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Abstract

Fast measurements of aerosol and gas-phase constituents coupled with the

ISORROPIA-II thermodynamic equilibrium model are used to study the partitioning of

semivolatile inorganic species and phase state of Mexico City aerosol sampled at the

T1 site during the MILAGRO 2006 campaign. Overall, predicted semivolatile partition-5

ing agrees well with measurements. PM2.5 is insensitive to changes in ammonia but

is to acidic semivolatile species. Semi-volatile partitioning equilibrates on a timescale

between 6 and 20 min. When the aerosol sulfate-to-nitrate molar ratio is less than 1,

predictions improve substantially if the aerosol is assumed to follow the deliquescent

phase diagram. Treating crustal species as “equivalent sodium” (rather than explicitly)10

in the thermodynamic equilibrium calculations introduces important biases in predicted

aerosol water uptake, nitrate and ammonium; neglecting crustals further increases

errors dramatically. This suggests that explicitly considering crustals in the thermody-

namic calculations are required to accurately predict the partitioning and phase state

of aerosols.15

1 Introduction

Atmospheric particulate matter plays a central role in atmospheric phenomena like visi-

bility reduction, public health, formation of acid rain and climate change. Fine particles,

otherwise called PM2.5 (particles with diameter less than 2.5µm) are prime contribu-

tors to the above processes, a quantitative understanding of which requires knowledge20

of their phase and composition. Much of the dry particle mass is inorganic (25–75%)

(Heitzenberg, 1989) with the main components often being ammonium (NH
+

4 ), sulfate

(SO
2−
4

), and nitrate (NO
−
3

). Depending on the location, sodium (Na
+

) and chloride (Cl
−

)

may also be found as well as crustal species (Ca
2+

, K
+

, Mg
2+

) which are associated

with dust (Heitzenberg, 1989; Malm et al., 1994). These species may be dissolved in25

aqueous phase, or in the form of precipitated solids, and some may partially volatilize
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(e.g. NH
+

4 , NO
−
3

, Cl
−

). The partitioning of these species between gas, liquid and solid

phase is determined by thermodynamic equilibrium and can be simulated by thermo-

dynamic equilibrium models, such as AIM2 (Wexler and Clegg, 2002), SCAPE2 (Meng

et al., 1995), GFEMN (Ansari and Pandis, 1999a,b), UHAERO (Amundson et al., 2006)

and ISORROPIA-II (Fountoukis and Nenes, 2007). These models differ in the chemi-5

cal species that they can treat, the method used to solve for equilibrium composition,

the type of input they can accept, and their computational efficiency. Similarities and

differences between these models are discussed elsewhere (e.g., Ansari and Pandis,

1999a, b; Zhang et al., 2000; Amundson et al., 2006; Fountoukis and Nenes, 2007).

An important question regarding the partitioning of semivolatile inorganic aerosol10

phase is whether the assumption of thermodynamic equilibrium is adequate to predict

chemical composition. A key factor is aerosol size (Wexler and Seinfeld 1991, 1992;

Meng and Seinfeld, 1996; Dassios and Pandis, 1999; Cruz et al., 2000); for submicron

particles, equilibrium is achieved typically within a few minutes, often faster than the

timescale of ambient condition change (Meng and Seinfeld, 1996; Dassios and Pan-15

dis, 1999; Cruz et al., 2000) so that the assumption of instantaneous equilibrium can

be used to model composition. Coarse mode particles however require substantial

time, on the order of an hour or more (Meng and Seinfeld, 1996; Dassios and Pandis,

1999; Cruz et al., 2000), so explicit condensation/evaporation dynamics is required for

modeling composition (e.g., Pilinis et al., 2000; Capaldo et al., 2000).20

Several studies have been conducted to test the applicability of the equilibrium as-

sumption by comparing thermodynamic model predictions against observational data.

Moya et al. (2001) used ISORROPIA, SCAPE2 and GFEMN to study the partitioning

of nitrate and ammonium in Mexico City during the 1997 IMADA-AVER field campaign.

Using daily and 6-h average PM2.5 data, Moya et al. (2001) found the equilibrium ap-25

proach reproduced most of the data, however a few discrepancies were found and were

attributed to the implicit treatment of crustal species (treated as “equivalent” sodium by

ISORROPIA and GFEMN) as opposed to the explicit treatment (by SCAPE2) and to

the use of IMADA observations averaged over long periods of time (6 h). Zhang et
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al. (2003) assessed the nitrate – ammonium equilibrium assumption using the ISOR-

ROPIA model and high resolution (5-min average) data obtained during the 1999 At-

lanta Supersite Experiment. They found good agreement for nitrate and ammonium

when a 15% correction (within measurement uncertainty) in PM2.5 SO
2−
4

was applied.

Takahama et al. (2004) used GFEMN to model the partitioning of nitrate during the5

2001–2002 Pittsburg Air Quality Study (PAQS). Using 1 and 2-h average measure-

ments of PM2.5 they found most of the predictions of nitrate to agree with observations

to within experimental uncertainty. Yu et al. (2005) used the 1999 Atlanta Supersite

Experiment data, the PAQS dataset, and 12-h measurement data from North Carolina

in 1999 to assess the ability of the three-dimensional (3-D) Community Multiscale Air10

Quality (CMAQ) model (which includes ISORROPIA) to predict aerosol nitrate. They

found that errors associated with sulfate and total ammonium predictions of the 3-D

model can lead to large errors in predicted aerosol nitrate. Metzger et al. (2006) used

ISORROPIA, SCAPE2 and EQSAM2 to study the partitioning of ammonium and ni-

trate during the Mediterranean INtensive Oxidant Study (MINOS) experiment. Using15

2 and 3-h average measurements they showed that only when crustal species and

(lumped) organic acids are explicitly accounted for, the observed gas – aerosol parti-

tioning of ammonia and nitric acid can be accurately reproduced. Using CMAQ and

ISORROPIA, Nowak et al. (2006) analyzed gas phase ammonia measurements (using

a PILS for the aerosol and a CIMS instrument for the gas phase data) from the 200220

Atlanta Aerosol Nucleation and Real-Time Characterization Experiment (ANARChE)

and found excellent agreement for NH3 and NH
+

4 concentrations.

The phase state of aerosols is another important issue in aerosol modeling, as they

can follow the deliquescence branch (in which solids precipitate out of the aqueous

aerosol phase upon saturation) or the efflorescence branch (in which the aerosol is25

always an aqueous phase and solids are not allowed to form). Phase state may de-

pend on RH history. For example, as RH increases, particles deliquesce, while when

RH decreases, particle may not crystallize at its initial deliquescence point, but retain

water until a much lower relative humidity (hysteresis phenomenon). Ansari and Pan-
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dis (2000) studied the impact of assuming a deliquescent vs. effluorescent path on

the partitioning of nitrate in Southern California; when nitrate concentrations were low

(<8µg m
−3

), the consideration of both branches of aerosol behavior is essential, while

no significant difference between stable and metastable predictions was found for high

(>8µg m
−3

) aerosol nitrate concentrations. Moya et al. (2002) showed that the as-5

sumption of metastable state for sub-micrometer particles may introduce large errors

when RH <60% highlighting the importance of deliquescence predictions at low RH.

Most studies to date either use measurements averaged over long times or use

models that do not explicitly treat crustals. If measurements are slow, significant varia-

tions in T , RH and aerosol precursor concentrations may occur during sampling which10

cannot be accounted for in equilibrium calculations. Additionally, the consideration of

crustal material in predicting the partitioning of nitrate and ammonium, especially in

areas where dust comprises a significant portion of total PM, can considerably affect

the aerosol thermodynamics and improve model predictions (Ansari and Pandis, 1999;

Moya et al., 2002).15

In the present work, we use ISORROPIA-II, which treats the thermodynamics of

the K
+

-Ca
2+

-Mg
2+

-NH
+

4 -Na
+

-SO
2−
4

-HSO
−
4

-NO
−
3

-Cl
−

-H2O aerosol system, to a) test the

thermodynamic equilibrium assumption for the Mexico City environment during the MI-

LAGRO 2006 campaign, b) gain insight on the preferred phase behavior of the aerosol

(i.e. deliquescent or metastable), and, c) assess the importance of a full thermody-20

namic treatment versus neglecting the presence of crustals (or treating them as equiv-

alent sodium). The MILAGRO 2006 dataset analyzed here is ideal for the objectives of

this study, because of significant concentrations of all the inorganic species mentioned

above.

2 Observational data25

The Megacity Initiative: Local and Global Research Observations (MILAGRO) Cam-

paign took place in 1–30 March 2006 (http://www.eol.ucar.edu/projects/milagro/). The
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three main ground locations were: one site at the Instituto Mexicano del Petróleo (T0

site, latitude: 19.25 N, longitude: 99.10 W), another at the Universidad Tecnológica de

Tecámac in the State of Mexico (T1 site, latitude: 19.703 N, longitude: 98.982 W) and a

third in Rancho La Bisnaga in the State of Hidalgo (T2 site, latitude: 20.01 N, longitude:

98.909 W). The data analyzed in this study were collected at the T1 site from 21 to 305

March 2006 and include fine particulate matter concentrations (PM2.5) of NH
+

4 , SO
2−
4

,

NO
−
3

, Na
+

, Cl
−

, Ca
2+

, K
+

, Mg
2+

, gas phase concentrations of NH3, HNO3, HCl and

ambient temperature, and relative humidity.

The PM2.5 ion concentrations were measured by a Particle Into Liquid Sampler

(PILS) with a 6-min integrated sampling period and a new chromatogram being started10

every 17 min (Orsini et al., 2003). The advantage of this instrument is the simultane-

ous measurements of important inorganic anions and cations at high time-resolution.

NH3(g) concentrations were obtained every minute with quantum-cascade laser (QCL)

spectrometer (Fischer et al., 2007
1
), while volatile nitrate (i.e. HNO3(g) + NH4NO3)

concentrations were measured every 5 min by a thermal dissociation-laser induced flu-15

orescence of nitrogen oxides (TD-LIF, Day et al., 2002; Farmer et al., 2006). Ambient

temperature (T ), pressure and relative humidity (RH) data are based on the measure-

ments of the Vaisala Y50 Sensor which was operated with a 1-min time resolution.

Aerosol particles (PM2.5) were also collected (6-hour samples) with a cascade micro-

orifice uniform deposit impactor (MOUDI) (MSP Model 100, Marple et al., 1991) at the20

same site and sampling period.

6-minute averages of NH3(g) concentrations, T and RH were obtained to correspond

to the 5-min averages of HNO3(g) and 6-min averages of PM2.5 ion concentrations.

In ∼26% of the cases, the 5-min averages of HNO3(g) data were not coincident with

the 6-min PILS concentrations, therefore a ∼20-min average were considered instead25

1
Fischer, M. L., VanReken, T. M., Coffey, M. T., Wood, E., Herndon, S. C., Littlejohn, D., and

Hannigan, J. W.: Measurements of ammonia at the T1 site during MILAGRO 2006, in review,

2007.
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(average of two measurements with a 10-min interval between the two data points).

The TD-LIF measurement is the sum of gas-phase and semivolatile nitrate (i.e. HNO3(g)

+ NH4NO3), from which HNO3(g) is obtained by subtracting PM2.5 ammonium nitrate

concentrations from the PILS; this can be done because preliminary ISORROPIA-II

calculations suggest that the PILS nitrate is entirely semivolatile (i.e. NH4NO3 only).5

Aerosol K
+

was not accurately measured by PILS due to a calibration interference;

instead, it was estimated based on a nearly constant ratio (∼0.4) of K
+

to the sum of

crustal species (Ca
2+

, K
+

, Mg
2+

) obtained from the impactor data for the same site and

sampling period. Gas-phase hydrochloric acid (HCl(g)) concentrations were assumed

to be zero (hence total Cl
−

was equal to aerosol Cl
−

). The validity of this assumption is10

assessed in Sect. 4. The measurement uncertainty was estimated to be approximately

±20% for the PILS instrument (Orsini et al., 2003), ±10% for the NH3(g) measurement

(Fischer et al., 2007
1
), ±30% for the TD-LIF instrument (Day et al., 2002; Farmer et al.,

2006) and ±5% for Tand RH. The HNO3(g) uncertainty, σHNO3(g)
, was estimated from

the uncertainties of volatile σ(TD−LIF nitrate), and PILS nitrate σ(PILS nitrate), respectively,15

as:

σ2
HNO3(g)

= σ2
(TD−LIF nitrate)

+ σ2
(PILS nitrate)

(1)

The reported detection limit for the PILS concentrations is 0.02µg m
−3

for PILS Na
+

,

NH
+

4 , NO
−
3

and SO
2−
4

, 0.002µg m
−3

for PILS Ca
2+

, Mg
2+

and Cl
−

and 0.35µg m
−3

for

the QCL NH3(g) measurement.20

Overall, 102 6-min data points were obtained for which measurements of all par-

ticulate and gaseous species are available. Ammonia was predominantly in the

gas phase while nitrate was dominant in the aerosol phase. The total (gas +

particulate) ammonia (TA) to sulfate molar ratio was much larger than 2 (average

value = 26.5) indicating sulfate poor aerosols. Relatively low concentrations of25

Na
+

(0.063±0.113µg m
−3

), Ca
2+

(0.116±0.206µg m
−3

), K
+

(0.097±0.140µg m
−3

) and

Mg
2+

(0.033±0.051µg m
−3

) were detected while the total PM2.5 mass was, on average,
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28.47±13.03µg m
−3

. Temperature did not vary significantly over the measurement pe-

riod of study (mean value of 289.5±5.1 K) while RH varied significantly (mean value of

58.1±22.6%), exhibiting a typical diurnal cycle which peaks in the evening and early

morning and is minimum at around noon. Fig. 1 shows an example of diurnal profiles

of measured ammonium, nitrate and ambient RH for March 27. A detailed overview of5

the dataset and meteorological conditions is given elsewhere (e.g. Doran et al., 2007;

Fast et al., 2007).

3 Aerosol equilibrium modeling

ISORROPIA-II (Fountoukis and Nenes, 2007) is a computationally efficient code that

treats the thermodynamics of K
+

-Ca
2+

-Mg
2+

-NH
+

4 -Na
+

-SO
2−
4

-NO
−
3

-Cl
−

-H2O aerosol10

systems and is used in this study. ISORROPIA-II is designed to solve two classes

of problems: (a) forward (or “closed”) problems, in which known quantities are T , RH

and the total (gas + aerosol) concentrations of NH3, H2SO4, Na, HCl, HNO3, Ca, K,

and Mg, and, (b) reverse (or “open”) problems, in which known quantities are T , RH

and the concentrations of aerosol NH4, SO4, Na, Cl, NO3, Ca, K, and Mg. The output15

of both problems is the concentration of species in gas and aerosol (solid/liquid) phase.

ISORROPIA-II can predict composition for the “stable” (or deliquescent path) solution

where salts precipitate once the aqueous phase becomes saturated with respect to a

salt, and, a “metastable” (efflorescent path) solution, in which the aerosol is composed

only of an aqueous phase regardless of its saturation state. For the dataset of this20

study, the forward mode of ISORROPIA-II is used.
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4 Results and discussion

4.1 Model vs. observations

In this section we evaluate the ability of ISORROPIA-II to reproduce the observed

partitioning of ammonia, nitrate and chloride, which will test the expectation that equi-

librium partitioning of semivolatile aerosol species is attained somewhere between 65

and 30 min. Figures 2a–e show predicted vs. observed concentrations of gas-phase

ammonia (NH3(g)), nitric acid (HNO3(g)), aerosol phase ammonium (NH4(p)), nitrate

(NO3(p)) and chloride (Cl(p)), respectively; Table 1 summarizes the corresponding error

metrics. For the simulations of Fig. 2, ISORROPIA-II was run in forward mode and sta-

ble state conditions. Most of the total ammonia (88.7% on average) resides in the gas10

phase. The data have been separated into 4 classes based on a “completeness factor”

(CF). For half of the data analyzed (51%), 6-min average measurements of all (gas

+ particulate phase) species were available; these data are represented as “CF=0”.

For ∼26% of the data, only 20-min average measurement of ion concentrations from

the PILS instrument were available and are “CF=1” data. Subtracting the PILS am-15

monium nitrate measurement from the TD-LIF (i.e. HNO3(g) + NH4NO3) occasionally

resulted in a negative HNO3(g). Under such conditions, HNO3(g) is assumed zero, and

the data is indicated as “CF=2” if they correspond to 6-minute averages (13% of the

data), and “CF=3” for 20 min averages (10% of the data). The prediction skill of ISOR-

ROPIA is quantifed in terms of two error metrics, the normalized mean error (NME),20

NME=

n∑

i

|Ii−Oi |

n∑

i

Oi

, and normalized mean bias (NMB), NMB=

n∑

i

(Ii−Oi )

n∑

i

Oi

, where Ii represents

predictions of ISORROPIA-II for data point i , Oi represents observations and n is the

total number of data points. NME gives an estimation of the overall discrepancy (scat-

ter) between predictions and observations, while NMB is sensitive to systematic errors

(biases).25

A very good agreement between model predictions and observations was found for
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NH3(g) (Fig. 2a) with a NME of 5.3%, a slope of 0.991, an intercept of –0.676µg m
−3

(much smaller than concentrations of NH3(g)) and an R
2

of 0.992. This is not sur-

prising, as most of the ammonia resides in the gas phase, so NH3(g) is insensitive to

prediction errors. Particulate ammonium (Fig. 2b) was systematically overpredicted,

as shown by the 37.1% NMB (Table 1). This overprediction could arise from the phase5

state assumption, departure from equilibrium or measurement uncertainty; all of these

possibilities are explored in Sect. 4.3.

Predictions of HNO3(g) were subject to significant scatter (Fig. 2c), with a NME of

80.8% but the bias was comparable to the other species (Table 1). The scatter is at-

tributed to a) the fact that particles in the PM10 - PM2.5 range are not included in our10

calculations (although too large to be in equilibrium with the gas phase, they could

still react with nitric acid and introduce some prediction error), b) zero concentrations

of HNO3(g) for a portion of the data (CF=2 and 3), and, c) low, on average, concen-

trations of gas phase nitrate which results in predictions of HNO3(g) being very sensi-

tive to errors in particulate nitrate (NO3(p)). When partitioning is predominantly in one15

phase, small errors in its predicted concentration are substantially amplified in the other

phase. Additionally, the estimated uncertainty for HNO3(g) (using Eq. 1) was found to

be roughly ∼100%; the agreement between predicted and observed HNO3(g) is in fact

within the estimated uncertainty. For particulate nitrate (Fig. 2d), ISORROPIA-II pre-

dictions agree well with observations with a NME of 27.2% and a small bias (NMB =20

8.0%).

Observed concentrations of Cl
−

agree well (NME=15.5%) with predicted values

(Fig. 2e); ISORROPIA-II predicts very small amounts of chloride in the gas phase be-

cause the large excess of NH3(g) tends to drive Cl
−

almost completely into the aerosol

phase. This justifies (to first order) the assumption of zero HCl(g)in the thermody-25

namic calculations. However, the NME and NMB are almost identical in magnitude;

this suggests that the prediction error is likely only from the “missing” (small) amount

of HCl(g)that are not considered in the calculations of Fig. 2e. Minimizing the NMB

would require on average 0.03µg m
−3

gas-phase HCl (min:0, max: 0.3µg m
−3

), which
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is consistent with the sub-ppb estimates of HCl(g) by San Martini et al. (2006) for Mexico

City aerosol during MCMA-2003 and with measurements (∼1 ppb) reported by Moya

et al. (2004).

Agreement between predictions and measurements depends on many factors, such

as equilibrium timescale and measurement uncertainty; we assess the importance of5

each by examining the prediction skill between CF classes, since a) the averaging

timescale changes, and, b) the calculated zero concentration of HNO3(g) for some of

the data may lead to a biased prediction. Figure 2 (and Table 1) shows that the closure

for CF=0 data is slightly worse than for CF=1 to 3, which suggests that the averaging

timescale affects the bias. Since the NMB and NME for particulate nitrate are consis-10

tent between CF classifications, this suggests that the TD-LIF provides an excellent

measure of volatile nitrate. Based on work to date (e.g., Meng and Seinfeld, 1996;

Dassios and Pandis, 1999; Cruz et al., 2000) we expect the equilibration timescale to

be ∼10 min; indeed the Table 1 results support this, as NMB is consistently minimum

for the 20 min data (Table 1). To further explore that the decrease in NMB is a result of15

equilibration timescale (and not any other experimental uncertainty), we use the CF=0

data, compute 35 min averages and compare against the thermodynamic predictions.

Table 2 shows results of calculations using ∼20 min (CF=1) and ∼35 min; the latter

was computed by averaging consecutive 6-min (i.e., CF=0) measurements. As can be

seen, NME and NMB decreases between the 6 and 20 min averages, but increases20

notably for the 35 min averages suggesting that the timescale of equilibrium indeed

ranges between 6 and 20 min.

Although NMB strongly depends on the averaging time, NME does not. This may

be the residual effect of particles in the PM10 – PM2.5 reacting with nitrates; since

coarse particles vary significantly throughout the dataset and are not included in our25

calculations, their effect likely manifests as “scatter” in the predictions. This suggests

that up to 30% of the unresolved particulate nitrate (which is expressed as ∼30% NME)

is associated with particles in the PM10 – PM2.5 range.
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4.2 Deliquescence vs. efflorescence

Due to the hysteresis effect, there is always an issue on what is the appropriate thermo-

dynamic state assumption for RH <60%, where aerosols can often form a solid phase

of precipitated salts (Ansari and Pandis, 2000; Moya et al., 2002). This dataset covers

a wide range of RH (19–94%) and makes it possible to assess the preferred phase5

transition path (i.e. deliquescence or efflorescence branch) for Mexico City aerosol.

In Fig. 3 we plot the stable (deliquescence) and metastable (efflorescence) solu-

tion predictions of ISORROPIA-II compared to observations for NH4(p) and NO3(p) as

a function of RH. The stable state solution of ISORROPIA-II predicts higher concen-

trations of aerosol ammonium and aerosol nitrate at RH <50% (which is a typical del-10

iquescence point for the salt mixtures under consideration). This is in agreement with

previous studies (Ansari and Pandis, 2000) and is primarily attributed to high con-

centrations of ammonium nitrate formed in the stable state solution of ISORROPIA II

through the reaction NH3(g) + HNO3(g) ↔ NH4NO3(s). At low RH (<50%), the sta-

ble state solution predicts a solid phase consisting mainly of (NH4)2SO4 and NH4NO3.15

The metastable state solution assumes the particulates are composed of an aqueous

supersaturated solution throughout the whole RH regime; hence no solid NH4NO3 is

allowed to form. For RH <50%, the metastable solution predicts less NO3(p) and NH4(p)

as compared to the stable solution. At higher RH, solid NH4NO3 dissolves and both

“stable” and “metastable” aerosol predictions become identical.20

The difference between stable and metastable solutions predictions shown in Fig. 3

are quantified in Table 3; NME and NMB are computed only for data with RH<50%. For

aerosol ammonium, although the NME for the two solutions of ISORROPIA II is essen-

tially the same, the opposite sign in NMB (Table 3), indicates an overprediction (+11%)

of ammonium by the stable state and an underprediction (–9%) by the metastable solu-25

tion. The systematic overprediction of ammonium by the stable solution (seen in Fig. 2)

may partially reflect measurement uncertainty, which is analyzed in detail in Sect. 4.3.

For aerosol nitrate, the error and bias between predictions and observations is sig-
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nificantly larger when using the metastable solution (NME=47.4%, NMB=–46.4%) of

ISORROPIA II compared to the stable state solution (NME=25.8%, NMB=–18.5%) for

RH <50%, suggesting that aerosols in Mexico City prefer the deliquescence branch

of the phase diagram. However, Moya et al. (2007)
2

showed that the efflorescence

branch gives better agreement between predictions and observations at low RH during5

the MER 2005 campaign (Mexico City downtown). An important difference between the

two datasets is the sulfate-to-nitrate (SO
2−
4

/NO
−
3

) molar ratio, being larger than unity for

the MER data and less than unity for the current dataset (on average SO
2−
4

/NO
−
3
≈0.7).

Since a subset of the current dataset exhibited a SO
2−
4

/NO
−
3

larger than 1, we exam-

ine the possibility that particulate SO
2−
4

/NO
−
3

correlates with a change in the preferred10

phase state for RH below 50%. In Table 4 we show the performance of both stable and

metastable solution of ISORROPIA-II at RH below 50% and for aerosol SO
2−
4

/NO
−
3

ra-

tio larger and less than 1. At aerosol SO
2−
4

/NO
−
3
<1, NME and NMB are much larger in

the metastable solution for HNO3(g) and NO3(p) and slightly larger for NH3(g) and NH4(p)

while for aerosol SO
2−
4

/NO
−
3
>1 the opposite is seen (although with much smaller dif-15

ferences in NMB between the two solutions). The results of this study, combined with

Moya et al. (2007)
2

suggest that the stable state is preferred when SO
2−
4

/NO
−
3
<1 and

vice versa.

4.3 Sensitivity of model predictions to aerosol precursor concentrations

In this section we explore the sensitivity of predictions to aerosol precursor concentra-20

tions to a) assess the importance of measurement uncertainty on predictions, and, b)

assess the sensitivity of PM2.5 to changes in emitted precursors. The sensitivity is as-

sessed by perturbing the input concentrations of total ammonia (TA), total nitrate (TN),

2
Moya, M., Fountoukis, C., Nenes, A., Mat́ıas, E., and Grutter, M.: Predicting diurnal vari-

ability of fine inorganic aerosols and their gas-phase precursors during February 2005 near

downtown Mexico City: SCAPE2 and ISORROPIA-II model simulations, in review, 2007.
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total sulfate (TS), crustals and sodium by ±20% (approximately the PILS measure-

ment uncertainty). The results of this analysis are shown in Table 5. A 20% increase in

TS does not improve the agreement between predictions and observations; in fact, a

slight increase of the NME was found for ammonia and nitrate. Since the impactor data

showed ∼40% (on average) higher TS than the PILS (not shown), we further perturb5

TS by 40%, but NME does not decrease (67.9% for NH4(p) and 27.8% for NO3(p)). A

+20% perturbation in crustals and sodium concentrations however, slightly improved

predictions of NH3(g) and NH4(p) and decreased the observed overprediction seen in

Fig. 2b; this is because crustals and sodium preferentially neutralize sulfates, so less

ammonia binds to form (NH4)2SO4 which decreases the predicted NH4(p)concentration10

and increases the amount of NH3(g). In fact, the impactor data suggest that Ca
2+

, Mg
2+

and Na
+

are much higher (approximately 4 times) than obtained with the PILS. Increas-

ing crustals and sodium by a factor of 4 significantly decreases the systematic error

between predictions and measurements for particulate ammonium (NMB = 13.6%);

predictions for NH3(g) (mean predicted value = 17.42µg m
−3

) and NH4(p) (mean pre-15

dicted value = 2.55µg m
−3

) are improved. This implies that the PILS in this dataset

may not account for all the crustals present in PM2.5.

In Fig. 4 we plot the predicted change (%) in PM2.5 nitrate as a function of RH when

a 20% decrease in input concentrations of TA, TS and TN is applied. The nitrate re-

sponse to sulfate is negligible, ∆x=0.36%, (Fig. 3, Table 5) because TA concentrations20

are substantially in excess, and, thus a 20% change in TS is not enough to affect the

formation of ammonium nitrate. (In an ammonia-limited environment, a reduction in

sulfate would increase aerosol nitrate as ammonia is freed and allowed to react with

nitric acid). As seen in Fig. 4, nitrate predictions are sensitive to changes in TA only

for RH <60%. This is expected since below the deliquescence point of NH4NO3 the25

partitioning of nitrate is strongly dependent on the ammonia vapor pressure and thus

reducing TA reduces the amount of NH4NO3 formed. At RH >60%, nitrate is mostly

dissolved and unaffected by the changes in TA. Aerosol nitrate predictions are more

directly influenced by reductions in TN as shown in Fig. 4 and Table 5 (∆x=–22.8%),
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and is in agreement with Takahama et al. (2004). The sensitivity of aerosol nitrate is

RH-dependent as the partitioning of nitrate strongly depends on the amount of aerosol

water.

4.4 Importance of explicitly treating crustal species

Often thermodynamic models treat the presence of crustals as mole-equivalent sodium5

(i.e. Ca
2+

= 2Na
+

, Mg
2+

= 2Na
+

, K
+
= Na

+
) or as insoluble. In this section we examine

the impact of these assumptions, versus using full thermodynamics. Table 6 displays

a summary of this sensitivity test; shown are average concentrations and error metrics

for nitrate, ammonium and water with ISORROPIA-II. For all the simulations we used

the concentrations of crustals and sodium from the impactor data. When Ca
2+

, K
+

and10

Mg
2+

are treated as insoluble (unreactive), ISORROPIA-II predicts higher, on average,

concentrations of ammonium compared to both the equivalent-Na and explicit treat-

ment, since more sulfate is available to bind with ammonium, and thus the error and

bias between predicted and observed ammonium increases for the insoluble approach

(Table 6). For particulate nitrate, NME is the lowest when crustals are treated explic-15

itly. The changes in NME and NMB among the three crustal treatment approaches are

rather small since ammonia is enough to fully neutralize the available nitrate regardless

of the treatment of crustals. The difference in nitrate prediction when treating crustals

explicitly vs. as equivalent sodium is expected to be large in environments where non-

volatile nitrate (Ca(NO3)2, Mg(NO3)2, KNO3) is present in significant amounts (Moya et20

al., 2002; Jacobson, 1999). In the current dataset, aerosol nitrate is present in the form

of ammonium nitrate (due to ammonia-rich environment) and thus replacing crustals

with sodium is expected to have a minor effect on predicted nitrate response, primar-

ily from differences in predicted water uptake (Table 6). The equivalent Na approach

predicts aerosol water content which is higher (by 13.5%) than the one predicted by25

the explicit treatment of crustals and very close to the insoluble approach (Table 6).

This is attributed to the formation of salts with low solubility (e.g., CaSO4) which do

not significantly contribute to water uptake. The difference in water content also affects
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aerosol acidity (i.e. pH) and water-soluble species concentration. It should be noted

that the differences described in Table 6 between the equivalent Na and explicit treat-

ment of crustals are the minimum expected considering the large amounts of ammonia

in Mexico City which minimizes the effect of replacing crustals with sodium.

5 Conclusions5

This study focuses on thermodynamical modeling of gas-aerosol partitioning sampled

during the MILAGRO 2006 campaign in Mexico City. Observations include using high-

time resolution measurements of NH3(g), volatile nitrate (i.e. HNO3(g) + NH4NO3), NH
+

4 ,

SO
2−
4

, NO
−
3

, Na
+

, Cl
−

, Ca
2+

, K
+

and Mg
2+

. Thermodynamic modeling was done using

a state-of-the-art aerosol equilibrium model, ISORROPIA-II (Fountoukis and Nenes,10

2007).

In agreement with observations, ISORROPIA-II predicts that ammonia (82.4±10.1%)

primarily resides in the gas phase, while most of total nitrate (79.8 ± 25.5%) and chlo-

ride (75.3±29.1%) resides in the aerosol phase. The mean observed value for NH3(g)

was 17.73µg m
−3

and 5.37µg m
−3

for NO3(p). An excellent agreement between pre-15

dicted and observed concentration of NH3(g) was found with a NME of 5.3%. Very good

agreement was also found for NO3(p) (NME=27.2%), NH4(p) (NME=37.1%) and Cl(p)

(NME=15.5%) concentrations for most of the data. Larger discrepancies were seen in

predicted HNO3(g) since uncertainties in the volatile nitrate measurement (HNO3(g) +

NH4NO3) are magnified by the high sensitivity of HNO3(g) because nitrate partitioned20

primarily to the aerosol phase. A number of important conclusions arise from this study:

1. Application of ISORROPIA-II is largely successful suggesting that the assump-

tion of thermodynamic equilibrium can be appropriate for complex Mexico City

aerosols.

2. The timescale for reaching thermodynamic equilibrium for the conditions of25

aerosol load and ambient temperature ranges between 6 and 20 min.
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3. The scatter in nitrate prediction error (∼30%) was mostly attributed to reaction of

particles between 2.5 and 10µm diameter with nitrate (the effect of which is not

considered in our analysis). This suggests that, on average, up to 30% of the total

aerosol nitrate can be associated with PM2.5 – PM10 particles.

4. At low RH (<50%), the stable state (i.e. deliquescence branch) solution of5

ISORROPIA-II predicted significantly higher concentrations of aerosol nitrate

compared to the metastable (i.e. efflorescence) solution. Further analysis sug-

gests this to be true when at SO
2−
4

/NO
−
3
<1. The opposite was seen (although

with a much smaller difference between metastable and stable predictions) when

SO
2−
4

/NO
−
3
>1. This can serve as an important constraint for three dimensional10

air quality models that simulate ambient particle concentrations under conditions

characteristic of Mexico City.

5. The volatile fraction of PM2.5 was found to be mostly sensitive to changes in TN.

This suggests that in an ammonia-rich environment, (such as Mexico City) a com-

bined reduction in TS and TN (rather than TA) appears to be most effective in15

reducing PM2.5 (on a mol per mol basis).

6. Treating crustal species as “equivalent sodium” (or insoluble) has an important

impact on predicted aerosol water uptake, nitrate and ammonium, despite the

ammonia-rich environment of Mexico City. This suggests that explicit treatment of

crustals (when present) is required for accurate predictions of aerosol partitioning20

and phase state.

7. Concentrations of gas phase HCl were most likely low (mean predicted value

for HCl(g)=0.03µg m
−3

), a consequence of having large excess of NH3(g) which

tends to drive Cl
−

into the aerosol.
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Table 1. Comparison between predicted and observed concentrations of semivolatile species

during the MILAGRO 2006 (21–30 March) campaign. Simulations are done assuming the

aerosol can form solids (“stable” solution).

Data Type NH3(g) NH4(p) HNO3(g) NO3(p) HCl(g) Cl(p)

All data

mean observed (µg m
−3

) 17.73±11.02 2.24±1.22 1.81±1.88 5.37±3.57 – 0.25±0.56

mean predicted (µg m
−3

) 16.89±10.97 3.08±1.56 1.38±1.92 5.80±3.86 0.03±0.11 0.22±0.55

NME (%) 5.31 41.96 80.86 27.20 – 15.57

NMB (%) –4.70 37.14 -23.80 8.01 – –15.57

CF=0

mean observed (µg m
−3

) 17.33±9.83 2.37±1.18 2.63±1.87 5.57±3.50 – 0.28±0.56

mean predicted (µg m
−3

) 16.16±9.88 3.54±1.57 1.43±1.98 6.76±3.77 0.04±0.12 0.25±0.55

NME (%) 7.16 52.30 71.72 33.87 – 17.56

NMB (%) –6.73 49.16 –45.49 21.49 – –17.56

CF=1

mean observed (µg m
−3

) 17.05±12.38 1.83±0.84 1.86±1.64 3.88±1.99 – 0.10±0.30

mean predicted (µg m
−3

) 16.49±12.23 2.39±1.07 1.73±2.32 4.00±2.36 0.01±0.05 0.09±0.29

NME (%) 4.42 41.14 63.06 30.25 – 13.02

NMB (%) –3.26 30.38 -6.83 3.27 – –13.02

CF=2

mean observed (µg m
−3

) 16.63±8.27 2.54±1.71 0.00 7.31±4.89 – 0.28±0.33

mean predicted (µg m
−3

) 16.25±8.09 2.92±1.83 0.98±1.14 6.32±5.30 0.06±0.17 0.24±0.30

NME (%) 2.96 19.39 – 13.46 – 23.91

NMB (%) –2.29 14.97 – –13.46 – –23.91

CF=3

mean observed (µg m
−3

) 22.47±15.43 2.27±1.41 0.00 5.70±4.05 – 0.48±1.06

mean predicted (µg m
−3

) 21.99±15.16 2.74±1.64 0.73±1.05 4.96±4.03 0.02±0.06 0.46±1.05

NME (%) 2.34 23.21 – 12.90 – 5.82

NMB (%) –2.12 21.02 – –12.90 – –5.82
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Table 2. Effect of averaging timescale on ammonia, nitrate and chloride prediction error.

Averaging time Error metric NH3(g) NH4(p) HNO3(g) NO3(p) Cl(p)

6 min (CF=0) NME (%) 7.16 52.30 71.72 33.87 17.56

NMB (%) –6.73 49.16 –45.49 21.49 –17.56

20 min (CF=1) NME (%) 4.42 41.14 63.06 30.25 13.02

NMB (%) –3.26 30.38 –6.83 3.27 –13.02

35min (CF=0) NME (%) 6.68 49.48 64.15 30.54 19.58

NMB (%) –6.60 48.89 –51.17 24.36 –19.58
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Table 3. Prediction skill metrics of ISORROPIA-II, for stable and metastable solutions. Data is

shown for RH <50%.

Aerosol state NH3(g) NH4(p) HNO3(g) NO3(p)

Stable NME (%) 3.56 24.32 67.67 25.83

NMB (%) –1.61 11.00 48.51 –18.52

Metastable NME (%) 3.55 24.28 124.28 47.44

NMB (%) 1.32 –9.03 121.61 –46.42

9226

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/7/9203/2007/acpd-7-9203-2007-print.pdf
http://www.atmos-chem-phys-discuss.net/7/9203/2007/acpd-7-9203-2007-discussion.html
http://www.egu.eu


ACPD

7, 9203–9233, 2007

Thermodynamic

Characterization of

Mexico City Aerosol

C. Fountoukis et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

◭ ◮

◭ ◮

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

EGU

Table 4. Prediction skill metrics of ISORROPIA-II, for stable and metastable solutions. Data is

shown for RH<50% and for sulfate-to-nitrate molar ratio larger and less than unity.

Solution Type Error Metric NH3(g) NH4(p) HNO3(g) NO3(p)

SO
2−
4

/NO
−
3
> 1

Stable
NME (%) 4.85 38.68 28.83 41.45

NMB (%) 0.59 –4.71 24.88 –35.77

Metastable
NME (%) 4.42 35.21 27.00 38.82

NMB (%) 0.49 –3.95 23.04 –33.13

SO
2−
4

/NO
−
3
< 1

Stable
NME (%) 2.99 21.18 82.06 24.26

NMB (%) –2.07 14.71 56.18 –16.61

Metastable
NME (%) 3.08 21.84 159.02 47.02

NMB (%) 1.08 –7.69 155.40 –45.95
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Table 5. Sensitivity of volatile species to aerosol precursor concentrations.

Statistics NH3(g) NH4(p) HNO3(g) NO3(p) HCl(g) Cl(p)

base case

mean observed (µg m
−3

) 17.73 2.24 1.81 5.37 – 0.25

mean predicted (µg m
−3

) 16.89 3.08 1.38 5.80 0.03 0.22

NME (%) 5.31 41.96 80.86 27.20 – 15.57

NMB (%) –4.70 37.14 -23.80 8.01 – –15.57

(+20%) TS

mean predicted (µg m
−3

) 16.57 3.40 1.40 5.78 0.03 0.22

NME (%) 6.91 54.56 81.86 27.54 – 15.47

NMB (%) –6.52 51.53 –22.52 7.58 – –15.47

∆x
∗

(%) =–1.91 10.50 1.68 =–0.40 –= 0.12

(-20%) TS

mean predicted (µg m
−3

) 17.21 2.76 1.36 5.82 0.04 0.21

NME (%) 3.99 31.50 79.87 26.87 – 15.70

NMB (%) –2.91 22.95 –24.95 8.39 – –15.70

∆x
∗

(%) 1.88 –10.34 -1.50 -0.36 – –0.15

(+20%) TN

mean predicted (µg m
−3

) 16.53 3.44 1.46 7.15 0.03 0.22

NME (%) 7.11 56.20 83.92 41.06 – 15.32

NMB (%) –6.75 53.36 –18.98 33.11 – –15.32

∆x
∗

(%) –2.16 11.83 6.33 23.24 – 0.29

(-20%) TN

mean predicted (µg m
−3

) 17.25 2.72 1.26 4.48 0.04 0.21

NME (%) 4.09 32.32 77.02 30.47 – 15.91

NMB (%) –2.69 21.22 –30.06 –16.61 – –15.91

∆x
∗

(%) 2.11 –11.61 –8.22 –22.80 – –0.40

(+20%) TA

mean predicted (µg m
−3

) 20.82 3.14 1.15 6.03 0.03 0.22

NME (%) 17.62 43.29 75.36 25.35 – 14.76

NMB (%) 17.48 39.93 –36.47 12.27 – –14.76

∆x
∗

(%) 23.27 2.04 –16.63 3.95 – 0.96

(–20%) TA

mean predicted (µg m
−3

) 12.98 2.99 1.69 5.49 0.04 0.21

NME (%) 26.74 40.26 88.89 29.91 – 16.79

NMB (%) –26.74 33.29 –6.40 2.15 – –16.79

∆x
∗

(%) –23.13 –2.80 22.83 –5.42 – –1.45

(+20%) Na
+
, Ca

2+
, K

+
, Mg

2+

mean predicted (µg m
−3

) 16.94 3.02 1.39 5.77 0.04 0.21

NME (%) 5.09 40.27 80.44 27.06 – 15.96

NMB (%) –4.42 34.97 –22.52 7.57 – –15.96

∆x
∗

(%) 0.29 –1.57 1.68 –0.40 – –0.47

∗
∆x denotes the % change of the mean predicted value of each species compared to the base

case prediction.
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Table 6. Effect of crustal treatment on predicted concentrations of ammonium, nitrate and

water.

Property Treatment of crustals NH4(p) NO3(p) H2O(liq)

Mean Observed (µg m
−3

) 2.24 5.37 –

Mean Predicted (µg m
−3

)

Insoluble 3.18 5.47 13.23

Equivalent Na 2.77 5.61 13.09

ISORROPIA-II 2.55 5.86 11.67

NME (NMB), (%)

Insoluble 46.76 (41.53) 31.03 (1.87) N/A

Equivalent Na 34.3 (23.3) 28.7 (4.44) N/A

ISORROPIA-II 34.04 (13.6) 26.2 (9.2) N/A
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Fig. 1. Diurnal profile of measured nitrate, ammonium and ambient RH for 27 March 2006.
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Fig. 2. Predicted versus observed concentrations (µg m
−3

) of NH3(g) (a), NH4(p) (b), HNO3(g)

(c), NO3(p) (d), and Cl(p) (e) during the MILAGRO 2006 (21–30 March) campaign. Description of

legend is given in text. Linear regression line (for all data) is shown for reference. ISORROPIA-

II was run assuming stable state solution.
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Fig. 3. Difference (µg m
−3

) between predicted and observed concentrations of aerosol ammo-

nium (a), and, nitrate (b), as a function of RH using the stable (deliquescence) and metastable

(efflorescence) solutions of ISORROPIA-II. Linear regression lines are shown for both solutions

at RH <50%.
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Fig. 4. Response of aerosol nitrate predictions of ISORROPIA-II (stable solution; forward

mode) to a –20% change in TA, TS and TN as a function of RH. All data (CF=0–CF=3) are

used in the dataset.
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