - /], (15)  wp=zsin(®)], probability density function (Eq. 16) trans-

. . . forms to the following form:
whereJ is the Jacobian of the transformation from the ran-

dom variablegt1 andu to the random variables, andwy;
g7 - andg, * are the inverse functions.
Simple calculations result into

1
f(z,0) = = exp(—z/2). (18)
T

Two-dimensional distribution Eq. (18) is easily transformed
o 1 o \1/2 to a one-dimension fornfiy; simply by integratingf (z, 6)
[y, W)=———" exp[— (w1+w2) /2] (16)  with respect t@,

4 (W5-+w3) .
The meansiin),(i2) and variance 2,63 computed from fin(2) = = exp(—z/2), (19)

Eq. (16) have the following values which is the exponential distribution.

(1) = (W) = 0.0 ands2 = 62 = 3.0. (17) The above calculations clearly indicate that althotls

a white Gaussian process, the wind stneds not. Therefore
Both w1(r) and w,(¢) are delta-correlated processes (Kly- PE has non-Gaussian statistics even if the wind uncertainty is
atskin, 2005). small. For large values of stochastic wind stress, distribution

www.nonlin-processes-geophys.net/14/655/2007/ Nonlin. Processes Geophys., 14, 655-670, 2007
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m=3

x2(km)

x2(km)

y 400 800
x1(km)

Fig. 5. Four orthonormal modeg,, with numbersn=1,3,9, and 30. The contour interval is non-dimensional, with positive vorticity in dark
and negative vorticity in light, and non-dimensional velocity vectors are overlaid in each panel.

function (19) decays slower than the Gaussian one. This indibetween ensembles ok10%, 5x10%, 1x10%, 2x10% and
cates that rare high-energetic wind events can strongly con5x10* samples. The optimal size of an ensemble sampling,
tribute tow statistics. Therefore, even for small-amplitude i.e. a number of ensemble realizations providing a trade-
errors, -PDF has asymmetric shape with a tail stretching off between the ensemble ability to reproduce main features
into short prediction time scales. of PE statistics, and the computational cost, is estimated
A weak second-order algorithm (Cao and Pope, 2003)as 18 for any values of52. Hereafter the non-dimension

is applied to numerical integration of stochastically forced variance of wind perturbations introduced a§=o2/og,
Egs. (6-8). Although the time step for the model integra- 02=1.0 m?s~2, is used. The optimal size is found using the
tion is 5min, the stochastic wind is updated every hour. Anon-symmetrical Kullback- Leibler distance (White, 1994).
correlation time £.) for such a noise is shorter than one An interested reader is referred to Chu and Ivanov (2005),

hour. Since characteristic time scales for the reference solvanov and Chu (2007) for more details of such an approach.
lution and PE argei~10-20 days (determined from Fig. 4a)

andteror3-5 days (determined from Fig. 7b), respectively,
te/tretK1 andz, / terrork 1. Such a stochastic wind represents 5 Model phase space
a white noise-like process (Stratonovich, 1963).

PE statistics is insensitive to more often update of theFor the chosen model parameters, a quasi-geostrophic ap-
stochastic wind. We made computations with update varyingoroximation (Pedlosky, 1987) is applicable to interpret the
from less than one hour to 5min. These computations rereference and perturbed flows in a model phase space. The
quired very large computer resources. Therefore, the choiceasis of M-dimension phase space is formed from orthonor-
of one-hour update is a trade-off between accuracy in repremal functions (modesy,,, which are the eigenvectors of the
sentation of the wind forcing and the computational cost.  plane Laplace operat6f? (Eremeev et al., 1991, 1992),

Ensembles of perturbed model trajectories were used to

computer-PDF. Little difference inc-statistics is obtained V%Y, = —Am¥m, ¥mlror =0, m=1,..,M. (20)

Nonlin. Processes Geophys., 14, 655-670, 2007 www.nonlin-processes-geophys.net/14/655/2007/
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Then, the geostrophic stream function is decomposed as A

M
Y (x1, x2, 0= Y An(O)Pm (X1, x2)+Pharm(x1, x2, )+C (1),

m=1

M =100 |, (21)

whereymarm is the harmonic function; the constafitz) is
determined from the mass conservation constraint imposed
upon the stream function (McWilliams, 1977).

The spatial modeg,, are determined only by the geom-
etry of a basin, and can be easily computed for any non-
rectangular domain. Figure 5 shows the spatial structure of
a few basis functions,, involved in the present analysis.
The spatial modes, in general, have no physical significance
by themselves, but only when they imply a flow. However,
they are useful to identify the energy-dominated scales for
the reference and perturbed flows.

The harmonic function/narm is obtained from a,

V2'ﬁharm =0 , 'ﬁharmh‘ =0,

X2

Vharm|r = —fﬁb(ﬁ)))dy, (22)
0 Applying the classical linear stability analysis (Gucken-

It is a highly predictable component of the flow because of'€imer and Holmes, 1983) to the model (6-8) linearized
the exact value oy, in Eq. (22). near the spin up solution, we find that the spin up represents

The PE presents the sum of the mean or systematic err" unstable focus (spiral point) in the model phase space.
Vrei— (Vper) @nd the transient or random eribp The growth and decay of infinitesimal perturbations near this
P point are characterized by the spectra of positive and negative

Fig. 6. Phase portrait in a phase sub-space generated by the basis
functionsyr,,, ¥4 andy.

2\ = _ _sul? local characteristic exponents only.
< pen> <” ret = {Vper) — 07 | ) Therefore, an error trajectory should tend to this focus (de-
= | Yref — (Wpert)”z + <||5¢||2> ) (23) noted by B in Fig. 6) along stable manifolds corresponding to

the large-scale negative exponents and simultaneously drifts

The inertial (nonlinear) terms of the governing equationsfrom B along the small-scale unstable manifolds correspond-
hardly contribute tdyper) at the initial stage of PE growth, ing to the positive exponents. Such a model trajectory is
and their contribution is negligible at later stages. The ran-asymptotically unstable in Lyapunov senseg-asoc (Guck-
dom error grows faster than the systematic error. Thereforegnheimer and Holmes, 1983).
we suggest quantifying the PE behavior through the growth Figure 6 shows projections of error trajectories onto the
of the random error only. phase subspace. The trajectories tend to reach the focus

The reference and perturbed solutions are reprealong the stable manifolds projected onto the phase plane
sented in the model phase space as the referencg:,,a,]. However, they move away from the focus along un-
A=[A1(®), ..., Au(®)] and error a=[ai(t),....,am(t)]  stable manifolds projected on the phase pldagsas] and
trajectories, respectively. Using these notations the variance,, a;].

of the random prediction error becomes We useM =100 and confirm that such a choice does not
M smooth the reference trajectory for 70 days of model integra-
syl =3 <a’2n>, (24)  tion. The relative varianc, = (A,-A,)]_; - <% converges
m=1 to 1 very quickly as mincreases (Fig. 4b). The first fifty-sixty
. : . . modes contain more than 99% of variance for the reference
and the wind error source term (see Appendix A) is written solution
by One hundred mode representation is also quite suf-
R, = V;ﬁ (b;%; + Cﬁ; ) ’ (25) ficient to approximgte thg error trajectory for _60—
70 days of model integration. The relative variance
where y,=22CyH Y102, bu=[[ $EYndxidxe S, = (<ap-ap>);1:1~<l§ert) converges to 1 asn in-
cmsz %wmdxldxz, the double integration is made over creases, slower thas), (compare Figs. 4a and 7a), but the
the semi-closed basin area. speed of the convergence is quite high.
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Fig. 7. Features of a perturbed solutio(a) the relative variance  Fig. 8. The growth rateQ (solid curve) for differen&2 andG: (a)
S;, computed at day-10 (dashed curve) and day-50 (solid curve)s2 — 0.1, G=Gy; (b) 52=1.0, G=G; (c) 52=1.0, G=G>, and

52=1.0; (b) <1§en> normalized by its saturation value /2> (d) 52=2.0, G=G,. Dashed line, white dots and asterisks show
for 52=0.1 (solid curve), 1.0 (dotted and dashed curve), and 2.0€xponential, linear, and power (with scaling exponent8ka0-1)
(dashed curve). laws, respectively.

(Figs. 8a, b, c, d). It corresponds to the linear growth of
the mean square error:

6 Error evolution

Typical growth of an ensemble averaged PE with time for ; ,
G=G1 and 2 varying between 0.1 and 2.0, is given in <1pert> ~ Defit, (26)
Fig. 7b. Perturbations excited by uncertainty of stochastic

wind grow at all scales and during the whole 50-60 dayDuration of this regime is typically up to 4-5 daysif~0.1—
period. That is in contrast to the case when there is un-1.0. The effective coefficienDest is determined by sum-
certainty in the initial condition only. In the last case the mation of contributions from the error source term at all
high predictabillity of the dynamical regime within the initial wavenumbereg= % R,

15-20 day period was clearly demonstrated by Ivanov and =1

Chu (2007): the PE at first decays with time for all scales Linear law Eq. (26) was earlier documented in a num-
due to dissipation caused by nonlinear bottom friction, andber of studies (see, for example Vannitsem and Toth, 2002).
only after day-20 grows faster than [quasi]-exponentially. We have analytically determined the wind error sources for
Therefore, the presence of the spatio-temporal noise (Eg. 10nodel (6—8) (Appendix A). Our calculations show strong de-
in wind forcing (Eq. 9) causes the monotonic error growth pendence of the effective coefficient on the variance of wind,
shown in Fig. 7b. as~o?, as well as on degree of spatial inhomogeneity of the

At least four predictability regimes are identified from wind forcing.
Fig. 7b. In all the cases the PE grows in a monotonic _
manner but with different speeds. More accurately, theséf-2 Power growth of perturbations

regimes can be identified using the growth rate defined as . _
Q:% In <1p2m>. For moderate but inhomogeneous winds the power growth of

perturbations are observed in our numerical experiments af-

; =2
. A set Otf gr_owlih rat8es %ompgteigor dlfferel?t alndal . d.ter the transient phase (for example, see Figs. 8a, b, c). For
IS presented In F1gs. ©a, b, ¢, d. These resulls clearly Ndlg, 4 ya1yes 062«1.0 the power growth is replaced by the
cate that error dynamics strongly depends on the intensit

d tial inh itv of wind caint %xponential growth (shown by the dashed line in Fig. 8a).
and spatial innomogeneity of wind uncertainty. If 52 exceeds 1, there is no exponential growth and the PE

grows with the power law with power exponent of about
6.1 Linear growth of perturbations 8.8x10~1. This regime exists between day-5 and day-15 in

Fig. 8a, between day-7 and day-23 in Fig. 8b, between day-
At the initial stage (transient phase) where the stochastiel and day-14 in Fig. 8c, but there is no power-law regime
forcing term dominates the governing equatioms;-1/¢ in Fig. 8d when the stochastic wind uncertainty is too large
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Fig. 9. Spectra of wind error term witlfa) G1, (b) G and

=600 km, andc) G, andA=100 km. A critical wavenumberis de- Fig. 10. Coherent behavior of perturbations on different scales for
termined from the condition aRy, / Max(Ry)=1.0x10~2 (shown  62=1.0 andG=G. (a) Large, andb) small scale perturbations.
by dashed line). Black arrows indicate the critical numbers. The largest scale perturbation witt+1 is labeled by dashed curve.

(62>2.0). For such a variance the linear growth of PE dom- Our computations have also shown that one of the main
inates. specificities of the power growth regime is that all dominat-
For G=G the spectrum ofR,, is linear with dominat-  ing scales (modes) may exhibit a similar growth rate. For
ing peaks at wavenumbers=1,3, and 5 (Fig. 9a). These example, Fig. 10a, b demonstrates two groups of modes with
wavenumbers indicate modes with maximum response to thdifferent coherent behavior from day-7 to day-25. The coher-
stochastic wind forcing. The weak wind forcing4«1.0) ent behavior of modes is a collective response to the external
essentially affects the large scales of the flow and excitestochastic forcing when amplitudes of many modes exceed
only several low-order modes. In this case the PE at firstsome threshold at the same time due to spatial inhomogene-
grows linearly, then its quasi-exponential growth is observedity of wind forcing (defined by the choice @f). Clearly that
Smaller scales affected by the stochastic wind are subjedhe coherent behavior is absent if this threshold was exceeded
to strong viscous damping due to increasing drag coefficienpnly by a few modes.
a with growth of the kinetic energy of large-scale perturba-
tions. Therefore, the smaller scales grow slower than the un6.3 “Super-exponential” growth of perturbations
stable large scales. The growing perturbations rapidly adopt
the horizontal scales comparable to those of the referencéfter day-25 the PE grows faster than exponentially (“super-
state. exponentially”) until non-linear interactions between differ-
Alternatively, stronger stochastic wind{>1.0) excites ent scales destroy this growth (saturation regime) (Fig. 7b).
more modes at smaller scales than the weak wind, and th&trong coherence in behavior of different modes accompa-
coherent behavior of modes is clearly observed in this casaies the “super-exponential” growth of perturbations.

(for example see Fig. 8b). Figure 11a shows coherent behavior of 30 dominated
For G=G, and 8,=600km, what corresponds to inho- modes. Explicit “synchronization” in behavior of these
mogeneous winds, the spectrum Bf, is continuous and modes is observed. After 35-37 days of integration, the first
band limited at the critical wavenumber=11 (Fig. 9b).  mode (shown by solid curve in Fig. 11a) is a “driver” deter-
Therefore, the stochastic wind excites several modes arounshining the behavior of all other dominant large-scale modes,
wavenumbers of 2 and 10. The PE growth ratio depends omvhich are called “responses” (hereafter we use the terminol-
the spectrum of local characteristic exponents. In this cas@gy from Boccaletti et al., 2002). During a 10-12 day time
the coherent behavior of modes exists even for the weak wingberiod (up to day-47) the driver and responses perform coher-
forcing (2«1.0). ently. For small-scale perturbations at least two drivers can
The decorrelation scalg. determines the width of spec- be identified in Fig. 11b. Mode:=9 (the first driver) grows
trum band forRr,. For example, the critical wavenumber along the exponential law. The non-exponential growth of
equals to 32 if8,.=100 km (Fig. 9c). Reduced values Bf the second driver (mode:=11) is a consequence of the
lead to a wider spectrum of local characteristic exponentdact that different scales grow with different local char-

and stronger contribution of the cumulative effects to the PEacteristic exponents varying betweer8210-1day ! and
growth. 9.4x10 lday 1.
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model induced by a white (in time and space) additive Gaus-
sian noise. In our case, however, no peak appears in the spec-
tral density(a? ) at a given wavenumber for an intermediate

level of noise.

Our results show the coherent behavior of a group of
modes when amplitudes of many modes in the group ex-
ceed a threshold. Low- and high-order modes are separately
grouped. For quite large amplitudes our results demonstrate
the driver-response relationship for which phase of modes
are locked.

To examine this mechanism we have linearized govern-
ing Egs. (6-8), and calculate the growth of perturbations

response - . excited by stochastic forcing Eq. (10) in this case. The re-
SEZ ' sults of these calculations are summarized as follows. The
B ey B ey P power growth of perturbations in the transient regime is ob-

served up to day-20 and, therefore, cannot be caused by the
Fig. 11. Coherent behavior of perturbations on different scales forPhase locking mechanism. “Super-exponential” growth of
52=0.1 andG=G. (a) Modem=1 is “the driver” for large-scale ~ Perturbations after day-25 disappears when nonlinear (iner-
responses. Three responses (moded, 12, 29) are indicated by tial) terms are removed from the governing equations.
bold dashed lines(b) two drivers (modes:=9, 11) observed for The power growth of perturbations in the transient regime
small-scale perturbations. Mode=9 grows with the exponential  can pe explained using results obtained by Seki et al. (1993).
law. They pointed out that for a linear dynamical system forced

by a Gaussian white noise the mean deviation of perturbation

For very strong external noises the modes may not be Syngmplltudes can grow along a power law up to a time stgle

chronized because the intensive noise destroys correlation%fe::'_net_d by ln\f/f_er_s € tOf frlcrtllon coefflflen;[). r']: or Iardge values
among them. This effect is clearly observed in our numerical®' '"Ction CoeTicients such a power-law behavior disappears

experiments independently @hif 52>2.0. becaus@h—>9. S
The effective dissipation in model (6—8) depends on the
6.4 Physical mechanisms of perturbation growth structure of the reference flow and shape of the spectrum of

R,,. When forcing becomes stronger or is inhomogeneous,

The numerical results discussed above explicitly show “athe center mass of energy spectrum shifts to high wavenum-
synchronization” effect due to external noise and replaceber domain and, in general, the dissipation of perturbations
ments of the traditional exponential growth of perturbationsreduces because the nonlinear bottom friction is most effec-
by the power or sub-exponential growth. There is a num-tive for largest-scale perturbations as it has been checked nu-
ber of mechanisms for which noise can lead to more ordeimerically. That results into appearance of power-law behav-
in the dynamics. To be mentioned here are the effects ofor for variance of perturbations. In this case power exponent
noise-induced order in chaotic dynamics (Matsumoto anddepends on the structure of time-dependent reference flow,
Tsuda, 1983), synchronization of self-sustained oscillatorsand unfortunately, cannot be analytically calculated. Seki
(Pikovsky et al., 2000), cumulative effects of many different et al. (1993) calculated the power exponents for two simple
scales (Aurell et al., 1996), coherence resonance (Pikovskgtochastic dynamical systems only. However explicit corre-
and Kurths, 1997), stochastic resonance (Nicolis and Nico4ation between level of model dissipation and existence of a
lis, 1981; Benzi et al., 1981), and interference between initialpower-law behavior of perturbations are clearly observed in
error and stochastic forcing (Seki et al., 1993). These effect®ur numerical experiments.
in some respects are close and cannot be easily distinguished After 25 day integration noiseless model (6-8) reaches a
from one another when signals reflect different variables ofspin up when a solution oscillated with a period of 120 days
the same system (Rosenblum et al., 2004). for the dominant low-order modes within any 1000-day time

In our case circulation dynamics is not driven by a peri- interval. Oscillating modes weakly interact one with another
odical force. That allows excluding the stochastic resonancelue to nonlinear (inertial and frictional) terms in the gov-
as a possible physical mechanism driving mode dynamicserning equations. Effects of external noise on these modes
The stochastic resonance appears if both periodic and noisigad to coherent behavior of modes that seems to be simi-
forces drive a nonlinear system, with the periodic responsdar to the phase locking of the modes, which is understood
having a maximum at some noise amplitude. in a statistical sense, as the existence of a preferred value of

Perez-Munuzuri et al. (2005) have demonstrated a coherthe phase difference between individual stochastically forced
ent resonant behavior for an atmospheric global circulationrmodes with weak interactions among them.
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Non-steady nature of the reference flow is essential for ex- o = o ’r—5 g
istence of super-exponential regime of perturbation growth. ] o *
This was checked by numerical modeling. The oscillations s : sl 4o
are smoothed and the reference flow becomes steady whe 4 & .:'O' u : !
the drag coefficient is 2—3 times as much. Neither “super ex- K M . N '
ponential” growth of perturbations nor coherent behavior of P P R T <1
modes is observed for such levels of model dissipation. 2o 12| 't [ R
Note that high-order modes of the reference flow have a§25 ,"O -|§15 - 05 i , REE W - ,'.
dominant oscillation period of about 30 days, not 120 days & ,| | N v Y
as low-order modes. Since the first twenty modes contain up f I | Ao e e
to 90% of the kinetic energy of circulation, 120-day oscilla- [ | _ i b :E,' § o
tions dominate the flow and mask faster motions. However, | 1 R I IR e
existence of the second dominant period leads to coherenc H e R 13 i!*o
in behavior of high-order modes, which is different than that ~ °[ 4 °
low-order modes demonstrate. — , O ) L—— o 25 : = .
10 10 100 10 10 100 10 10 100 10 10 10
The coherence in behavior of modes can be explained 2 & B &

by a number of mechanisms, such as synchronization of

weakly coupled oscillators (Pikovsky et al., 2000), modu- Fig. 12. r-statistics for different values a? and&2. (a) z-mean,
lation (Landa, 1996) and others. In practice these mech_(b) r-varia_nce,(c) r-skewness an(l) t-kurtosis. Triangles, aster-
anisms cannot be selected using only a driver-response résks andcircles correspond=2.0, 1.0, and 0.5.

lationship or the cross-spectral technique without a simple

physical model. Unfortunately, this is a great problem to h . K d-kurtosis. but oth
develop a model, which would adequately describe nonlin->t¢1 aSt-Variance, r-SKewness and-Kurtosis, but other
ear oceanic flow dynamics with many degrees of freedom MEASUres of rpodel pred'Ctab'“tY are also appl|caple.
Therefore herein we are not able to select one of the physical Fm&t(fa-amphtrl:dde p()jhase _transglolns .ShOl;:d deasnydbe de-f
mechanisms discussed in modern literature for explanatimjieme or any ero ynamic model using the dependence o
of the coherent behavior of modes observed in our numerical” | Statistics ore because the value of the tolerance level
experiments for finite-amplitude perturbations. However, un- Imits tr:jelmzmmum ampllltugle of pertufrbsnor;]s eX|st|ng_|_n
doubtedly the observed coherent behavior is due to nonlineaf'e model. As an example, detection of the phase transition

interactions among modes and oscillations of the referenc or model (6-8) is desc_:nbed beIovxg . .
flow. For small tolerancez€<5.0x10~3) model predictability

is low: T-mean does not exceed 20 days (Fig. 12a) &nd
variance is quite large, up to 25-27 day&ig. 12b). Ad-
ditionally, a large negative skewness abeut.5 (Fig. 12c)
7 Finite-amplitude-induced transition in predictability  indicates that the IPT distribution has a tail stretching into
skill domain of small prediction times.
The mean IPT monotonically grows & increases
Our computations have shown that for strong winds model(rig. 12a). Although here, the IPT grows with various rates
predictability demonstrates stronger sensitivity to amplitudesfor different tolerance levels, no bifurcations are observed in
of perturbations induced by the stochastic wind than to thths figure_ In contrast ta-mean, the value of-variance
choice of spatial structure function in Eq. (10). Intuitively, suddenly changes wheit becomes larger than@<10-3
larger-amplitude perturbations should cause faster decay qfhis value is taken as a threshold). The variance, which was
model predictability, what was confirmed by our nhumerical quite large (about 25—27 d@yfor small tolerances, suddenly
experiments for the mean predictability timemean mono-  reduces to 5 déwhenz? crosses the threshold (Fig. 12b).
tonically reduced a§? increases (not shown). Both -skewness and-kurtosis also change considerably
Furthermore, our experiments have also shown that thgFigs. 12c, d). They converge asymptotically to 1.0 and 4.7,
collective behavior of finite-amplitude perturbations may respectively, ag? increases. Positive skewness corresponds
cause sudden changes (bifurcations) in the high-order statiso asymmetricc-PDF shapes with a tail stretching into large
tics of predictability time. This effect is clearly observed prediction times. The large kurtosis (much larger than 3) in-
when perturbation amplitudes exceeded some threshold, atiicate that PDF is highly non-Gaussian.
ter which the global correlations among the perturbations Typical z-PDFs computed before and after the phase tran-
with different scales dominated the PE characteristics. sition, are given in Figs. 13a and b, respectively. Comparing
We have called such bifurcations as the “finite-amplitudethem one to another, we find that the phase transition causes
induced phase (non thermodynamic) transitions in modekthe PDF tail stretching into domain of large prediction times.
predictability”. They are detected using statistics of IPT, This tail is formed by rare predictions of duration up to 50
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B
120 140 - _ (1Y
T e 5]
100 Ik 120 i
i for the analysis ofc. Here,n, y, and g are scale, shape,
| 100 and location parameters (von Storch and Zwiers, 1999). The
80 Mk | following original algorithm is developed to estimate the pa-
@ 80 M rameters of distribution (27) from an IPT ensemble sampling.
% 60 | Closeness of two inverses of CDFs: X (P)(“real” value)
1 60 and Xo(P) (the first guess), may be estimated by the
40 Kullback-Leibler distance&2 (White, 1994):
40
1
20 20 Q:/X(P) IN[X(P)/Xo(P)]dP. (29a)
0
0 Q
°o 1 T(ggys) 040 0% T(g‘gys) %0 Then, X (P) is the solution of the following variation prob-

lem (Kapur and Kesavan, 1992)

Fig. 13. Histograms of IPT computed far2=1.0. _
(a) 52=1.0x10"2, (b) 52=0.1. £ — min. (29D)

The Kullback-Leibler distanc& should be a subject to ad-
: - ditional constraints from the following condition: the proba-
days. Smaller variance and larger positive skewness sho

that model predictability was considerably enhanced after the |!|ty weighted moments compu_ted fromAthe ens:emble sam-
phase transition. pling (o1, a2, andgg)l and thgoretlca!lyil,_az, andas) from _
) . . Eqg. (4) must coincide. This condition is accounted for in
i TW.O. physpal mephamsms are re§pon5|ble for the phaseEq_ (29) through additional constrain as
ransition. First, it is clearly from Fig. 12a that the phase
transition exists when the meanlPT is not less than 30 1
days. During this time period the model reaches the spin ug, — / X(P)IN[X(P)/Xo(P)]dP + x1 (¢1—a1)
state. Different stability properties in the phase space near
and far away from the point are caused by the inhomogene- R R i
ity of model phase space. That leads to different statistics of ~ 1X2 (a2 — &2) + x3 (o3 — G:3) — min. (30)
PE before and after the phase transition. Second, even Wh%herem X2, and s are Lagrange multipliers.
perturbation amplitudes are several percents of the reference Functi;)nal Eq. (30) is minimized with respect X P).

solution, a coherent behavior of different scales are clearlyl.he solution of minimization problem (Eq. 30) is written as
observed. In this casevariance reduces due to strong cor- |

relations among the scales (Kravtsov, 1993). X(P) = Xo(P) exp(—X1P — xoP? — X3P3) ’ (31)

o o For details see Kapur and Kesavan (1992). Then, the La-
8 Weibullian statistics of IPT grange multipliersy1, x2, and x3 are determined by the
quasi-Newton iteration method as a solution of nonlinear

Our computations .have sh.own that stochastic forcmgleast-square problem resulting from Egs. (30) and (31).

Eq. (10), in general, induces highly non-GaussigPDFs for Our computations show that (a) the method discussed
f|p|te-ampl|'FUQe PEs. The following question arises: what gpave is robust relative to sampling error if only few mo-
kind of statistics can be used to represent sudDFS? I anis are used as constrains, and (b) Lagrange multipliers
appropriate distribution function is found, it would be pos- 4re estimated within 10-12 iterations only. In general case,
sible to identify the ensemble generated PDFs from limited,,ye, sampling error is considerable and more moments are
observation series and small forecast ensembles, and in turr%quired in Eq. (30), the non-linear least-squares minimiza-

to estimate the model predictability horizon (i.e. maximum problem is solved through the Levenberg-Marquardt it-
predictability time reached for the given model and wind un- or4tive method (Engl et al., 1996).

certainty (Kravtsov, 1993)). _ ~ Wedid not find difference between the distribution func-
We apply the three-parameter Weibull statistics with dis- tjon calculated by a non-parametrical technique based on the

tribution f () and cumulative distributio (¢) Epanichenikov's kernel and the bootstrap re-sampling pro-

51 p cedure (Good, 2001) directly from ensemble sampling, and

F(o) = B <T - V) exp[— <T - V) i| ’ (27)  appropriate Weibull counterpart obtained by the method (29—
n n 31), at least at 95% confidence level.
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This conclusion is illustrated for the ensemble sampling  2s0 1
shown in Fig. 14a. The-CDFs computed by the non- @ oo ®)
parametrical technique (solid curve) and our method (black -
dots) are compared in Fig. 14b. Differences between them 200 08
are negligible. The parametersy, and g are equal to 07
37.1x10°1 days, 30.0 days and IB6<10~1, respectively. - I 06
Parametep affects the length of the PDF tail formed by 2 ° 2 u '
rare forecasts, which are longer than the mean ensemble fore ¢ L Q05
cast(r). Small 8 indicates enhanced probability for real- 100 o4
ization of abnormal long (in our case up to 50 days) model
forecasts. 03
50 0.2
0.1
9 Modd predictability horizon
025 30 35 40 45 0O 5 10 15 20
Asymptotic behavior ofr-CDF ass—oo determines the © (days) t-y (days)

predictability horizon of the model, i.e. the maximum pre-
dictability time of an individual forecasting for the given
model and statistics of wind perturbations (Kravtsov, 1993).

Accordingly to Eq. (28) the model predictability horizon
is calculated by

Fig. 14. Identification oft-CDF. (a) IPT histogram for a 19term
ensemble;(b) CDF computed directly from the ensemble (solid
curve) and using the developed method (black dets)30 days.

1/8 39 Similar analysis is difficult to undertake in full-scale nu-

’ (32) merical forecast ocean models due to limited computer re-
sources. Generally, the full-scale models produce small en-
semble samples and therefore, cannot resolve the full com-
plexity of the PE. The idealized model revealed trends in PE
behavior and the model reconstructed PE statistics with min-
crease of th? shape paramgter. N ) imum distortion. These statistics can be used for the analysis

_Letus estimate the predictability horizon for the example o the smaller ensemble samples from the full-scale models.
discussed above. Substitution of the distribution parameters p_ i high-resolution ocean models should be used to

obtained above into Eq. (32) leads to examine the following trends obtained in the present study.
Thor ~ 40.2 days 45.4 days and 50.5 days (33) The predictability time for small perturbations may be
much larger than the inverse of the leading local character-
for P*=1.0x10"2, 1.0x103 and 10x10~4, respectively. istic exponent. The shallow water model showed that it is
These estimations demonstrate that for the chosen values ®PSSible to have non-trivial time evolutions of small (but fi-
2 and&2, the model predictability horizon is limited to 50 Nite) perturbations and that their growth could be fitted by

days, and any individual forecasting, which is longer than 50Power laws although the perturbations were actually ampli-
days, is unlikely. fied by the background flow. The power growth for all or a

portion of scales was determined by the cumulative effects of

multiple characteristic times .
10 Conclusions The expected growth of error and decay of skill occurs

most rapidly for smaller scales and, with time, expands to
A simple shallow-water model was used to understand senlarger scales. One of the main features of the ocean is the ex-
sitivity and predictability of ocean models with inaccurate istence of strongly interacting spatial scales, which raises the
wind forcing. This model used a highly idealized represen-possibility of different behavior of the PE at different scales
tation of ocean dynamics and did not simulate the redistri-of motion. It is traditionally assumed that small scales are
bution of PE between barotropic and baroclinic dynamics adess predictable than larger scales. This picture was drawn
high-resolution ocean models. However, due to the smalby Lorenz (1969) for perfect model scenario, and then trans-
number of degrees of freedom of the model (only 462 vari-ferred to the analysis of forecast error as a function of spatial
ables), distribution functions for predictability scale and its Scale in operational atmospheric (see, for example Dalcher
high-order moments were computed for a large number ofand Kalnay, 1987) and oceanographic models (Brasseur et
ensemble realizations (up to 50000). This guaranteed real., 1996, among others).
duced sampling error and robustness in estimating the PE Our simplified model predicts existence of two additional
statistics. predictability regimes for imperfect models. For large scale

Thor = V+n[_|nl_)*]
where P* is the probability thator will be achieved in an

individual forecasting. For fixed®* Eq. (32) shows a slow
power-law growth of the predictability horizon with the de-
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stochastic winds, the perturbations rapidly grew to horizontaland
scales comparable to those of the reference state. In contrast,

smaller scale perturbations excited by the wind were subject = Ym (bm SIN® — ¢y COSO) . (A2)
to_ stron_g visc_ous dgmping. Therefore, the predictability of _ Pt g1 2 g G dind
wind-driven circulation was less affected by model uncer-Ym = ,O_w d A 0% b = 3—361%1 X1dx2,

tainties acting at small scales than at larger scales. Mahade-

van et al. (2001), using a quasi-geostrophic ocean circulaand

tion model for perfect-model twin experiments, found that G

such a scenario was favourable for weakly aperiodic, peri<m = // memdxldxz'

odic, and stationary circulation regimes when the mesoscalel_h hasti d defined in Sect. 4
energy content was relatively low. e stochastic processgg) andd(r) are defined in Sect. 4.

For stochastic wind that is limited to scales smaller than The variance of PExa;, > satisfies the obvious equation

those occupied by large-scale flow, perturbations on dif'fer-d<ar2n>

ent scales may grow coherently due to interactions amongT=2(<Zmam> + <Omam> + <rmam>), (A4)
them. The coherent growth of perturbations has been iden- . .
tified on different scales at various stages of PE evolution.Wlth the wind error source term
Coherent behavior of PE can be found in full-scale oper-g,, = y,, [b,, (zSinfa,,) + ¢, (zCOSHa)] . (A5)
ational atmospheric models (Boer, 2003, as an example), . o
and quasi-geostrophic models (Vannitsem and Nicolis, 19972iNCe/ (z, 0)=f (z) f (6), average of Eg. (AS) can be divided
McWilliams and Chow, 1981, among others). McWilliams INt0 two steps. (1}nay, is averaged over. (2) The obtained
and Chow (1981) demonstrated that for a simple three-levefunction <rya, > is averaged ovet. .
quasi-geostrophic model, all scales of motion exhibited a The correlation function<za,,>. is analytically calcu-
similar growth rate after a short transient phase. The cohererf@t€d using the cumulant decomposition (Klyatskin, 2005):

growth of PE on different scales can be found in imperfect ~ /q ] t

quasi-geostrophic models too (for example, see Vannitsem,_ .\ .y, _ (—)/.../d; i P
2006). These and other results (not discussed here) indicat((az( Yam W, ; 5! L tskis 18 11, o0 o)
that the coherent growth of PE may be caused by model in- R oo

dependent (universal) mechanisms, which require further in- < 8 am(®) > ) (AB)
vestigation. 8z(t1)...6z(t) [,

The present study introduced a new statistics (WeibU”)Here,Ks(tl, ....1,) is the s-th order cumulant of the noise

for finite-amplitude PE and suggested a practical way for itSthe notation’E denoted the functional derivative.
identification through the probability weighted moments and g, 54 stationanj—correlated noise one obtains

a variation principle. This extremum statistics is often ob-

served to arise in finite sized, multi-body systems, exhibitings; (11, ..., ts) = ks(t1)8(t1 — 12)...8(ty — ts_1), (A7)
correlation over a broad range of sgalgs, Iead|.ng to emerge%here ks(t1) are the intensity coefficients (Stratonovich,
phenomenology, such as self-similarity and in some casei963)

fractional dimensions (Boffetta et al., 2002). A universal ap- SuBstituting Eq. (A7) into Eq. (A6) yields

proach to extract extremum statistics from short- and inter-

(A3)

mediate marine forecasts was suggested. Possible general- /1 85 ay, (1)
ization of the approach for small forecast ensembles will be (z(Ddan (1)), = Z (7>k‘?+1(t)< 52(1)" > ’ (A8)
discussed in a separate paper. s=1 ¢
From Eg. (Al) we obtain for=1
Sa, (1) .
Appendix A <L> = Y (bm COSH + ¢ SING) , (A9)
8z(1) |,
Wind error sourceterm and fors>2
. . . . . . 8%am (1)
Using the quasi-geostrophic approximation, governing raval 0. (A10)
Egs. (6-8) can be re-written in the spectral form QR E
Taking into consideration that for exponential distribution
dap function the s-order cumulant is calculatedas2-(s — 1)!
T -z , 1), Al . )
dt m (@) + Om (@1, 3) + 1 (1) (A1) (Zelen and Severo, 1972), and averaging Eq. (A9) over the
tochastic procesyr) we find
whereZ,, andQ,, are linear and nonlinear (inertial and fric- S step sH1) we fi
tional) terms, respectively (for details see Pedlosky, 1987),R,, = 2 (b2 + c2), (A11)
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The coefficients,, andc,, depend only on the spatial in- Capotondi, A. and Holland, W. R.: Decadal variability in an ideal-
homogeneity of stochastic wind forcing. Spectrum of wind ized ocean model and its sensitivity to surface boundary condi-
error termr,, for different structure function& is shown in tions, J. Phys. Oceanogr., 27, 1072-1093, 1997.
Figs. 9a, b, c. Chu, P. C. and Ivanov, L. M.: Statistical characteristics of irre-
versible predictability time in regional ocean models, Nonlin.
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