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Abstract. We study the interplay of hydrodynamic
mesoscale structures and the growth of plankton in the wake
of an island, and its interaction with a coastal upwelling.
Our focus is on a mechanism for the emergence of local-
ized plankton blooms in vortices. Using a coupled system
of a kinematic flow mimicking the mesoscale structures be-
hind the island and a simple three component model for the
marine ecosystem, we show that the long residence times of
nutrients and plankton in the vicinity of the island and the
confinement of plankton within vortices are key factors for
the appearance of localized plankton blooms.

1 Introduction

The interplay between hydrodynamic motion and the dis-
tribution of marine organisms like phytoplankton and zoo-
plankton is a major challenge recently addressed in numer-
ous studies (Mann and Lazier, 1991; Denman and Gargett,
1995; Abraham, 1998; Peters and Marrasé, 2000; Ḱarolyi
et al., 2000; Ĺopez et al., 2001a,b; Martin et al., 2002; Mar-
tin, 2003; T́el et al., 2005; Sandulescu et al., 20071).

The growth of phytoplankton in the world’s oceans de-
pends strongly on the availability of nutrients. Thus, one
of the essential factors controlling the primary production is
the vertical transport of nutrients. Coastal upwelling is one
of the most important mechanisms of this type. It usually
occurs when wind-driven currents, in combination with the
Coriolis force, produces Ekman transport, by which surface
waters are driven away from the coast and are replaced by
nutrient-rich deep waters. Due to this nutrient enrichment,
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primary production in these areas is strongly boosted, giving
rise also to an increase of zooplankton and fish populations.

On the other side, the interplay between plankton dynam-
ics and horizontal transport, mixing and stirring has been in-
vestigated in several studies recently (Abraham, 1998; López
et al., 2001b; Herńandez-Garćıa et al., 2002; Herńandez-
Garćıa et al., 2003; Martin, 2003). Horizontal stirring
by mesoscale structures like vortices and jets redistributes
plankton and nutrients and may enhance primary production
(Martin et al., 2002; Herńandez-Garćıa and Ĺopez, 2004).
Horizontal transport can also initiate phytoplankton blooms
and affects competition and coexistence of different plankton
species (Ḱarolyi et al., 2000; Bracco et al., 2000).

Vertical upwelling in connection with strong mesoscale
activity occurs in several places on Earth. One of these
regions is the Atlantic ocean area close to the northwest-
ern African coast, near the Canary archipelago. The main
water current in this area flows from the Northeast towards
the Canary islands, in which wake strong mesoscale hydro-
dynamic activity is observed (Arı́stegui et al., 1997). The
interaction between the vortices emerging in the wake of
the Canary islands and the Ekman flow seems to be essen-
tial for the observed enhancement of biological production
in the open southern Atlantic ocean close to the Canary is-
lands (Aŕıstegui et al., 2004). The aim of this paper is to
study the interplay between the redistribution of plankton by
the vortices and the primary production. In particular we fo-
cus on the role of residence times of plankton particles in the
wake of the island. Though we believe that our study is rele-
vant for different areas in the world, we focus on the situation
around the Canary archipelago to be specific.

In this work we consider the coupling of the kinematic
flow introduced in (Sandulescu et al., 2006) to a simplified
model of plankton dynamics with three trophic levels, and
study the impact of the underlying hydrodynamic activity
and the upwelling of nutrients on primary production in dif-
ferent areas of the wake. In this setup vortices have been
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Fig. 1. The simplified island wake model setup.

reported to play an essential role in the enhancement of pri-
mary production (Sandulescu et al., 20071). Our main objec-
tive here is to analyze this mechanism in detail and show that
the extended residence times of plankton within vortices are
responsible for the observation of localized algal blooms in
them.

The organization of the paper is as follows. In Sect. 2 we
present the general framework of our system, indicating the
hydrodynamical and the biological model, as well as their
coupling. Our main analysis is devoted to the mechanism of
the appearance of a localized plankton bloom within a vortex
(Sect. 3). We study the residence times of plankton within
vortices and in the neighborhood of the island. Additionally
we clarify the role of the chaotic saddle embedded in the flow
in the wake of the island. Finally we summarize and discuss
our results in Sect. 4.

2 General framework: velocity field, plankton model
and boundary conditions

Our system consists of a hydrodynamic flow with an embed-
ded obstacle and vortices in its wake. The model contains
also a current perpendicular to the main flow that models
an Ekman flow coming from the coast, and a nutrient-rich
region at a distance from the obstacle simulating a coastal
upwelling zone. A sketch of the model is shown in Fig. 1.
With this simplified geometry we mimic the essential fea-
tures of the hydrodynamic flow in the Canaries (note that the
whole Canary archipelago is approximated by one cylindri-
cal island). In particular, in the wake of the obstacle strong
mesoscale activity is observed in the form of a periodic de-
tachment of vortices, which then travel in the main flow di-
rection.

We use the kinematic model first developed by Jung et al.
(1993), which we modified by the introduction of the Ekman
flow (Sandulescu et al., 2006). This model is coupled to a
simple population dynamics which features the interaction of

nutrientsN , phytoplanktonP and zooplanktonZ. The next
two subsections are devoted to the introduction of the hydro-
dynamic as well as the biological model before discussing
the results of coupling both models to study the feedback be-
tween hydrodynamics and phytoplankton growth.

2.1 The hydrodynamic model

We now introduce the velocity field. Details can be found
in (Sandulescu et al., 2006). The setup of our hydrodynamic
model is based on a horizontal flow pattern. As Fig. 1 shows
the main current runs from left to right along the horizontal
x direction. The center of the cylinder is placed at the origin
of the coordinate system. We consider a two-dimensional
velocity field which can be computed analytically from a
stream function9. The velocity components inx- andy-
direction and the equations of motion of fluid elements are:

ẋ = vx(x, y, t)=
∂

∂y
9(x, y, t),

ẏ = vy(x, y, t)=−
∂

∂x
9(x, y, t). (1)

The stream function is given by the product of two terms
(Jung et al., 1993):

9(x, y, t)=f (x, y)g(x, y, t). (2)

The first factor f (x, y) ensures the cor-
rect boundary conditions at the cylinder,

f (x, y)=1− exp

[

−a
(

√

x2+y2 − 1
)2
]

.

The second factorg(x, y, t) models the background
flow, the vortices in the wake, and the Ekman flow
g(x, y)=−wh1(t)g1(x, y, t)+wh2(t)g2(x, y, t)+u0s(x, y)y

+uE2(x−1)x. The vortices in the wake are of opposite sign
but their maximal vortex strengths are equal and denoted by
w, and its shape is described by the functionsgi (see details
in Sandulescu et al., 2006).

The characteristic linear size of the vortices is given by
κ

−1/2
0 and the characteristic ratio between the elongation

of the vortices in thex and y direction is given byα.
The vortex centers move along thex direction according
to x1(t)=1+L (t/Tc mod 1) andx2(t)=x1(t−Tc/2), and at
values ofyi(t) described below.

Each vortex travels along thex direction for a timeTc and
disappears. The background flow moves in the positive hori-
zontal direction with a speedu0. The factors(x, y) describes
the shielding of the background flow by the cylinder in a phe-
nomenological manner, using the same elongation factorα

as for the vortices. The Ekman drift, which is intended to
model the flow from the coast towards the ocean interior, is
introduced by considering an additional velocity of constant
strengthuE in the y direction acting only atx coordinates
larger than 1, i.e. just behind the island. This corresponds to
a stream crossing the vortex street towards negativey values
beyond the cylinder.

Nonlin. Processes Geophys., 14, 443–454, 2007 www.nonlin-processes-geophys.net/14/443/2007/
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Real oceanic flows are never perfectly periodic. There-
fore we use a non-periodic version of the kinematic flow just
presented. Non-periodicity is achieved by adding some ran-
domness to the vortex trajectories. Instead of moving along
straight horizontal lines,y1(t)=y0, y2(t)=−y0 (y0 constant),
the vertical coordinates of the vortices move according to
y1(t)=y0+ǫξ(t), and y2(t)=−y1(t), where, at each time,
ξ(t) is a uniform random number in the range[−1, 1], andǫ

is the noise strength.

The parameters of the model are chosen in such a way that
they represent properly the geophysical features of the Ca-
nary zone. These values are given in Table 1. To make the
model dimensionless we measure all lengths in units of the
island radiusr=25 km and all times in units of the period
Tc=30 days. For a discussion of all parameters we refer to
(Sandulescu et al., 2006), where the adaptation of the model
to the situation around the Canary islands is discussed in de-
tail.

2.2 The biological model

One can find in the literature a large variety of different mod-
els used to analyse the dynamics of marine ecosystems. Their
complexity ranges from simple ones with only a few interact-
ing components (Steele and Henderson, 1981, 1992) to large
comprehensive ones (Baretta et al., 1997). We use a system
which is based on a three component model developed by
Steele and Henderson (1992) and later modified by Edwards
and Brindley (1996) and Oschlies and Garçon (1999).

The model describes the interaction of three species in a
trophic chain, namely nutrientsN , phytoplanktonP and zoo-
planktonZ, whose concentrations evolve in time according
to the following dynamics:

dN

dt
=FN = 8N−β

N

kN+N
P+

+ µN

(

(1−γ )
αηP 2

α+ηP 2
Z+µP P+µZZ2

)

dP

dt
=FP = β

N

kN+N
P−

αηP 2

α+ηP 2
Z−µP P

dZ

dt
=FZ = γ

αηP 2

α+ηP 2
Z−µZZ2 (3)

Let us now briefly discuss the meaning of the different terms
(cf. Oschlies and Garçon, 1999, and Pasquero et al., 2004,
for details): the dynamics of the nutrients is determined by
nutrient supply due to vertical mixing, recycling by bacteria
and consumption by phytoplankton. Vertical mixing which
brings nutrients from lower layers of the ocean into the mixed
layer is parameterized in the biological model, since the hy-
drodynamical part considers only horizontal transport of nu-
trients. For the vertical mixing we assumeN0 as a constant

Table 1. List of parameters used in the hydrodynamical model.

parameter value dimensionless value

r 25 km 1
u0 0.18 m/s 18.66

κ
−1/2
0 25 km 1

α 1 1
w ≈55×103 m2/s 200
Tc 30 days 1
L 6r=150 km 6
a−1/2 25 km 1
uE 0.02 m/s 2
y0 r/2=12.5 km 0.5
ǫ 6.25 km 0.5

nutrient concentration below the mixed layer. Thus the mix-
ing term reads:

8N=S(x, y)(N0−N), (4)

where the functionS determines the strength of the up-
welling and will be discussed in more detail below. The
nutrients are consumed by phytoplankton with a saturation
characteristics described by a Holling type II functional re-
sponse. The recycling by bacteria is modelled by the last
three terms in the bracket. A part of all dead organic mat-
ter as well as the exudation of zooplankton is degraded by
bacteria, though the dynamics of the bacteria themselves is
not included in the model. The phytoplankton grows upon
the uptake of nutrients, but its concentration is diminished
by zooplankton (grazing term) and due to natural mortal-
ity. Grazing, modelled by a Holling type III function, enters
also as a growth term for the zooplankton dynamics multi-
plied by a factorγ taking into account that only a part of
the food is converted into biomass of the zooplankton, while
the other part(1−γ ) goes to recycling. The natural mortality
of zooplankton is assumed to be quadratic because this term
does not only model natural mortality but also the existence
of higher predators which are not explicitly considered (Ed-
wards and Bees, 2001). The parameters used are taken from
(Pasquero et al., 2004) as presented in Table 2. Although ap-
propriate for the open ocean, they would provide estimates
for biological properties in the Atlantic not too close to the
coast. To obtain dimensionless quantities convenient for the
numerics, space is measured in units ofr, time in units ofTc

and mass in units of 1012 mmol N.
The primary production is defined as the growth term in

the phytoplankton dynamics:

PP=β
N

kN+N
P (5)

The functionS, measuring the strength of vertical mixing in
this model is a crucial quantity for the coupling between the
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Table 2. List of parameters used in the biological model.

parameter value dimensionless value

β 0.66 day−1 19.8
η 1.0 (mmol N m−3)−2 day−1 0.12288
γ 0.75 0.75
a 2.0 day−1 60
Sl 0.00648 day−1 (nutrient poor) 0.1944
Sh 0.648 day−1 (nutrient rich) 19.44
kN 0.5 mmol N m−3 7.8125
µN 0.2 0.2
µP 0.03 day−1 0.9
µZ 0.2 (mmol N m−3)−1 day−1 0.384
N0 8.0 mmol N m−3 125

hydrodynamical and the biological model, because it quan-
tifies thelocal nutrient supply. As shown in Fig. 1 we as-
sume that there exists an upwelling zone which is located in
a small rectangular region on one side of the island. Accord-
ing to this assumption, we assign two different values to the
parameterS(x, y). In the upwelling zone there is a strong
vertical mixing leading to nutrient rich waters in the mixed
layer. There we assumeS(x, y)=Sh=0.648 day−1, while in
all the surrounding waters upwelling is much lower so that
we assignS(x, y)=Sl=0.00648 day−1 which is a hundred
times lower.

The dynamics of this model is different depending on
the choice of parameters. The long-term behavior can
be either stationary with constant concentrations ofN ,
P and Z or oscillatory. We refer for more details to
Edwards and Brindley (1996) and Pasquero et al. (2004).
We use a parameter set where the system possesses a
stable steady-state. Using the parameter values from
Table 2 and setting the vertical mixingS=Sl=0.00648
day−1 we obtain as a steady stateNamb=0.185,
Pamb=0.355 and Z=Zamb=0.444 mmol N m−3. In this
nutrient poor region the ambient primary production is
PPamb=0.0633 mmol N m−3 day−1.

2.3 The coupled model

The coupling of the biology and the hydrodynamics yields a
system of advection-reaction-diffusion equations. Thus the
complete model is given by the following system of partial
differential equations:

∂N

∂t
+v · ∇N = FN+D∇2N,

∂P

∂t
+v · ∇P = FP +D∇2P,

∂Z

∂t
+v · ∇Z = FZ+D∇2Z, (6)

with the biological interactionsFN , FP , andFZ from Eq. (3),
and the velocity fieldv(x, y, t) from Eqs. (1) and (2). The
diffusion terms take into account the small scale turbulence
with eddy diffusivity D. We takeD≈10 m2/s, as corre-
sponding to the Okubo estimation of eddy diffusivity at
scales of about 10 km (Okubo, 1971), the scales which be-
gin to be missed in our large scale streamfunction. This
advection-reaction-diffusion system is solved numerically by
means of the method explained in Appendix A. As we are
studying an open flow, the inflow conditions into the left part
of the computational domain have to be specified to com-
plete the model definition. Depending on the choice of the
inflow concentrations we observe different behavior. A de-
tailed analysis can be found in Sandulescu et al. (2007)1, here
we only recall the main results which are the basis of the
analysis we present here. We have studied two essentially
different inflow conditions:

1. In the first one fluid parcels enter the computational do-
main with the ambient concentrationsNamb, Pamb, and
Zambcorresponding to the steady-state forS=Sl . In this
case the exterior of the computational domain has the
same properties as the part of the domain without up-
welling.

2. In the second one fluid parcels transported by the main
flow enter the domain from the left with a very small
content of nutrients and plankton, corresponding to a
biologically very poor open ocean outside the consid-
ered domain. In particular we takeNL=0.01×Namb,
PL=0.01×Pamb and ZL=0.01×Zamb, leading to
very low primary production in the inflow water
PPL=8.6×10−6 mmol N m−3 day−1. Since those con-
centrations are very low, we take into account that fluc-
tuations may be important by adding to each of the con-
centrations(NL, PL, ZL) some Gaussian noise term (cf.
Sandulescu et al., 20071, for details).

The two inflow concentrations yield different behavior as
shown in Fig. 2. In the first case we observe high biologi-
cal activity connected with a high primary production in the
area outside vortices. Namely, this is the area of the nutrient
plumes advected from the upwelling region (Fig. 2 left col-
umn). By contrast, in the second inflow case (Fig. 2 right col-
umn) we obtain a high phytoplankton concentration within
the vortices. It turns out that here the vortices act as incu-
bators for primary production leading to localized plankton
blooms. In the first inflow case the behavior is easy to un-
derstand since due to higher nutrient concentrations in the
upwelling region and its neighborhood a high growth of phy-
toplankton is expected. The response on the upwelling of
nutrients in the second case is less obvious. Therefore the
main objective of this paper is to find out the mechanism of
the localized plankton blooms. In the rest of this work we
consider only the situation that the concentrations at inflow
are at their low valuesNL, PL, ZL.

Nonlin. Processes Geophys., 14, 443–454, 2007 www.nonlin-processes-geophys.net/14/443/2007/
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Fig. 2. The concentration of phytoplankton (normalized with the steady state concentration,Pamb) for inflow at ambient concentrations (left)
and for low inflow concentrations (right). Snapshots taken att/Tc=4.1, 4.35, 4.6, 4.85.

3 The mechanism of emergence of localized plankton
blooms

After specifying the complete model and its dynamics we
now investigate the behavior of the coupled biological and
hydrodynamical system from different perspectives to clar-
ify the mechanism of localized enhancement of phytoplank-
ton and primary production connected to vortices. Firstly
we study the biological model alone to understand the inter-
play between the three biological componentsN, P andZ

leading to a sharp increase of phytonplankton for some time

interval. This study yields a certain biological time scale for
the growth of plankton which we compare in a second step
to the hydrodynamical time scale obtained from the inves-
tigations of residence times in vortices. Thirdly we discuss
the role of the chaotic saddle embedded in the flow for the
emergence of localized enhanced plankton growth.

3.1 Plankton growth

To study the enhancement of primary production and the
emergence of localized algal blooms we have to analyze first
the dynamics of the biological model. There is no commonly

www.nonlin-processes-geophys.net/14/443/2007/ Nonlin. Processes Geophys., 14, 443–454, 2007
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Fig. 3. The time evolution of the concentrations (C) of the species
and the primary productivity. Starting concentrations are 0.01×
steady state concentrations ofN , P andZ (top) and 0.3× steady
state concentrations ofN , P andZ (bottom).

accepted definition of an algal bloom. Usually a large in-
crease in the phytoplankton concentrations is considered as a
bloom. In most cases such blooms are observed once or twice
a year due to seasonal forcing. In our case the phytoplank-
ton bloom is not related to an external forcing and appears
only on a rather short time scale. We consider the case where
there appears a sharp increase in phytoplankton as a result of
an enrichment with nutrients (Edwards and Brindley, 1996;
Huppert et al., 2002).

Since the long-term behavior of our model is stationary for
the parametrization used, the emergence of a sharp increase
in phytoplankton is a transient phenomenon and its time scale
is important for the mechanism of localized enhancement of
the primary production. The time evolution of the three com-
ponents and the primary productionPP of the model system
towards the steady state concentrationsCamb (C=N, P,Z,

or PP ) is shown in the upper part of Fig. 3. With starting
concentrations 0.01× steady-state concentrations ofNamb,

PambandZamb, first the nutrient concentration increases and,
after a time lag, primary production and phytoplankton con-
centration follow with a large increase. This growth is ap-
proximately exponential when the nutrients reach their max-
imum. Finally, with a larger time lag the concentration of
predators (zooplankton) increases as well and the bloom ends
due to two factors: nutrient depletion and increased grazing
by zooplankton. For comparison in the lower panel of Fig. 3
the time evolution of the system with starting concentrations
0.3× steady-state concentrations ofNamb, Pamb andZamb is
plotted. With higher starting concentrations the overshooting
in nutrient and phytoplankton concentrations at the begin-
ning of the time evolution is less pronounced (because there
are more predators already present) and the concentrations
converge faster towards the steady-state.

From these simulations we can estimate the time scale for
the biological growth: To reach the maximum of the bloom,
only 15 to 25 days are necessary depending on the initial
condition. The time scale for the whole relaxation process
is about 2Tc, i.e. about 60 days. To understand the inter-
play between the biological growth and the hydrodynamic
mesoscale structures we have to compare this biological time
scale with the hydrodynamic one.

3.2 The residence time of fluid parcels in the wake

As pointed out in Sandulescu et al. (2007)1 the hydrody-
namic mesoscale structures are important for the enhance-
ment of primary production in the wake of the island. To gain
more insight into the interplay of hydrodynamics and plank-
ton growth we now quantify the time scales for the relevant
hydrodynamic processes. To this end we study the various
structures in the hydrodynamic flow which have a significant
influence on the residence times of nutrients and plankton in
the wake of the island. Firstly, far away from the island (top
and bottom of Fig. 1) the flow is strain dominated and parti-
cles like nutrients and plankton are advected with the back-
ground flow of speedu0. Thus the residence time of particles
released away from the island (withy>2 andy<−2, x=0)
is about 16 days.

Secondly we note the existence of the eddies. They are
characterized by a dominance of vorticity compared to strain.
Thus particles are trapped in the vortex once entrained to
it. The particles will rotate in the vortex for some time, but
since this confinement is not perfect and vortices exist only
for some time they leave the vortex and move away with the
background flow out of the computational area (cf. Fig. 4).

Thirdly we consider two other geometrical objects which
are also relevant for the residence time of particles in the vor-
tex street: the chaotic saddle and the cylinder boundary. As
shown in Jung et al. (1993); Duan and Wiggins (1997) there
exists a chaotic saddle which is embedded in the flow beyond
the island. At least for short time scales, this invariant set de-
termines the residence times of particles. Particles released
in the neighborhood of the chaotic saddle will approach it

Nonlin. Processes Geophys., 14, 443–454, 2007 www.nonlin-processes-geophys.net/14/443/2007/
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Fig. 4. The trajectory of a fluid parcel released in the flow at the
coordinates (–1.15, 0) at timet=0. Its subsequent positions are
plotted with a dimensionless time step1t=0.001.
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Fig. 6. Residence time (coded in color in units ofTc) of fluid el-
ements inside the area as a function of its initial positions at time
t/Tc=0.25.

along its stable manifold and will leave it along its unstable
manifold. The unstable manifolds at two different times (the
manifolds and the saddle are time-dependent) are presented
in Fig. 5. As compared with the configuration in Jung et al.
(1993), the chaotic saddle as well as its manifolds are tightly
packed close to the cylinder, because of the parameters used
here (cf. Sandulescu et al., 2006). To obtain an estimate for
the residence time on the chaotic saddle we use a method
suggested by Jung et al. (1993). We sprinkle a large number
N of tracer particles (N=62 500) in the area[0, 2]×[−1, 1]

and integrate their trajectories forward in time. If the dynam-
ics in the region is mainly hyperbolic, the number of parti-
cles remaining in the area of the chaotic saddle decreases as
N∼ exp(−κ t) with κ the escape rate or 1/κ the mean resi-
dence time on the saddle. Figure 6 shows the residence times
obtained with this method, and Fig. 7 shows the decay of
the number of particles in the region as a function time. We
note that the expected exponential decay occurs only for very
short time scales. By fitting this initial time decay, the cor-
responding escape rate isκ=3.1/Tc, and therefore the resi-
dence time of tracers in the hyperbolic part of the saddle is
τ∼10 days. For larger times the particle number in the region
decays as a power law. The reason for this power-law behav-
ior is the non-hyperbolic dynamics near the boundary of the
cylinder. As already shown by Jung et al. (1993) particles
stay for a long time in the vicinity of the cylinder giving rise
to another long-term statistics of the residence times of the
tracers. Thus the number of particles decays asN∼t−γ with
γ=0.96. The residence times in the vicinity of the island can
be estimated asτ∼85 days, measured from the decay to a
fractione of the initial number:N(τ)=N(0)/e.
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Fig. 7. The numberN of tracers inside the area[0, 2]×[−1, 1] as a function of time in units of the period of the flowTc. Vortex strength
w=200. Left panel shows the very early decay, with an exponential fit. Right panel plots the overall decay, with a power law fit at large
times.

Overall we obtain a residence time statistics which reflects
a combination of the three components in the flow: the cylin-
der, the chaotic saddle and the vortices. This leads to res-
idence times of tracers in the wake as long as 90 days (cf.
Fig. 6). Note that in Fig. 6 one can see that tracers having the
longer residence times are either located close to the cylinder
or on the chaotic saddle. The residence times in the vortices
are determined by their travel time which is about 50 days.

3.3 The interplay of biological and hydrodynamical resi-
dence times

To understand the emergence of localized enhancement of
primary production we have to analyze the interplay of the
different time scales relevant for coupled biological and hy-
drodynamical processes. Biological evolution needs about
30–60 days to reach the steady-state when entering the com-
putational domain with very low concentrations of nutrients
and plankton. Due to the exponential growth in the beginning
of the growth phase, we obtain a plankton bloom after about
25 days. Outside the vortex street the travel time of tracers
through the computational domain is only about 16 days due
to the background flow ofu0=0.18 m/s. Therefore we cannot
expect a considerable growth of plankton outside the vortex
street, since the residence time of plankton and nutrients is
too short.

Let us now analyze the situation within the mesoscale
structures of the flow in the wake of the island. As the res-
idence time close to the island is about 85 days the concen-
trations of nutrients and plankton have already reached the
steady-state which is also indicated by the green color in the
right column of Fig. 2. Some of the particles in the vicinity
of the island come close to the stable manifold of the chaotic
saddle visible as the filaments which detach from the cylin-
der. These filaments are stretched and folded along the unsta-

ble manifold of the chaotic saddle, being diffusively diluted
during the process by mixing with the poor surrounding wa-
ters. Thus, very thin filaments of low plankton and nutrient
concentration are produced which are first rolled around the
vortices and then entrained by them. Inside the vortex the
concentrations become homogeneised to a low value. These
very low concentrations of plankton experience the bloom
cycle described in Sect. 3.1 during the time they are trapped
and confined by the vortex. Since the travel time for the vor-
tices is about 50 days, plankton in them has time to grow.
Therefore we observe a localized plankton bloom when the
vortex has traveled a distance of∼100 km which corresponds
to a residence of the plankton in the vortices of∼15−20
days. After 40–50 days and∼200 km we obtain steady-state
concentrations and the former filamental structure within the
vortex is smeared out by our diffusion term which mimics
small scale turbulence.

3.4 The emergence of filamental structures due to strong
mixing

In the previous subsection we have stated that the transport
of nutrients and plankton from the vicinity into the interior
of a vortex happens by filaments which are entrained by the
vortex. To explain this stretching mechanism we now study
the mixing process around the vortices in more detail using a
method to visualize exponential divergence of the trajectories
of initially nearby particles.

The usual tool to analyse exponential divergence in dy-
namical systems theory is the computation of Lyapunov ex-
ponents. In order to adjust this concept to local processes,
we compute finite size Lyapunov exponents (FSLE) which
are based on the idea that one measures the time necessary to
obtain a final prescribed distanceδf starting from an initial
distanceδ0 (Artale et al., 1997; d’Ovidio et al., 2004). For
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a two-dimensional flow we obtain two Lyapunov exponents
λ+ andλ−− (see Appendix B).

Maxima in the spatial distribution ofλ+, the positive or
expanding FSLE, approximate the underlying stable mani-
fold of the chaotic flow (Joseph and Legras, 2002; d’Ovidio
et al., 2004), the direction along which parcels approach the
saddle. The contracting FSLE,λ−−, detects the underly-
ing unstable manifold of the chaotic flow, the direction along
which parcels are stretched out of the saddle. For details on
how to calculate these scalar fields see Appendix B.

The FSLEs were calculated choosing the initial separation
δ0 equal to the gridsize and the final separationδf equal to
the radius of the island and the vortices, since this is the scale
of the motion in the wake. As both stable and unstable man-
ifolds cannot be crossed by fluid parcels they are barriers
(Artale et al., 1997; d’Ovidio et al., 2004). The scalar field
λ+ − |λ−| is plotted in Fig. 8. FSLEs are Lagrangian mea-
sures, which are computed from trajectories that remain in
the flow for a long time, in our case for up to 3Tc. There-
fore even though they are plotted as a snapshot, the visual-
ized structures reflect the stretching and folding of the fluid
parcels during this long time.

The stable and unstable manifolds are intertwined around
the vortex cores and at the island. Stable and unsta-
ble manifolds are crossing the wake allowing for transport
across the vortex street. They intersect each other in hy-
perbolic points, regions of strong mixing. This stretching-
compressing mechanism leads to low nutrient and plankton
concentrations transported into the interior of the vortex, and
thus becoming the starting concentrations for the localized
plankton bloom.

3.5 On the role of the upwelling region of nutrients

Finally we discuss the importance of the vertical mixing of
nutrients in the upwelling zone for the emergence of a plank-
ton bloom inside vortices. Comparing Fig. 2 left and right
column it is obvious that in the case of an inflow with steady-
state conditions (left column), the nutrient plume which ap-
pears in the neighborhood of the upwelling zone gives rise to
a phytoplankton bloom (red filamental plume). Such a plume
is almost absent under low inflow conditions (right column).
Though the nutrient supply due to vertical mixing is identical
for both inflow conditions, it seems to have a limited effect
in the low inflow case. One argument has been already dis-
cussed above: The background flow transports the nutrients
too fast so that the very small plankton concentrations can
not grow to reach high values during the travel time through
the computational area. The growth of phytoplankton is vis-
ible only further downstream. This leads to the conclusion
that the plankton bloom inside the vortex is only slightly in-
fluenced by the extra nutrients entrained from the upwelling
zone in the low inflow situation. To strengthen this state-
ment we present in Fig. 9 the plankton dynamics when the
upwelling is removed. We note that the concentration values
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Fig. 8. Finite Size Lyapunov Exponent distributions. We plot the
field λ+ − |λ−| at timet/Tc=0.25. Stable and unstable manifolds
in the flow are approximated by the most positive and most negative
filaments in the distributions.

for phytoplankton and zooplankton are slightly lower com-
pared to the upwelling regime, but qualitatively there is no
change observable. Thus localized phytoplankton blooms in
vortices are possible in the wake of an island just due to the
mechanism discussed in Sect. 3.4 without any extra nutrient
supply due to upwelling.

4 Conclusions

We have analyzed the interplay between hydrodynamic
mesoscale structures and biological growth in the wake of
an island. Parameter values for the kinematic hydrodynamic
flow were chosen to match the observations for the Canary is-
land region, but since the basic hydrodynamic features stud-
ied here are commonly observed in other areas too, we expect
our results to be of general validity. Our study is focused on
the emergence of a plankton bloom localized in a vortex in
the wake of an island. In a previous paper (Sandulescu et al.,
20071) it has been pointed out that under certain conditions a
vortex may act as an incubator for plankton growth and pri-
mary production. Here we have revealed the mechanism of
such a plankton bloom. If the hydrodynamic flow far away
from the island is dominated by a jet, then the hydrodynamic
time scale is much faster than the biological one, so that con-
siderable growth of plankton cannot be observed. By con-
trast, in the wake of an island we obtain a much slower time
scale which becomes comparable to the biological one giv-
ing rise to an exponential growth of phytoplankton and thus
to the emergence of a plankton bloom within a vortex. The
essential factors for this phenomenon to happen are (i) the
long residence times in the vicinity of the island leading to
an enrichment of nutrients and plankton in the neighborhood
of the island; (ii) the transport and subsequent entrainment of
nutrients and plankton to the interior of the vortex due to fil-
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Fig. 9. The concentration of phytoplankton in the absence of up-
welling. Snapshots taken att/Tc=4.1, 4.35, 4.6, 4.85. The color
coding is in the same range as in Fig. 2.

amental structures emerging with the chaotic saddle beyond
the island, and (iii) the confinement of plankton in the vortex.
Though the upwelling of nutrients in an upwelling zone en-
hances the emergence of localized plankton blooms, it is not
a precondition for this phenomenon to occur. The extra nutri-
ents supplied by vertical mixing in areas away from the vor-
tex street are not a part of the mechanism explained here. Up-
welling could be more effective if the vortices directly cross
upwelling zones when traveling through the ocean. Simi-
lar situations have been considered in Martin et al. (2002);
Pasquero et al. (2005). There it has been shown that un-
der conditions where upwelling occurs only directly within
vortices, a plankton bloom within a vortex can be initiated.
Therefore this mechanism, which relies mostly on upwelling
within vortices, is different from the one reported here. The
variety of real observations (Arı́stegui et al., 1997) in the Ca-
nary wake may benefit from the identification of the different
possible mechanisms.

Appendix A

The numerical algorithm

The investigation of the interplay of biological and physi-
cal processes is based on advection-reaction-diffusion sys-
tems (Eqs. 6). This system of partial differential equations
is solved numerically by means of a semi-Lagrangian al-
gorithm. The concentration fields of nutrientsN , phyto-
planktonP and zooplanktonZ are represented on a grid of
[500×300] points. The integration scheme splits the compu-
tation into three steps corresponding to advection, reaction
and diffusion which are performed sequentially in the fol-
lowing way:

1. Advection: Each point of the grid is integrated for a time
stepdt backwards in time along the trajectory of a fluid
parcel in the velocity field. This procedure yields the
position from which a fluid parcel would have reached
the chosen grid point. Typically this position is not lo-
cated on a grid point but somewhere in between.

2. Reaction: Once the position of the fluid parcel in the
past is found, we compute the values of the concentra-
tion fields ofN , P andZ at this point and take them as
initial values for the reaction term which is integrated
forward in time for a time stepdt . Since the position
of the fluid parcel is not on a grid point the concentra-
tion fields have to be evaluated by means of a bilinear
interpolation using the nearest neighbor grid points.

3. Diffusion: Finally we perform a diffusion step based on
an Eulerian scheme. Note, that the reaction step induces
already a numerical diffusion of the orderDn∝dx2/dt

due to the interpolation. Therefore one has to make
sure that the real diffusion according to the Okubo es-
timate (D=10m2/s, dimensionless valueD=0.041472)
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(Okubo, 1971) is larger than this numerical diffusion.
Additionally the stability condition of the Eulerian dif-
fusion step (Ddtd/dx2<1 with dtd the diffusion time
step) has to be fulfilled. Both conditions together re-
quire that the diffusion time stepdtd is much smaller
thandt . We have chosendtd=dt/10 in our algorithm,
i.e. after each step of advection and reaction we per-
form 10 steps of diffusion. The parameters used in the
computation aredx=0.02,dt=0.01 anddtd=0.001 ex-
pressed in units ofTc=30 days for time andr=25 km
for space.

Appendix B

Finite Size Lyapunov-Exponents

Stretching by advection in fluid flows is often described by
means of Lyapunov exponents. They are defined as the aver-
age of the exponential rate of separation of initially infinites-
imally separated parcels. For application with data sets from
tracer experiments the infinite time limit poses a problem. To
study non-asymptotic dispersion processes, Finite Size Lya-
punov Exponents (FSLE) have been introduced (Artale et al.,
1997; d’Ovidio et al., 2004). The FSLE technique allows us
to characterize dispersion processes and to detect and visual-
ize Lagrangian structures, such as barriers and vortices. The
FSLE are computed by starting two fluid elements at timet

close to the pointx but at a small distanceδ0, and let them
to evolve until their separation exceedsδf . From the elapsed
time,τ+, the FSLE is calculated as

λ+(x, t, δ0, δf )=
1

τ+

log
δf

δ0
(B1)

The positive subindexes indicate that the tracers are advected
forward in time.λ+ is a scalar measure giving the stretching
rate in the flow as it is the inverse of the separation timeτ .

The same definition can be applied to tracers integrated in
the negative direction in time.λ− gives the contraction rate
in the flow at the specified position:

λ−(x, t, δ0, δf )=
1

τ−

log
δf

δ0
(B2)

Regions with high values ofλ+ andλ− trace out approxi-
mately the stable and unstable manifolds of the chaotic sad-
dle. These manifolds cannot be crossed by fluid parcel tra-
jectories and thus greatly influence the transport in the area.
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