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Abstract. The sandpile, forest-fire and slider-block mod-
els are said to exhibit self-organized criticality. Associated
natural phenomena include landslides, wildfires, and earth-
quakes. In all cases the frequency-size distributions are well
approximated by power laws (fractals). Another important
aspect of both the models and natural phenomena is the
statistics of interval times. These statistics are particularly
important for earthquakes. For earthquakes it is important to
make a distinction between interoccurrence and recurrence
times. Interoccurrence times are the interval times between
earthquakes on all faults in a region whereas recurrence times
are interval times between earthquakes on a single fault or
fault segment. In many, but not all cases, interoccurrence
time statistics are exponential (Poissonian) and the events oc-
cur randomly. However, the distribution of recurrence times
are often Weibull to a good approximation. In this paper we
study the interval statistics of slip events using a slider-block
model. The behavior of this model is sensitive to the stiffness
α of the system,α=kC/kL wherekC is the spring constant of
the connector springs andkL is the spring constant of the
loader plate springs. For a soft system (smallα) there are
no system-wide events and interoccurrence time statistics of
the larger events are Poissonian. For a stiff system (largeα),
system-wide events dominate the energy dissipation and the
statistics of the recurrence times between these system-wide
events satisfy the Weibull distribution to a good approxima-
tion. We argue that this applicability of the Weibull distribu-
tion is due to the power-law (scale invariant) behavior of the
hazard function, i.e. the probability that the next event will
occur at a timet0 after the last event has a power-law depen-
dence ont0. The Weibull distribution is the only distribution
that has a scale invariant hazard function. We further show
that the onset of system-wide events is a well defined critical
point. We find that the number of system-wide eventsNSWE
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satisfies the scaling relationNSWE ∝ (α−αC)δ whereαC is
the critical value of the stiffness. The system-wide events
represent a new phase for the slider-block system.

1 Introduction

The discovery (Bak, et al., 1988) that a wide range of mod-
els and natural phenomena exhibit “self-organized critical-
ity” has led to many studies (Turcotte, 1999). It should be
noted that the relation of critical-point phenomena to these
models is controversial (Grassberger, 2002). Type models
include the sand pile (Bak, et al., 1988), forest fire (Drossel
and Schwabl, 1992), and slider-block models (Carlson and
Langer, 1989). Directly related natural phenomena include
landslides, wild fires, and earthquakes (Turcotte and Mala-
mud, 2004).

One property of the models and the natural phenomena
is that the frequency-magnitude statistics of avalanches are
often power-law (fractal) in a robust way (Turcotte, 1999).
An explanation for this robust behavior is given in terms
of an inverse cascade of metastable clusters (Gabrielov, et
al., 1999; Turcotte, et al., 1999; Yakovlev, et al., 2005).
A metastable cluster is the region over which an avalanche
spreads once triggered. Clusters grow primarily by coales-
cence. Growth dominates over losses except for the very
largest clusters. The cascade of cluster growth is self sim-
ilar and the frequency-area distributions of both clusters and
avalanches are power law.

Another important property of the models and natural phe-
nomena is the interval statistics for the recurrence of events
(avalanches) in these models and natural phenomena. In par-
ticular, what is the statistical distribution of interval times
for large events (peaks over threshold). A number of stud-
ies of interval time statistics have been carried out that show
the applicability of the exponential (Poissonian) distribution
(Sanchez, et al., 2002).
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A particularly important application of interval time statis-
tics is to earthquakes. In order to study the interval time
statistics of earthquakes it is necessary to make a clear dis-
tinction between interoccurrence times and recurrence times.
Interoccurrence times are the time intervals between earth-
quakes on all faults in a region. Recurrence times are the time
intervals between successive earthquakes on a single fault or
fault segment. These are generally referred to as characteris-
tic earthquakes.

We first discuss interoccurrence times. All earthquakes in
a specified region and specified time window with magni-
tudes greater than a specified magnitude are considered to be
point events. Based on studies of all earthquakes in southern
California during a prescribed time interval, Bak et al. (2002)
obtained a universal scaling for the statistical distribution of
interoccurrence times. Subsequently, other studies of this
type have been carried out (Carbone, et al., 2005; Corral,
2003, 2004a, b, 2005a, b; Davidsen and Goltz, 2004; Lind-
man, et al., 2005; Livina, et al., 2005a, b). Shcherbakov et
al. (2005) showed that this observed behavior for aftershocks
can be explained by a non-homogeneous Poisson process.
The earthquakes occur randomly but the rate of occurrence
is determined by Omori’s law for the temporal decay of af-
tershock activity.

Major faults experience the quasi-periodic occurrence of
large earthquakes. These are known as characteristic earth-
quakes. Available evidence is that there is considerable vari-
ability in both the recurrence times and in the magnitudes of
characteristic earthquakes. This variability can be attributed
to the interactions between faults and fault segments. The
statistical distribution of recurrence times is an important in-
put into probabilistic seismic hazard assessments such as the
most recent one for the San Francisco Bay region (Working
Group on California Earthquake Probabilities, 2003). Sev-
eral statistical distributions have been proposed for the recur-
rence times between characteristic earthquakes including the
exponential (Poissonian), Weibull, log-normal, and Brown-
ian passage time distributions (Matthews et al., 2002).

In this paper we carry out a study of interval time statis-
tics for a slider-block model. The behavior of this system is
controlled by the stiffness parameterα with α= kC

kL
wherekC

is the spring constant of the connector springs andkL is the
spring constant of the loader springs. We show that the tran-
sition to system-wide slip events occurs at a critical value of
α, αC . We find that the number of system-wide eventsNSWE
satisfies the scaling relationNSWE ∝ (α−αC)δ for various
system sizes. Forα<αC there are, on average, no system-
wide events and the interval statistics of the larger events
are Poisson. We argue that the system-wide events consti-
tute a new phase for the slider-block system. Forα>αC we
find that the distribution of recurrence time statistics between
system-wide events is well approximated by the Weibull dis-
tribution.

2 Weibull distribution

We will focus our attention on the applicability of the Weibull
distribution for the statistical distribution of recurrence times
of characteristic events. The cumulative distribution function
(cdf) for the Weibull distribution is given by

P(t) = 1 − exp

[

−
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τ

)γ ]
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whereŴ(x) is the gamma function ofx. If γ =1 the Weibull
distribution becomes the Poisson distribution and withγ =2 it
is the Rayleigh distribution. In the range 0<γ<1 the Weibull
distribution is often referred to as the stretched exponential
distribution.

An important property of the Weibull distribution is the
power-law behavior of the hazard function

h(t0) =
pdf

1 − cdf
=

γ

τ

(

t0

τ

)γ−1

(4)

The hazard functionh(t0)is the pdf that an event will oc-
cur at a timet0 after the occurrence of the last event. For
the Poisson distribution,γ =1, the hazard function is constant
h(t0) = τ−1 as expected. Forγ>1 the hazard rate increases
as a power of the timet0.

For characteristic earthquakes it is expected that the hazard
function must increase as the time since the last characteris-
tic earthquaket0 increases (Davis, et al., 1989; Sornette and
Knopoff, 1997). For this to be the case the tail of the distri-
bution must be thinner than the exponential distribution. For
the log-normal distribution the tail is thicker than the expo-
nential and the hazard function decreases with timet0. For
the Brownian passage time distribution the tail is exponential
for large times and the hazard function becomes constant.
The Weibull distribution withγ>1 is the only distribution
that has been applied to characteristic earthquakes with an
increasing hazard function with increasingt0.

Many authors have applied Weibull statistics to distribu-
tions of recurrence times between characteristic earthquakes
(Hagiwara, 1974; Rikitake, 1976, 1982, 1991; Utsu, 1984).
Probably the best studied sequence of characteristic earth-
quakes is the sequence that occurred on the Parkfield, Cal-
ifornia section of the San Andreas fault between 1857 and
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2004 (Bakun, et al., 2005). This is because the slip rate is
relatively high (≈30 mm/year) and the earthquakes are rel-
atively small (m≈6.0), thus the recurrence times are rela-
tively short (≈25 years). Slip on the Parkfield section of the
San Andreas fault occurred duringm≈6 earthquakes that oc-
curred in 1857, 1881, 1901, 1922, 1934, 1966, and 2004.
The mean and coefficient of variation of these recurrence
times areµ=24.5 years, andCV =0.378, respectively. Tak-
ing these values, the corresponding fitting parameters for the
Weibull distribution areτ=27.4 years andγ =2.88. A second
set of characteristic earthquakes on the San Andreas fault
have been obtained from paleoseismicity studies at Pallett
Creek, California by Sieh et al. 1989. These studies indi-
cated that the intervals between great Southern California
earthquakes on the San Andreas fault have approximately
the values 44, 63, 67, 134, 200, 246, and 332 years. These
authors fit a Weibull distribution to this data and found that
τ=166.1±44.5 years andγ =1.50±0.80. Although the fits of
the Weibull distribution were quite good in both these cases,
the number of events were not sufficient to establish the va-
lidity of the Weibull distribution over alternative distributions
(Savage, 1994).

In order to provide a larger data base, several numerical
simulations of earthquake statistics have been carried out
(Goes and Ward, 1994; Rundle, 1988; Rundle, et al., 2004;
Ward, 1996, 2000). We give results for the Virtual California
simulation (Yakovlev, et al., 2006). This model is a geometri-
cally realistic numerical simulation of earthquakes occurring
on the San Andreas fault system. It includes the major strike-
slip faults in California and is composed of 650 fault seg-
ments, each with a width of 10 km and a depth of 15 km. The
fault segments interact with each other elastically utilizing
dislocation theory. Virtual California is a backslip model, the
accumulation of a slip deficit on each segment is prescribed
using available data. The mean recurrence times of earth-
quakes on each segment are also prescribed using available
data to give friction law parameters. The statistical distribu-
tion of recurrence times on the northern San Andreas fault
(site of the 1906 San Francisco earthquake) was obtained
from a 1 000 000 year simulation. The mean recurrence time
for 4606 simulated earthquakes withM>7.5 on this section
is µ=217 years and the coefficient of variation isCV =0.528.
The corresponding fitting parameters for the Weibull distri-
bution areτ=245 years andγ =1.97. Yakovlev et al. (2006)
showed that the Weibull distribution fit the data significantly
better than the alternative log-normal and Brownian passage
time distributions. Taking the above values the hazard func-
tion from Eq. (4) for the next great San Francisco earthquake
(t0=100 years) ish(100 years)=3.3×10−3year−1. This is the
estimated probability that an earthquake with a magnitude
greater than 7.5 will occur on the San Andreas fault near San
Francisco in the next year.

 

 

VL

kLkLkL

m m m

F1 F2 FN

kC kC kC 

Fig. 1. Illustration of our one-dimensional slider-block model. A
linear array ofN blocks of massm are pulled along a surface by a
constant velocityVL loader plate. The loader plate is connected to
each block with a loader spring with spring constantkL and adja-
cent blocks are connected by springs with spring constantkC . The
frictional resisting forces areF1, F2,. . . , FN .

3 Slider-block model

In this paper we consider the behavior of a slider-block
model in order to study the statistics of the interval times be-
tween slip events. We utilize a variation of the linear slider-
block model which Carlson and Langer (1989) used to il-
lustrate the self-organization of such models. We consider a
linear chain of 25, 50, and 100 slider blocks of massm pulled
over a surface at a constant velocityVL by a loader plate as
illustrated in Fig. 1. Each block is connected to the loader
plate by a spring with spring constantkL. Adjacent blocks
are connected to each other by springs with spring constant
kC . Boundary conditions are assumed to be periodic: the last
block is connected to the first one.

The blocks interact with the surface through friction. In
this paper we prescribe a static-dynamic friction law. The
static stability of each slider-block is given by

kLyi + kC (2yi − yi−1 − yi+1) < FSi (5)

whereFSi is the maximum static friction force on blocki
holding it motionless, andyi is the position of blocki relative
to the loader plate.

During strain accumulation due to loader plate motion all
blocks are motionless relative to the surface and have the
same increase of their coordinates relative to the loader plate

dyi

dt
= VL (6)

When the cumulative force of the springs connecting to block
i exceeds the maximum static frictionFSi , the block begins
to slide. We include inertia, and the dynamic slip of blocki

is controlled by the equation

m
d2yi

dt2
+ kLyi + kC (2yi − yi−1 − yi+1) = FDi (7)

whereFDi is the dynamic (sliding) frictional force on block
i. The loader plate velocity is assumed to be much smaller
than the slip velocity, requiring

VL ≪
F

ref

S√
kLm

(8)
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Fig. 2. Frequency-size distribution of 10 000 slip events for a “soft”
system withα=3. The ratio of the number of eventsNL of linear
sizeL to the total number of eventsNT is given as a function ofL.
The solid line is a power-law dependence with exponent –1.29.
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Fig. 3. Cumulative distribution functionP(t) of interoccurrence
timest for the events given in Fig. 2 in the size rangeL=10 to 100.
The dashed line is the distribution of observed recurrence times.
The continuous line is the best-fit exponential (Poisson) distribu-
tion.

so the movement of the loader plate is neglected during a
slip event. The sliding of one block can trigger the instability
of the other blocks forming a many block event. When the
velocity of a block is zero it sticks with zero velocity if the
static friction criterion (5) is satisfied, if the criterion is not
satisfied the block continues to slip.

It is convenient to introduce the nondimensional variables
and parameters

τf = t

√

kL

m
, τs =

tkLVL

F ref
S

, Yi =
kLyi

F ref
S

, φ =
FSi

FDi

, α =
kC

kL

, βi =
FSi

F ref
S

(9)

The ratio of static to dynamic frictionφ is assumed to be the
same for all blocks but the values themselvesβi vary from
block to block withF ref

S as a reference value of the static

frictional force (F ref
S is the minimum value of allFSi). Stress

accumulation occurs during the slow timeτ s when all blocks
are stable, and slip of blocks occurs during the fast timeτf

when the loader plate is assumed to be approximately mo-
tionless.

In terms of these nondimensional variables the static sta-
bility condition (5) becomes

Yi + α (2Yi − Yi−1 − Yi+1) < βi (10)

the strain accumulation Eq. (6) becomes

dYi

dτS

= 1 (11)

and the dynamic slip Eq. (7) becomes

d2Yi

dτ2
f

+ Yi + α (2Yi − Yi−1 − Yi+1) =
βi

φ
(12)

Before obtaining solutions, it is necessary to prescribe the pa-
rametersφ, α, andβi . The parameterα is the stiffness of the
system. We first consider the 100 block system and obtain
solutions forα from 3 to 1000 in this paper. Forα=3 the sys-
tem is soft and there are no system wide (100 block) events.
For α=1000 the system is stiff and system wide (100 block)
events dominate. The ratioφ of static friction to dynamic
friction is taken to be the same for all blocksφ=1.5, while
the values of frictional parametersβi are assigned to blocks
by uniform random distribution from the range 1<βi<3.5.
This random variability in the system is a “noise” required to
generate event variability in stiff systems.

The loader plate springs of all blocks extend according to
Eq. (11) until a block becomes unstable from Eq. (10). The
dynamic slip of that block is calculated using the Runge-
Kutta numerical method to obtain a solution of Eq. (12). A
coupled 4th-order iterational scheme is used, and all equa-
tions are solved simultaneously (the Runge-Kutta coeffi-
cients of neighboring blocks participate in the generation of
the next order Runge-Kutta coefficient for the given block).
The dynamic slip of one block may trigger the slip of other
blocks and the slip of all blocks is followed until they all be-
come stable. Then the procedure repeats.

We first give results for a soft system withα=3. The lin-
ear event sizeL is the number of blocks that participate in the
event. Frequency-size statistics for 10 000 events are given in
Fig. 2. The smaller events in the range 1–14 satisfy a power-
law relation with exponent –1.29 to a reasonable approxima-
tion. For event sizes greater thanL=14 there is a roll over
and there are no system-wide (100 block) events. We next
consider the interoccurrence time statistics for events. In or-
der to do this we specify a threshold magnitude and consider
events only larger than this threshold. The cumulative distri-
butionP(t) of interval times for events in the size range from
L=10 to 100 is given in Fig. 3. Also included in this figure is
the exponential (Poisson) fit to these data, this is Eq. (1) with
γ =1. To a good approximation the events occur randomly
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Fig. 4. The nondimensional position of a typical blockY is given
as a function of the nondimensional slow timeτS . This is a result
for a heterogeneous stiff system withα=1000.
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Fig. 5. Frequency-size distribution of 10 000 slip events for a “stiff”
system withα=1000. The ratio of the number of eventsNL of linear
sizeL to the total number of eventsNT is given as a function ofL.
The solid line is a power-law dependence with exponent –2.12.

and are not correlated. A similar result was obtained for the
sandpile model (Sanchez, et al., 2002). Since these smaller
events occur at different positions along the array they do not
have a memory of previous events.

We next give results for a stiff system withα=1000. With
infinite stiffness the system will behave as a rigid body with
periodic slip events. The stiff homogeneous system with
βi=1 shows a “creeping” behavior in our simulations – it
creeps block by block – only a small number of blocks move
simultaneously at any time. The introduction of even a small
amount of symmetry-breaking heterogeneity causes system-
wide (100 block) events to occur.

For the heterogeneous stiff system with a random distri-
bution of friction coefficients 1<βi<3.5 the motion orga-
nizes itself into the recurrence of system-wide (100 block)

0.0 0.1 0.2 0.3 0.4
0

1

 100 block events α = 1000

 Weibull fit τ = 0.21 γ = 2.60

 

 

P(t)

t

Fig. 6. Cumulative distribution functionP(t) of recurrence times
t for the 1500 system-wide (100 block) events withα=1000. The
dashed line is the distribution of observed recurrence times. The
continuous line is the best-fit Weibull distribution withτ= 0.21 and
γ =2.60.
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-ln[1-P(t)]
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Fig. 7. Weibull probability plot of the cumulative distribution of
recurrence times for the data given in Fig. 6. The solid line corre-
sponds to a Weibull distribution as given in Eq. (13) withτ= 0.21
andγ =2.60.

events separated by sets of small size events. A typical ex-
ample is given in Fig. 4. Frequency-size statistics for 10 000
events are given in Fig. 5. Again the smaller events in the
range 1–27 satisfy a power-law relation with exponent –2.12
to a reasonable approximation. In this case there are 1500
system-wide (100 block) events. We consider that these are
equivalent to characteristic earthquakes. We next consider
the recurrence time statistics for these events. The cumula-
tive distribution of recurrence times is given in Fig. 6. Also
included in this figure is the fit of the Weibull distribution
(1) to this data obtained by takingτ=0.21 andγ =2.60. It is
standard practice to test the validity of a Weibull distribution
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Fig. 8. Dependence of simulation values of the fraction of events
that are system-wideNSW /NT on the difference between the stiff-
ness of the arrayα and the critical value of this tuning parameter
αC . The circles are the results for a 100 block simulation and the
solid line is the power-law scaling from Eq. (14) takingαC=4.45
andδ=2.25. The diamonds are the results for a 50 block simulation
and the dashed line is the power-law scaling from Eq. (14) taking
αC=2.518 andδ=2.47. The triangles are the results for a 25 block
simulation and the dashed-dot line is the power-law scaling from
Eq. (14) takingαC=0.782 andδ=3.18.

using a “Weibull probability plot”. We rewrite Eq. (1) as

− ln(1 − P(t)) =
(

t

τ

)γ

(13)

In Fig. 7 we plot log[− ln(1 − P(t))] versus log
[

t
τ

]

for our
data. The Weibull distribution requires a straight-line fit
with slopeγ . Takingτ=0.21 andγ =2.60 the fit shown has
R2=0.998. The data are well approximated by the straight-
line fit.

We have obtained results for other values of the stiffness
α. We find that the number of system wide events is virtually
independent ofα in the range 50<α<10 000. We also find
that the recurrence time statistics satisfy the Weibull distri-
bution to a good approximation in this range. The Weibull
exponentγ slowly decreases fromγ =3.3 atα=100 toγ =2.2
at α=10 000. We have also examined the hypothesis that the
onset of system-wide events is a critical point (Grassberger,
2002) and thatα is the relevant tuning parameter. We first
consider the ratio of the number of system-wide slip events
NSW to the total number of all slip eventsNT . We test the
power-law relation

NSW

NT

∝ (α−αC)δ (14)

with α>αC .
In order to test the validity of this relation we give re-

sults for linear chains of 25, 50, and 100 slider blocks. In
Fig. 8 we give the dependenceNSW /NT versusα–αC for

10
0

10
0

10
1

 t

α − α
C

Fig. 9. Dependence of simulation values of the mean non-
dimensional time between system-wide eventst̄ on the difference
between the stiffness of the arrayα and the critical value of this
tuning parameterαC=4.42 (solid circles). The straight line is the
power-law scaling from Eq. (15) taking the exponentε=2.07.

the three cases. For 25 slider blocks the simulation results
are well approximated (R2=0.999) by this scaling relation
taking αC=0.782±0.164 andδ=3.18±0.28 (the errors are
95% confidence bounds). For 50 slider blocks the simula-
tion results are well approximated (R2=0.998) by Eq. (14)
taking αC=2.518±0.182 andδ=2.47±0.28. And for 100
slider blocks the simulation results are again well approx-
imated (R2=0.998) by Eq. (14) takingαC=4.45±0.46 and
δ=2.25±0.52. The good agreement of our simulation results
with the power-law scaling relation (14) is evidence that the
onset of system-wide events is a critical point with the stiff-
nessα as the tuning parameter. The system-wide events rep-
resent a new phase and the critical point is the transition to
this phase.

To further test the power-law scaling in the vicinity of a
critical point we test two other scaling laws for the 100 slider-
block model. We next consider the mean recurrence time
between system-wide eventst̄ . We test the scaling relation

t̄ ∝ (α−αC)−ε (15)

with α>αC . In Fig. 9 we show that our simulations are well
approximated (R2=0.999) by this scaling relation again tak-
ing αC=4.42±0.14 and in this caseε=2.07±0.29. We finally
consider the ratio of the energy dissipated in system-wide
events to the energy dissipated in all eventse100/eT . We test
the scaling relation

e100

eT

∝ (α−αC)µ (16)

with α>αC . In Fig. 10 we show that our simulations are
well approximated (R2=0.998) by this scaling relation taking
αC=4.57±0.28 and in this caseµ=1.78±0.30. The validity
of these power-law scaling relations indicates that the onset
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of system-wide events is a critical point (Goldenfeld, 1992;
Stauffer and Aharony, 1992).

The three values of the critical stiffness (αC=4.45±0.46,
αC=4.42±0.14, andαC=4.57±0.28) should be equal. The
differences are much smaller than the 95% confidence lim-
its. Taking the mean value we obtainαC=4.48±0.17. An-
other question is whether the three exponents (δ=2.25±0.52,
ε=2.07±0.29, andµ=1.78±0.30) should be equal. Again
the differences are less than the 95% confidence limits. The
product of the number of system-wide slip eventsN100 and
the mean recurrence time between system-wide eventst̄

equals the total time of the simulation – a quantity which
does not have a singularity and is a constant in the vicinity
of the critical point. This suggests that the exponentsδ and
ε should be equal. In the same way the ratio of the energy
dissipated in system-wide events during the simulatione100
to the number of system-wide slip eventsN100 is the mean
energy dissipated in one system-wide event – also a quan-
tity which does not have a singularity and is a constant in the
vicinity of the critical point from above. This suggests that
the exponentsδ andµ should also be equal. Assuming that
the three exponents are equal we findδ=ε=µ=2.03±0.21.

One way to interpret the results we have obtained is in
terms of finite-size scaling (Goldenfeld, 1992; Stauffer and
Aharony, 1992). Specifically, we consider finite-size scaling
within the context of clusters observed in percolation the-
ory. Here the system size has lengthL, and the clustering
of events is associated with the appearance of a correlation
lengthξ . The system boundaries have little or no influence
on the problem whenξ≪L. However, whenξ>L, system
boundaries introduce cutoffs in cluster size, and are therefore
expected to influence the values of percolation thresholds,
scaling exponents, and other observed quantities. For exam-
ple, the specific valuesαC are affected by the sizeL=25, 50,
and 100 that is used. Whenξ∼L, a variety of crossover ef-
fects may be observed.

The behavior of the system depends upon the ratio of the
system size to the correlation length. Finite-size effects play
a crucial role here, that’s why we investigate the model with
only 100 slider-blocks. Changing the stiffness of the system
as a tuning parameter is equivalent to changing the ratio of
the system size to the correlation length. The critical point
is the result of the appearance of system-wide events, and
a consequence is the change of the interval statistics from
the Poissonian (exponential) below the critical point to the
Weibull statistics in the limit of very stiff system.

4 Why Weibull

A primary focus of this paper is on the applicability of the
Weibull distribution to the statistics of recurrence times for
self-organizing complex phenomena. In the engineering lit-
erature this distribution has found wide applicability to the
statistics of failure. A standard failure problem is that of

10
0

10
-2

10
-1

 

 

e
100

 / e
T

α − α
C

Fig. 10. Dependence of simulation values of the fraction of the
energy dissipated in system-wide eventse100/eT on the difference
between the stiffness of the arrayα and the critical value of this
tuning parameterαC=4.57 (solid circles). The straight line is the
power-law scaling from Eq. (16) taking the exponentµ=1.78.

fiber bundles which can be associated with composite mate-
rials (Newman and Phoenix, 2001). The dynamic failure of
a bundle ofN0 fibers is modeled empirically by the relation

dN

dt
= −Nνr

(

σ

σr

)p

(17)

whereN is the number of remaining fibers andνr is the ref-
erence hazard rate at the reference stressσ r . Assuming that
the stress increases linearly in time

σ

σr

=
t

tr
(18)

Eq. (17) becomes

dN

dt
= −Nνr

(

t

tr

)p

(19)

Integrating withN=N0 at t=0 gives

N

N0
= exp

[

−
νr t

p+1

pτp

]

(20)

We next introduce

P(t) = 1 −
N

N0
, γ = p + 1, νr =

γ

τ
(21)

whereP(t) is the cumulative distribution function of failure.
Substituting Eq. (21) into Eq. (20) gives the Weibull distribu-
tion Eq. (1). The self-similar (power-law) dependence of the
hazard rate on time leads directly to the Weibull distribution
of failure times.

The hazard function as given in Eq. (4) for the Weibull
distribution has a power-law dependence on the time since
the last event. The stress on a fault is expected to increase
linearly in time due to the steady motion of the tectonic plates
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just as the forces on our slider blocks increase linearly in
time due to the steady motion of the loader plate. Similarly
the stress on the fiber bundle as given by Eq. (18) increases
linearly with time. We have shown above that the failure
rate of a fiber bundle modeled by Eq. (17) gives a Weibull
distribution. This provides a basis for the application of the
Weibull distribution both to our slider-block model and to
characteristic earthquakes.

5 Fractional noises

Another application of the Weibull (stretched exponential)
distribution is to fractional noises. Fractional noises and
walks are time series with long range power-law correlations.
This dependence is generally quantified in terms of a power-
law dependence of the power-spectral densityS on frequency
f (Malamud and Turcotte, 1999)

S ∝ f −β (22)

For a stationary fractional noise we have –1≤β≤1. In the
range 0<β≤1 adjacent values are correlated, large (small)
follows large (small). In the range –1≤β<0 adjacent values
are anticorrelated, small (large) follows large (small). Quan-
tification of correlations in a fractional noise is done in terms
of the autocorrelation functionr(s) (Altmann, et al., 2004;
Altmann and Kantz, 2005; Bunde, et al., 2003, 2004; Pen-
netta, 2006)

r(s) ∝ s−γ (23)

wheres is the lag. The exponentsγ andβ are related by

γ=1−β (24)

For a stationary fractional noise we have 0<γ<2. In the
range 0<γ<1 adjacent values are correlated and in the range
1<γ<2 adjacent values are anticorrelated.

Another alternative quantification of the scaling properties
of a fractional noise is in terms of rescaled range (R/S) anal-
ysis. In this case we have (Malamud and Turcotte, 1999)

R

S
∝ τHu (25)

whereτ is the length of the record andHu is the Hurst ex-
ponent. The three power-law exponentsHu, β, andγ are
related by

Hu =
β+1

2
=

2−γ

2
(26)

For a stationary fractional noise we have 0<Hu<1. In the
range 0<Hu<0.5 adjacent values are anticorrelated and in
the range 0.5<Hu<1 adjacent values are correlated.

For an uncorrelated white-noise time series we haveβ=0,
Hu=0.5, andγ =1. For many natural time series it is found
that 0.70≤Hu≤0.80 (Pelletier and Turcotte, 1999). Exam-
ples include river discharges, lake levels, varve thicknesses,

sunspot numbers, and atmospheric time series. The corre-
sponding values of the exponentsβ andγ are: 0.40≤β≤0.60
and 0.40≤γ≤0.60.

Recent studies have been carried out on the recurrence
statistics of peaks over thresholds for fractional noises (Alt-
mann, et al., 2004; Altmann and Kantz, 2005; Bunde, et al.,
2003, 2004; Pennetta, 2006). These studies have shown that
the recurrence statistics satisfy the Weibull (stretched expo-
nential) distribution given in Eq. (1). The exponentγ in the
Weibull distribution is equal to exponent for the autocorrela-
tion function given in Eq. (23).

For an uncorrelated white noise withγ =1 we have a Pois-
son (exponential) distribution from Eq. (1) as expected and
the hazard rate from Eq. (4) is constant. For a correlated
noise we have 0<γ<1 and the Weibull distribution (1) is a
stretched exponential with a hazard function from Eq. (4) that
has a power-law decrease with time. For an anticorrelated‘
noise we have 1<γ<2 and the hazard function from Eq. (4)
has a power-law increase with time.

6 Conclusions

One purpose of this paper is to demonstrate that the interval
statistics of both models and natural systems exhibit Weibull
distributions. We argue that the reason for the applicability of
the Weibull distribution is that its hazard function as defined
in Eq. (4) is a scale-invariant power-law function of time. It
is important to make a clear distinction between the pdf of
interval times for all events and the hazard function which is
the pdf of the interval time for a single event. There is a mean
interval for all events and for the Weibull distribution this has
been given in Eq. (2). The distribution of all interval times
is clearly scale dependent. Instead, consider the behavior of
the system after an event has occurred. The pdf of possi-
ble interval times until the next event is the hazard function.
The Weibull distribution is the only distribution that gives a
power-law, scale-invariant distribution of these intervals.

In order to demonstrate the applicability of the Weibull
distribution we have considered the behavior of a slider-
block model. We have carried out a full dynamic simula-
tion using linear arrays of slider blocks. The behavior of the
model is governed by its “stiffness”α, the ratio of the con-
nector spring constant to the loader spring constant as given
in Eq. (9). For low values ofα, soft systems, there are no
system-wide events. For high values ofα, stiff systems, large
number of system-wide events occur in which all blocks slip
simultaneously. In order to get system-wide events it was
necessary to break the symmetry of the model by introduc-
ing a random variability of the friction coefficients.

We find that the statistical distribution of recurrence times
between system-wide events of the 100 block system with
α=1000 satisfies a Weibull distribution to a very good ap-
proximation. We have also considered the distribution of in-
teroccurrence times of large events for a soft system with

Nonlin. Processes Geophys., 14, 455–464, 2007 www.nonlin-processes-geophys.net/14/455/2007/



S. G. Abaimov: Recurrence and interoccurrence of complex phenomena 463

α=3. In this case the distribution is well approximated by
an exponential (Poisson) distribution. An event does not
have a significant “memory” of prior events. This is con-
sistent with prior studies of SOC models such as the sandpile
model (Sanchez, et al., 2002) in which exponential distribu-
tions were found.

There have been many papers published on a variety of
slider-block models (Turcotte, 1999). In order to reduce
computer time almost all utilize a cellular automata approxi-
mation, only one block is allowed to slip instead of multiple-
block slip events. We have chosen to use a fully dynamic
simulation with a relatively small number (100) of blocks.
We believe our results are robust both in terms of Weibull
statistics and in terms of a well defined critical point.

We argue that there is a direct analogy between the be-
havior of our slider-block model and the behavior of actual
earthquakes. Characteristic earthquakes are earthquakes that
repeatedly occur on a particular fault or fault segment. There
is considerable evidence from both actual earthquakes (Hagi-
wara, 1974; Rikitake, 1976, 1982, 1991; Utsu, 1984) and
simulations (Yakovlev, et al., 2006) that the distribution of
recurrence times for a set of characteristic earthquakes on a
fault satisfies a Weibull distribution. This is in direct anal-
ogy to the behavior of our stiff slider-block model. There
is also observational evidence that the interoccurrence times
between all earthquakes in a region (on many different faults)
satisfy Poissonian statistics (Shcherbakov, et al., 2005). This
is in direct analogy to the behavior of our soft slider-block
model.

Weibull (stretched exponential) statistics have also been
found to be applicable to the distribution of peaks over
threshold for fractional Gaussian noises (Altmann, et al.,
2004; Altmann and Kantz, 2005; Bunde, et al., 2003; 2004;
Pennetta, 2006). Again we argue that this is due to the scale-
invariant (power-law) dependence of the hazard function for
the Weibull distribution. For correlated fractional noises the
probability of the next event decreases as an inverse power of
the timet0 since the last event as given in Eq. (4). For anti-
correlated fractional noises the probability of the next event
increases as a power of the time since the last event. This is
the behavior associated with characteristic earthquakes and
with our “stiff” slider-block simulations.
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