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OBSERVABILITY ANALYSIS AND SENSOR PLACEMENT
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Abstract. The quality of the state estimation of a system is strongly conditioned by the number of
measurements obtained from this system. Here, this dependence is studied by specifying especially
the influence of the number and the position of sensors as well as of their precision. When some
variables are necessary for the control, the possibility of failure of some sensors is analysed from the
calculation of the whole system reliability. The reciprocal problem is also presented: what is the
measurement system allowing to respect some constraints on the observability, the redundancy and

the reliability.
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1. INTRODUCTION

Nowadays, the conception of a measurement system is of
fundamental importance. Indeed, the position of sensors
and their number condition the possibility to observe a
process, to estimate its state and consequently to determine
the type of control to apply. Studying the observability of
a system consists in answering the question: can we
determine the value of variables of a system from a given
set of measurements ? If the process is non observable,
observable and non observable parts may however be
determined. More generally, the posed problem is that one
of diagnosis which consists in estimating the state of a
system, deciding if it is normal or abnormal, judging the
gravity of the abnormal state and with this appreciation
deciding an action to be undertake in order to preserve the
system functionalities. As we can quite imagine, this
estimation is possible only under some conditions and
especially requires to have a minimum amount of
information that is to say a minimum amount of sensors;
these sensors have tobe judiciously placed in order to give
an “image” of the totality of the process. Besides, the
precision of collected information, closely linked to the
precision of sensors and to their good functioning,
conditions the precision of the diagnosis very largely.
Finally, it is necessary to consider the realistic case in
which initially provided sensors can fail. Consequently to
these failures, the diagnosis of the state of the process can
be performed only if variables measured by these faulty
sensors can be estimated. Considering these remarks, one
can assert that the choice of the instrumentation (number,
position and characteristics of sensors) is an essential
factor of the outcome of diagnosis. In the following, our
purpose is limited to the study of system described by
linear equations (for example, they can correspond to
equations of matter or energy conservation), having
concern for the simplicity, the generalisation to more
complex models does not create major problems.

Many works on observability analysis of steady-state

systems have already been published. Firsts of them have
focused on the linear system study (Vaclaveck et al.,
1969); afterwards, Stanley and Mah (1981) and Crowe et
al. (1983) have largely contributed to develop this
analysis. Algorithms of observability that have been
developed are generally based on graph theory (Mah et al.,
1976) or on a classification of variables from a projection
matrix (Crowe, 1989), (Ragot et al., 1994). For systems
described by linear-bilinear equations the first studies of
observability are due to Vaclaveck and Loucka (1976),
Romagnoli and Stephanopoulos (1980). Kretsovalis and
Mah (1988) have then extended this study by using graph
theory. Concurrently, Darouach (1986) has formalised the
study of the observability of bilinear systems in the matrix
form; the method employed is summarised to a sequential
study of the observability of linear systems (Maquin et al.,
1989). More recently, Ragot et al. (1990) proposed an
algorithm based on the simultaneous analysis of linear and
bilinear equations.

After the analysis phase, making in evidence not only
redundancy but also the possible weaknesses of the
measurement system, it is advisable to propose
modifications of the existent sensor placements or even
sensor addition. These modifications are studied
considering precise objectives: to render observable a
particular variable, to increase the degree of redundancy of
another one, to enhance the precision of the estimation of a
particularly useful variable for the control of the process,
to tolerate sensor failures. Precisely, our purpose is to
analyze the different criteria allowing to define the choice
of the measurement system.

2. SYSTEM STATE ESTIMATION

The state estimation of a system is, in general, proceeded
by data reconciliation with respect to the exact and known
supposed model of the system. Indeed, measurements



provided from inputs and outputs of the system do not
verify its constraint equations. It is then advisable to
correct these measurements, therefore to estimate probable
values of the corresponding variables, so as to meet these
equations. In what follows, we note:

X* the actual value vector (ER™)

X the measurement vector (€ R™)

X the estimation vector (ERM)

A the constraint matrix (€ R™™)

V the variance-covariance matrix of measurement errors

Assuming that the measurement errors are zero-mean and
considering the case where the variance-covariance matrix
V is known, the maximum likelihood estimation X s
solution of the optimization problem:

. 1 2
min ® =3 11X - X 1 (1a)
subjectto A X =0 (1b)

This very classic problem can be solved by different
techniques. All, they give the same result with numerical
errors caused by truncatures appearing in the different
calculations:

X=PX (2a)
P=I-VAT(AVAD!A (2b)

The variance-covariance matrix of X is given by:
V=PV 3)

This expression provides the precision of estimations and
therefore defines their confidence interval; as direct
consequence, estimated confidence intervals of corrective
terms of measurements can also be used to detect possible
anomalies (Ragot et al., 1990).

Most of systems are partially observed only and the
number of available measurements is in general much
inferior than that of variables whose state is to be
estimated. The estimation problem has therefore to be re-
examined considering this constraint. The measurement
vector is then linked to the actual value vector and the
measurement error vector by:

X=HX" +¢ 4

The estimation X is solution of the optimization problem
described by equation (1). The conditions of existence for
this solution X are closely related to the rank of the
observability matrix (HT AT). If this rank is equal to the
dimension of X (Darouach, 1986), the system state is
totally observable and its estimation can be written as:

X =R-RAT(ARATTAR)HT V- X (5a)
R=HTV!IH+ATA)! (5b)

This expression shows that the estimation depends on the
measurement system (number and placement of sensors
through the matrix H), the measurements themselves X
and their precisions V; it is necessary to specify this
dependence so as to improve the quality of these
estimations (see section 4).

3. SYSTEM OBSERVABILITY

In practice, it is interesting to test the observability
condition directly from the network structure. Different
solutions have been proposed among which that using the
analysis of cycle matrix associated to the system graph
which is simple and elegant to implement (Gomolka et
al.., 1992); here, we remind the principle of this analysis.

3.1. Cycle matrix of a system

Let us consider the graph (Fig. 1) of a simple process,
where the node '0' represents the environment one (for a
system of matter transportation for instance, the
environment node connects entry and exit flows of this
system). One wishes to enumerate the observable variables
of this system, more precisely to classify variables in
deducible ones and redundant ones.
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Fig. 1. Nodes and arcs of a graph

The fundamental cycle matrix CF of the fig. 2 is obtained
from the fig. 1. In this matrix CF, each column
corresponds to an arc and each row to a fundamental cycle.

1 2 4 5 6 7

1 . 1 1 1 1 .
CF= 2 1 1 . . . 1 .
3 1 1 . . . 1

Fig. 2. Fundamental cycle matrix

A mathematical operation performed on the fundamental
cycle matrix CF allows all the cycles contained in a graph
to be enumerate. By definition, a fundamental cycle matrix
constitutes a basis of cycles. By making a logical xor
between two rows of CF (which represent fundamental
cycles), one can list all the cycles contained in a graph. For
our example, we deduce the following cycle matrix C:

1 2 3 4 5 6 7
1 . 1 1 1 1 .
2 1 1 . . . 1 .
3 . 1 1 . . . 1
C= 4 1 . 1 1 1 1
5 . . . 1 1 . 1
6 1 . 1 . . 1 1

Fig. 3. Matrix of all the cycles of the graph

3.2. Observability analysis

The previous cycles are constituted of arcs corresponding
to measured or unmeasured variables. Depending on the
number of measured variables per cycle, one can define
the observability of all the system variables. The cycle-
based observability study is realised through four
elementary rules (Turbatte et al., 1993):

Rule I: a measured variable is estimable if, and only if, it
only intervenes in cycles where two variables are
measured at least.

Rule II: a measured variable is non estimable if, and only
if, it belongs at least to a cycle where it is the alone
measured variable.

Rule III: an unmeasured variable is deducible if, and only
if, it only intervenes in cycles comprising at least a
measured variable.



Rule IV: an unmeasured variable is non deducible if, and
only if, it belongs at least to a cycle where no variable is
measured.

From process of the fig. 1, let us show the usage of these
four rules. For instance, consider the following measured
and unmeasured variable lists:

L, ={1,2,3} L; =44,5,6,7}

Considering these lists, the application of observability
rules to variables of the matrix C yields the next
conclusions. Variables {1, 2, 3} are measured and
estimable. These variables intervene only in cycles where
two variables are measured (rule I). The variable 6 is
unmeasured but deducible; indeed, cycles to which it
belongs contain all a measured variable at least (rule II).
Variables {4, 5, 7} are unmeasured and non deducible.
These variables belong to the cycle 5 where all variables
are unmeasured (rule IV).

It is important to note that changing the measured variable
list (sensor addition, withdrawal or moving) is simple to
take into account. Indeed, the preceding analysis is based
on the enumeration of cycles which is carried out
independently of measurements. Now, the conception of
measurement system profit by this remark.

3.3. Synthesis of a measurement system according to the
observability concept

The preceding analysis has allowed to enumerate
deducible variables, redundant ones and those that cannot
be estimated. When the “observability degree” of all the
variables is judged unsatisfied, it is advisable to measure
supplementary variables by placing a certain number of
sensors judiciously. This choice can be made by analyzing
the cycle matrix of the system. In a very general manner
this latter can be put under the form:

measured variables  unmeasured variables

Fig. 4. General form of the cycle matrix

The above-mentioned decomposition yields the next
classification of variables:

- Measured and non estimable variables are part of the
bloc 1 (matrix Cme ). There is only a '1' by row in this
submatrix (rule II).

- Estimable and measured variables are part of the
submatrix 10 (matrix Cme). In this submatrix, there is
at least two measured variables by row (rule I).

- Unmeasured and non deducible variables are ordered in
the submatrix 7 (matrix Cme ). This submatrix
intervenes in a “row”” where no variable is measured; all
the other submatrices are null (rule IV).

- Unmeasured and deducible variables intervene in
submatrices 4 and 12 (matrices C'm e and Cm ¢). These
submatrices are part of a “row” containing measured

variable submatrices - submatrices 9 and 10 - (rule II).

Consider the situation where some variables a priori are
measured (list L;)); different criteria can be envisaged to
complete this list so as to increase the observability degree
of the system. For example, one can wish that some
variables become deducible, or that others become
redundant; moreover, one can impose that some of these
variables could not be measured.

As an example, consider the case where L, = {1} and
where the variable 7 cannot be measured; one wishes to
render observable all the variables of the system with
respect to these constraints. In the cycle matrix of the fig.
3, one observes that the definition of L allows to
enumerate 3 cycles (2, 4 and 6) containing the measured
variable 1. Therefore, it is necessary that the remaining
cycles (1, 3 and 5) contain each a measured variable at
least in order to insure the observability of all the variables
of the system. To obtain that and to minimise the number
of supplementary sensors, a couple can be chosen among
next ones:

{2,4},{2,5}, {2, 7}, {3,4},
{3,5},{3, 7}, {4, 5}, {5, 7}

Among these eight solutions, the choice will be able to be
made according to a complementary criterion, for example
of minimal cost, maximal reliability or desired estimation
precision.

4. ESTIMATION ANALYSIS

The estimation procedure provides the state of the system
through the measurements and their respective precisions.
Though, it is very useful to complete this study by
characterising the estimations by their sensitivity with
respect to the parameters describing the process. As
process equations a priori are supposed exact, the
sensitivity study is here reduced to the influence of a
modification of the measurements and their number.

4.1. Sensitivity to a small variation of the measurement
precision

A variation AV of the measurement variance induces a

corresponding estimation variation AX whose expression
is deduced from (2):

X +AX =(1-(V+AV) AT(A (V+AV) ATYLA) X (6)

After making some tedious calculations and taking into
account small variations such that AV << V, the
relationship (6) is then reduced to:

AX = PAVVI(X-X) @)

By noting p ; the i column of the projection matrix P, vj;
the ith diagonal term of V and x; the i component of X,

the vector AX can be written as:
v AV i A

AR =Y pi —— &i-x) ®)
i=1 11

Thus, the vector of estimation sensitivity with respect to
the variance of the i measurement can be written:

- & - X)) ©)



In this calculation, one can avoid utilising the terms p; of

the projection matrix by eliminating the matrix P by using
(3). We obtain:

AX = V viavvik-x) (10)
By performing the different matrix products that appear in

(11), coefficients of sensitivity can be expressed under the
form:

A A
axi A Xi - Xj
5= 30 = Vi 1 (1
j - Jv Z
] Vii

Using this relationship, the ratio of estimation sensitivities
of two variables j and k when the variance of the variable i
varies can be deduced:

4L (12)

Thus, when the measurement variance changes, all the
estimations are modified; the estimation that undergoes the
greatest variation is that whose variance is the most
important. There, it concerns an intuitive result whose
equation (12) gives the theoretical justification.

4.2. Sensitivity with respect to any variation of the
measurement precision

To simplify this study, only one variance is modified of
the quantity & at a time (for example the i"). Thus, we
note:

AV = SEE! (13)

where all the components of the vector E are null except
for the i which is equal to one. After modifying the
measurement variance, estimations are always expressed
by the relationship (6). Using the lemma of matrix
inversion and with K = (A V AT)"! we obtain:

o

A = ——
1+8ETATK AE

PEETV! (X -X) (14)

This relationship therefore quantifies the influence of a
variation of the measurement variance on the state
estimation of the system.

5. ANALYSIS OF THE ESTIMATION PRECISION

We propose to examine the influence of any amplitude
variations of the measurement precision on the estimation
variance. An interesting limit case occurs where this
variation is of infinite amplitude; that case practically
corresponds to suppressing the corresponding measure-
ment and therefore to testing the influence of a
measurement on the precision of estimations.

As previously, we modify one variance of the quantity d at
a time (the it for example). Thus, we note:

AV = §EE! (15)

where all the components of the vector E are null except

for the i which is equal to one. After modifying the

measurement variance, estimation variance is still the

following:

U +AV =(V+AV) (1- ATAV + AVIATYTA(V + AV))
(16)

After usual simplification, we obtain:

)

=———— PEETPT (17)
1+38ETATK AE

This formula is not an approximation; it exactly expresses
the influence of a modification § of the measurement
variance on the variance of estimations. In the particular
case where this modification has a weak amplitude, we
have:

AV = SPEETPT (18)

Finally, a more elegant form can be obtained by using the
variance of estimations:

V=V-VATAVATY AV (19)
From (19), the following expression is extracted:
ATKA=V1. v1{ vl (20)
Thus (18) implies:

5
14+ 0ET(VI-VIVVHE

VVIEETVIY (1)

So, taking into account the expression of the vector E, the
general term AV pq can be written as:

o

A A A

AV o=V ;i Vi (22)
Pq 2 A pt " q

Vii + 0 (Vi - Vi)

Thus, the diagonal coefficients of this matrix have the

following expression:

d A2

AV = > Vik (23)

A
Vi + 0 (vii - Vip)
and they represent the variation of the estimation variances

according to a modification of amplitude 0 of a
measurement variance.

5.1. Application to the suppression of sensors

The particular case where the amplitude variation 9 is
infinite corresponds to an interesting situation. Since dis
directly related to the measurement variance, it is
equivalent to consider that the precision of this
measurement is equal to zero; the weight of this measure
in the criterion of estimation therefore becomes null. Thus,
with a roundabout manner which is simple to implement
though, we can study the influence of the suppression of a
measure on the variance of estimated variables.

Let us explain therefore the limit of (22), when § tends to
infinity:

A
AV pq =

1 A A

Vi Vi (24)

A
(Vii - Vi)

From this expression, one may deduce the terms related to
the modification of the estimation variances:

A 1 A2

AV gk =""7 Vi (25)
(Vi - Vi)

Especially, for the i variable (whose measurement has a
infinite variance), the modification of the variance of

estimations is the following:



1 2
{3 (26)

A
AV i = A
Vii— Vii

that therefore corresponds to the new variance:

A
Vi Vi
A A um 'n
Vi + AV i = _A (27)
Vii = Vij

The whole established relationships are useful to analyse
the results of the data reconciliation. These relationships
provide this analysis a way to appreciate the contribution
of the measurements and their respective variances to the
construction of their estimations and variances.

5.2 Synthesis of the measurement system from the
estimation precision

The preceding study has shown the influence of the
precision of measurements on that of their estimations.
Conversely, one can seek to determine the measurement
variance (therefore specify the corresponding sensor
precision) to obtain a given variance of the estimations.
Remind the expression of the estimation variance:

V=(1-VAT(AV ATy A)V (28)

Knowing V, can we then determine V2 To solve this
problem, notice first of all that ¥ cannot be arbitrarily
chosen. This matrix indeed might verify the constraint:

AV =0 (29)

To exploit easily this constraint, let us use an equivalent
form of A obtained by extraction of its regular part and let
us partition correspondingly the matrix V (chosen
diagonal) and '8

A=(1 N) (30)
(Vll 0 ) v (vn Q’12)
V= = €Y
0 Vv Va1 Vo

By expressing (28) from (30) and (31), we obtain:

Vi= V-V HV), (32a)
V= - ViiHN V,, (32b)
Q/21= - V22NTHV11 (32C)
Vo= Vyu-VuNTHNV, (32d)
with:

H= (Vi + NV, N)T = H(V;, Vo) (32e)

Then, the equations (32a) and (32d) that constitute a non
linear system with respect to V{; and V,, can be solved by

using, for example, an algorithm with direct iterations:

k+1 K Kk k
Vi =V i+ Vi HV V)V (33a)
k1 N S k

Vo =V o+ V) NTH(V|; V)NV, (33b)

Practically, the values of Y% 11 and Y 2o are given and the

stable solution of (33) is searched. The equations (32b)
and (32c) then give the estimation variances that have not
been able to be imposed.

6. RELIABILITY OF A MEASUREMENT SYSTEM

For a real process, the calculation of estimations as well as
that of their sensitivity that has been presented supposes
that the measurements are available that is to say that
sensors are able to deliver them. In some cases, the failure
of a sensor does not involves necessarily the impossibility
to calculate the estimation; this notion was specified in the
section 2 by defining the condition to meet this and giving
the expression of the estimation according to available
measurements. If this condition of observability is not
satisfied, the complete state estimation of the system is not
possible. These situations have to be specified and can be
characterised by an indication of reliability of the
measurement system. A second motivation of this
calculation of reliability stem from the necessity to have a
certain number of measured variables allowing a security
for the controlling of the process. Necessary variables for
this control are in general directly measured, but it is then
necessary to insure that a variable remains deducible if the
associated sensor becomes failing. The situation
complicates with the number of failures one can accept
while preserving the observability of this necessary
variable list for the control of the system. Let us present
now the mean to evaluate the reliability of a measurement
system.

By definition, the reliability of a sensor is the probability
r(t) that at the instant t, there is no failure knowing that no
failure had occurred at the instant t = 0. This probability
may be expressed analytically by using, for example, the
law of Poisson:

1(t) = exp(-At) (34)

where A is a constant representing the rate of sensor
failure. As an extension, one may define the reliability of a
system constituted of n sensors of respective reliabilities

rj(t):
R(t) =1(r; (1), ..., 1,(1) (35)

In the following, without loss of generality, the sensor
failure rates are chosen equal. In practice, the evaluation of
the system reliability uses the Mean Time To Failure
function defined by the expression:

MTTF = f R(t) dt (36)
0

Let us consider the reliability of a system (fig. 1) supplied
with five sensors on arcs 1, 3, 5, 6 and 7 and whose
variables are linked by the two redundancy equations:

q1-96=0 (37a)
q3-95-97=0 (37b)

Let us assume that measured variables are all necessary for
the elaboration of the control of the system or to its
supervision. That means that a failure of one or several
sensors is tolerated provided that the corresponding
information could be deduced from information of
remaining sensors.

If the redundancy expressed in the equations (37) is not

considered the probability that all sensors function,
therefore that they do not fail, is:

Ro(t) = (1(1))” = exp(-5A1) (3%)

Therefore, the MTTF of the measurement system is:



MTTF, = 0.20/A (39)

If redundancy equations are taken into account, then some
failures can be tolerated. Indeed if one of sensors
intervening in the redundancy equations (37) fails, then the
information that it delivers can be replaced by an
estimation obtained by simple deduction. Generally,
sensors whose failures are tolerated are those appearing in
the redundancy equations of a system. Equations (37)
show that, if a sensor fails, the value of the corresponding
variable can be easily deduced from the remaining
measurements. The probability that one sensor fails and
that the four others well function is:

Ry (®) = (1 - r(®)) 1(v)* (40)

There are five possibilities of one sensor failure, the
corresponding measurement being deducible.

Notice also that some failures affecting two sensors
simultaneously are tolerable. Indeed, if sensors 1 and 7 fail
for example, the observability of variables 1, 3, 5, 6 and 7
remains. For the same reason, other couples of failing
sensors are acceptable: 1 and 5, 1 and 3, 6 and 7, 5 and 6
and 6 and 3. Therefore, there are six possibilities involving
two sensor failures, the corresponding measurements
being deducible. The probability that two sensors are
simulta-neously defective and that the three others
function is:

Ry(t) = (1 - r(t)? r(t)* (41)

The case of more than two simultaneous sensor failures
cannot be envisaged because some variables become
unobservable. Summarising, the probability that variables
1, 3,5, 6 and 7 are observable (by direct measurement or
by deduction) is therefore:

R(t) =Rg(t) + 5 R (t) + 6 Ry(t) (42)

Applying the definition (36), the global MTTF for the
measurement system yields:

MTTF = 0.65/A (43)

The comparison of the results (39) and (43) shows that a
significant increasing of the measurement system
reliability is achieved by taking into account the
redundancy of information stemming from equations of
the physical system. This simple example also points out
the relationships between reliability, redundancy and
observability notions. More generally, the influence of the
modifications of the positions and the number of sensors
on the MTTF can be studied. When several sensor
configurations lead to the same degree of observability of
the system, then one can choose the configuration offering
the maximal MTTF. Alternately, we can define the
measurement system guaranteeing a certain degree of
reliability and maximizing the observability.

7. CONCLUSION

For the class of linear systems, we have analysed the
influence of the measurement system on the state
estimation of a system. This latter is especially sensitive to
the number of measurements, to their distribution and to
their precision. In a phase of conception, we have shown
that it was possible to impose some constraints on the
estimation quality and to respect them by a judicious

choice of measurement system. This step can be
performed on an already supplied sensor system but also
on a non instrumented system. This technique could then
be integrated as early as the conception phase of the
process itself, the instrumentation being then part of the
system. It would be suitable to extend the scope of the
analysis performed to the case of process described by
more complex models. Especially, the case of dynamic
linear processes could be analysed by an analogous
approach.
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