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Abstract. A new filtering technique for sequential data as-
similation, the merging particle filter (MPF), is proposed.
The MPF is devised to avoid the degeneration problem,
which is inevitable in the particle filter (PF), without pro-
hibitive computational cost. In addition, it is applicable to
cases in which a nonlinear relationship exists between a state
and observed data where the application of the ensemble
Kalman filter (EnKF) is not effectual. In the MPF, the filter-
ing procedure is performed based on sampling of a forecast
ensemble as in the PF. However, unlike the PF, each mem-
ber of a filtered ensemble is generated by merging multiple
samples from the forecast ensemble such that the mean and
covariance of the filtered distribution are approximately pre-
served. This merging of multiple samples allows the degen-
eration problem to be avoided. In the present study, the newly
proposed MPF technique is introduced, and its performance
is demonstrated experimentally.

1 Introduction

Data assimilation is performed to obtain the best estimates
of a state of a dynamic system or the evolution of a system
by incorporating observation into a model of the system and
is used as an important tool for modeling and prediction of
geophysical processes. Data assimilation methods are clas-
sified into two categories: variational data assimilation and
sequential data assimilation. While variational data assimi-
lation is performed by fitting a dynamic model to all of the
available observations during a period of interest, sequential
data assimilation is an on-line approach that updates the es-
timation of a state at each observation time. In the present
study, we focus on sequential data assimilation.
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Most sequential data assimilation techniques basically
consider a probability density function (PDF) of a state of
a dynamic system. An assimilation process is based on a
prior PDF of the current state which is obtained using past
data and a system model. This prior PDF is then updated to
obtain the posterior PDF of the state by incorporating con-
straints based on observation. The procedure used to obtain
the posterior PDF is called “filtering”. The filtering proce-
dure provides a PDF of the current state considering current
and past observations, which should be a basis for accurate
prediction of future states.

If a PDF of a state is Gaussian and the dynamics of the
system is linear, then a filtering process can be described by
the algorithm of the Kalman filter. However, since geophys-
ical systems usually contain inherent nonlinearity, it is rare
that the Kalman filter can be applied. The Kalman filter al-
gorithm is sometimes extended by modifying the calculation
of covariances of a state by linearizing a system model, and
this extended algorithm is called the extended Kalman filter
(EKF). However, for models with high nonlinearity, the EKF
can make errors diverge (e.g., Evensen, 1992). Moreover, for
a model with a large number of variables, the EKF requires
a high computational cost. Although the computational cost
could be reduced by using a variant of the EKF, the singu-
lar evolutive extended Kalman (SEEK) filter (Pham et al.,
1998b), the SEEK filter also requires the linearization of a
system model and it can provide an unstable result for cases
with high nonlinearity.

In order to apply data assimilation to a system with non-
linear dynamics, it is practical to approximate a PDF of a
state by an ensemble consisting of many realizations called
“particles”. The ensemble Kalman filter (EnKF) (Evensen,
1994; Burgers et al., 1998) is one of such methods, and sev-
eral variants of this algorithm have also been proposed (e.g.,
Anderson, 2001; Whitaker and Hamill, 2002). The EnKF
is applicable to data assimilation of nonlinear systems. In
the EnKF, each particle in an ensemble is updated using a
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Kalman gain calculated from the mean and the covariances
of the prior ensemble. However, the EnKF basically assumes
a linear relationship between a state and observed data in cal-
culating a Kalman gain. Therefore, the EnKF does not pro-
vide good estimates of a state for cases in which linear ap-
proximation of the relationship between a state and observed
data is invalid. In addition, the computational cost of each
filtering step in the EnKF is large due to repetitive multipli-
cations and additions of matrices. Pham et al. (1998a) have
proposed another ensemble-based filtering method, the sin-
gular evolutive interpolated Kalman (SEIK) filter, which is
derived as a variant of the SEEK filter. Although the SEIK
filter can work more efficiently than the EnKF (Nerger et al.,
2005), it is not applicable to cases with nonlinear observation
as well.

The particle filter (PF) (Gordon et al., 1993; Kitagawa,
1993, 1996; Kitagawa and Gersch, 1996; Higuchi and Kita-
gawa, 2000; van Leeuwen, 2003), which is sometimes re-
ferred to as the sequential importance resampling (SIR) fil-
ter, is another method that is based on ensemble approxima-
tion of a PDF. In the PF, an estimation of a posterior PDF
is obtained by resampling with replacement from a prior en-
semble. As the PF does not require assumptions of linearity
or Gaussianness, it is applicable to general nonlinear prob-
lems. In particular, the PF can be applied to cases in which
the relationship between a state and observed data is nonlin-
ear, to which the application of the ensemble Kalman filter
(EnKF) is not appropriate. However, the PF often encounters
a problem called “degeneration”, which does not occur in the
EnKF. Since resampling procedures are applied recursively,
most of the particles are replaced by particles that fit the ob-
served data better, and the posterior PDF is eventually rep-
resented by only a few of the particles among the members
of the initial ensemble. This reduces the validity of ensemble
approximation. This problem could be avoided by increasing
the number of particles in the ensemble. However, in order to
increase the number of particles, a prohibitive computational
cost is often required at each forecast step.

One potential way to avoid the degeneration problem is
to approximate a posterior distribution as a Gaussian distri-
bution. This approach has been proposed by Kotecha and
Djurić (2003) under the name of the Gaussian particle filter
(GPF), and a similar algorithm was also presented by Ander-
son and Anderson (1999). In this technique, from an ensem-
ble that represents a filtered posterior distribution, the mean
and covariances are calculated to obtain a Gaussian distribu-
tion for approximating the filtered distribution. By drawing
random samples from this Gaussian distribution, a filtered
ensemble is newly generated. In the GPF, although the ac-
curacy of an approximation of a filtered distribution is worse
than in the PF because of the assumption of Gaussianness,
no duplicate particles are contained in the ensemble and de-
generation does not occur. However, in generating Gaussian
random vectors to make a Gaussian ensemble, we must fac-
torize the covariance matrix, which requires a high computa-

tional cost if the dimension of a state vector is large. In most
practical cases, factorization of the covariance matrix with
the dimension of a state vector is not realistic.

There is another way to avoid degeneration which is a vari-
ant of the PF referred to as the kernel filter (Hürzeler and
Künsch, 1998; Anderson and Anderson, 1999) or the regu-
larized particle filter (Musso et al., 2001). This technique
approximates the filtered PDF by a sum of Gaussian func-
tions with small standard deviations centered at the particle
locations, and members of a filtered ensemble is drawn from
the sum of Gaussian functions. However, in applying this
technique to high-dimensional models, there is difficulty in
designing a covariance matrix for each of the Gaussian func-
tions. Although a covariance matrix could be made on the
basis of the covariance matrix of an ensemble representing
a prior or posterior PDF, this bring the same problem as the
GPF; that is, the factorization of the covariance matrix is re-
quired and the computational cost would become prohibitive
in cases that a state vector is high-dimensional.

Thus, there exists no practical method to allow sequential
data assimilation with acceptable computational cost, except
some methods such as the EnKF and the SEIK filter which
also have a disadvantage in that it is not necessarily appli-
cable to cases with nonlinear observations. To overcome
this problem, another technique, the merging particle filter
(MPF), is devised. The MPF is an improved algorithm of the
PF, in which filtering is performed by merging several parti-
cles of a prior ensemble, which is rather similar to the genetic
algorithm (e.g., Goldberg, 1989). This merging procedure al-
lows the degeneration problem to be avoided and requires far
fewer particles than the PF. The primary advantage of the PF
over the EnKF is inherited; that is, the MPF is applicable
even to cases in which the relationship between a state and
observed data is nonlinear. Moreover, since the MPF does
not require the calculation of an inverse matrix, the compu-
tational cost at each filtering step is lower than that of the
EnKF. The PF algorithm, which the proposed algorithm is
based on, is reviewed in Sect. 2, and the MPF algorithm is
introduced in Sect. 3. In order to evaluate the performance
of the MPF, the results of a number of experiments are de-
scribed in Sect. 4. Finally, the effectiveness of the MPF is
discussed and summarized in Sect. 5.

2 Particle filter

The following state space model is considered:

xk = Fk(xk−1, vk) (1a)

yk = Hk(xk) + wk (1b)

where the vectorsxk andyk indicate the state of a system and
observed data at a discrete timeT =tk (k=1, . . .), respec-
tively, and the vectorsvk andwk denote system noise and
observation noise, respectively. The operatorFk represents
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the temporal evolution of a state from timetk−1 to timetk ac-
cording to the system model based on the simulation, while
Hk projects the state vectorxk to the observation space.

The PF considers a PDF of a statexk, and the PDF is
approximated by an ensemble consisting of a large num-
ber of discrete samples called ‘particles’. For example, a
filtered distribution at timeT =tk−1, p(xk−1|y1:k−1), is ap-
proximated by particles{x(1)

k−1|k−1, x
(2)
k−1|k−1, · · · , x

(N)
k−1|k−1}

as

p(xk−1|y1:k−1) ≈ 1

N

N
∑

i=1

δ
(

xk−1 − x
(i)
k−1|k−1

)

(2)

where δ is Dirac’s delta function, andN is the num-
ber of particles in the ensemble. Here we expressed
p(xk−1|y1, · · · , yk−1) asp(xk−1|y1:k−1). From this ensem-
ble approximation ofp(xk−1|y1:k−1), we obtain an ensemble
approximation of the forecast distribution of the state at the
next observation timeT =tk as

p(xk|y1:k−1) ≈ 1

N

N
∑

i=1

δ
(

xk − x
(i)
k|k−1

)

. (3)

Each particle of the forecast ensemblex
(i)
k|k−1 is given by

Fk(x
(i)
k−1|k−1, v

(i)
k ) wherev

(i)
k is a realization of the system

noise. This procedure is called the forecast step.
From the forecast distributionp(xk|y1:k−1) and observed

datayk, we obtain a filtered PDFp(xk|y1:k) by using Bayes’
theorem, as follows:

p(xk|y1:k)

= p(xk|y1:k−1) p(yk|xk)
∫

p(xk|y1:k−1) p(yk|xk)dxk

≈ 1
∑

j p
(

yk|x(j)

k|k−1

)

N
∑

i=1

p
(

yk|x(i)
k|k−1

)

δ
(

xk − x
(i)
k|k−1

)

=
N
∑

i=1

wiδ
(

xk − x
(i)
k|k−1

)

(4)

wherep(yk|x(i)
k|k−1) is the likelihood ofx(i)

k|k−1 given the data
yk and the weightwi is defined as

wi =
p(yk|x(i)

k|k−1)
∑

j p(yk|x(j)

k|k−1)
. (5)

This is called the filtering step.
Equation (4) shows thatp(xk|y1:k) is approximated using

particles weighted bywi . Based on Eq. (4), we obtain a new
ensemble{x(1)

k|k, · · · , x
(N)
k|k } which approximatesp(xk|y1:k)

by resampling the forecast ensemble{x(1)
k|k−1, · · · , x

(N)
k|k−1}

with a weight ofwi for eachi. The new ensemble may

contain multiple copies ofx(i)
k|k−1 belonging to the forecast

ensemble, and the number of copiesmi becomes

mi ≈ Nwi

(

∑

mi = N; mi ≥ 0
)

(6)

for eachx(i)
k|k−1. From Eqs. (4) and (6), we obtain an approx-

imation ofp(xk|y1:k) using uniformly weighted particles, as
follows:

p(xk|y1:k) ≈
N
∑

i=1

wiδ
(

xk − x
(i)
k|k−1

)

≈
N
∑

i=1

mi

N
δ
(

xk − x
(i)
k|k−1

)

= 1

N

N
∑

i=1

δ
(

xk − x
(i)
k|k

)

.

(7)

Thus, the newly generated ensemble approximates the fil-
tered PDFp(xk|y1:k). Equation (7) has the same form as
Eq. (2), which allows us to recursively repeat the above pro-
cedure from Eq. (2) to Eq. (7). By repeating the procedure,
a sequence of observed data is incorporated into the system
model.

3 Merging particle filter

In the PF, a filtered ensemble generated through the resam-
pling procedure contains multiple copies of particles with
high likelihoods, and particles with low likelihoods are re-
moved from the ensemble. Therefore, after repeating resam-
pling several times, the diversity of the ensemble decreases
and eventually becomes insufficient for validly representing
a PDF. This problem can be avoided by increasing the num-
ber of particles. However, due to limited computational re-
sources, it is often impossible to use a sufficient number of
particles to repeat resampling several times. The MPF, which
we propose in this section, allows us to remake a filtered en-
semble while restraining the reduction of its diversity.

The MPF is a modification of the PF. In the MPF, a filtered
ensemble is constructed based on samples from a forecast en-
semble as in the PF. However, each particle of a filtered en-
semble is generated as an amalgamation of multiple particles
from the forecast ensemble, which is rather similar to the ge-
netic algorithm. Although this does not ensure that the shape
of the filtered PDF is preserved, the mean and covariance of
the filtered PDF are approximately preserved (asymptotically
preserved as the number of particles approaches infinity) in
generating a filtered ensemble.

A filtered ensemble is obtained as follows. When the
number of particles to be merged is assumed to ben,
we draw n×N samples from the forecast ensemble with
weights of wi in Eq. (5), and we thus obtain an ensem-
ble: {x̂(1,1)

k|k , · · · , x̂
(n,1)
k|k , · · · , x̂

(1,N)
k|k , · · · , x̂

(n,N)
k|k }. A subset

www.nonlin-processes-geophys.net/14/395/2007/ Nonlin. Processes Geophys., 14, 395–408, 2007



398 S. Nakano et al.: Filtering for data assimilation

{x̂(j,1)

k|k , · · · , x̂
(j,N)

k|k } from then × N samples forms an en-
semble approximating the filtered PDF, which satisfies

p(xk|y1:k) ≈ 1

N

N
∑

i=1

δ
(

xk − x̂
(j,i)

k|k

)

(8)

because it consists ofN samples drawn from the forecast
ensemble with weights ofwi , as was the case in obtaining
the filtered ensemble in the previous section. Next, we make
a new ensemble consisting ofN particles{x(1)

k|k, · · · , x
(N)
k|k } to

approximatep(xk|y1:k). Each particle in the new ensemble
is generated as a weighted sum ofn samples from then×N

sample set as:

x
(i)
k|k =

n
∑

j=1

αj x̂
(j,i)

k|k . (9)

In order to ensure that the newly generated ensemble pre-
serves the mean and covariances of the filtered PDF for
N→∞, the merging weightsαj are set to satisfy

n
∑

j=1

αj = 1 (10a)

n
∑

j=1

α2
j = 1 (10b)

where eachαj is a real number. When the merging weights
satisfy Eq. (10a), the mean of the PDF approximated by the
new ensemble{x(1)

k|k, · · · , x
(N)
k|k } becomes

∫

xk

1

N

N
∑

i=1

δ
(

xk − x
(i)
k|k

)

dxk

= 1

N

N
∑

i=1

x
(i)
k|k = 1

N

N
∑

i=1

n
∑

j=1

αj x̂
(j,i)

k|k

=
n
∑

j=1

[

αj

∫

xk

1

N

N
∑

i=1

δ
(

xk − x̂
(j,i)

k|k

)

dxk

]

≈
n
∑

j=1

αj

∫

xk p(xk|y1:k) dxk

=
∫

xk p(xk|y1:k) dxk = µk|k

(11)

whereµk|k is the mean of the filtered PDFp(xk|y1:k). In
addition, if the merging weightsαj satisfy Eq. (10b), the co-

variances given by the new ensemble become

∫

(xk−µk|k)(xk−µk|k)
T 1

N

N
∑

i=1

δ
(

xk−x
(i)
k|k

)

dxk

= 1

N

N
∑

i=1

(x
(i)
k|k−µk|k)(x

(i)
k|k−µk|k)

T

= 1

N

N
∑

i=1

(

n
∑

j1=1

αj1x̂
(j1,i)

k|k −µk|k

)(

n
∑

j2=1

αj2x̂
(j2,i)

k|k −µk|k

)T

= 1

N

N
∑

i=1

[

n
∑

j1=1

αj1

(

x̂
(j1,i)

k|k −µk|k
)

][

n
∑

j2=1

αj2

(

x̂
(j2,i)

k|k −µk|k
)

]T

≈ 1

N

N
∑

i=1

n
∑

j=1

α2
j

(

x̂
(j,i)

k|k −µk|k
) (

x̂
(j,i)

k|k −µk|k
)T

=
n
∑

j=1

α2
j

∫

(xk−µk|k)(xk−µk|k)
T 1

N

N
∑

i=1

δ
(

xk−x̂
(j,i)

k|k

)

dxk

≈
∫

(xk−µk|k)(xk−µk|k)
T p(xk|y1:k) dxk=6k|k

(12)

where6k|k is the covariance matrix ofp(xk|y1:k). Here, we
used an approximation as

1

N

N
∑

i=1

(x̂
(j1,i)

k|k − µk|k)(x̂
(j2,i)

k|k − µk|k)
T ≈ 0 (if j1 6= j2),

which is justified because the two sets of samples
{x̂(j1,1)

k|k , · · · , x̂
(j1,N)

k|k } and{x̂(j2,1)

k|k , · · · , x̂
(j2,N)

k|k } are obtained
through independent random sampling and would not corre-
late with each other. Therefore, the ensemble obtained using
Eq. (9) affords an approximation ofp(xk|y1:k) preserving
the mean and covariances as

p(xk|y1:k) ≈ 1

N

N
∑

i=1

δ
(

xk − x
(i)
k|k

)

. (13)

The number of merged particlesn can be chosen almost
arbitrarily. However, in order that the merging procedure
makes sense,n must be equal to or greater than 3. Ifn=1,
the weightα1 must be 1 in order to satisfy both Eqs. (10a)
and (10b), which is obviously equivalent to the normal PF. If
n=2, then one of merging weights must be 1, and the other
must be 0, so as to satisfy both Eqs. (10a) and (10b). This
setting is also equivalent to the normal PF, which means that
the merging procedure does not make sense. Although there
is no upper limit forn, it is not necessary to setn to be large.
As shown in the next section, if none of the merging weights
are zero, we would greatly benefit by the merging procedure
even whenn is as small as 3.

When n is equal to or greater than 3, there are infinite
allowable sets of the merging weights:{α1, · · · , αn}. Al-
though there is no definitive way to determine the values of
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Resampling (N  particles)

Forecast ensemble (N particles)

Forecast ensemble (N particles)

State  x

Fig. 1. PF scheme. The value of a statex is on the horizontal axis assuming that the statex is scalar.

the weights, it would be preferable to set them such that
no two weights are equal to each other and that none of
the weights become zero in order to reinforce the diversity
of the filtered ensemble. Under this setting, two duplicate
particles in the filtered ensemble{x(1)

k|k, · · · , x
(N)
k|k } can be

generated only from two identical sets ofn merged parti-
cles drawn from the forecast ensemble{x(1)

k|k−1, · · · , x
(N)
k|k−1},

if duplicate particles are not contained in the forecast en-
semble. When the probability that particlex

(i)
k|k−1 is drawn

from the forecast ensemble iswi (0≤wi<1), the probability
that a sequence ofn particles{x(i1)

k|k−1, · · · , x
(in)
k|k−1} is drawn

is
∏n

j=1 wij . Since
∏n

j=1 wij ≤(maxwi)
n, the number of

duplicate particles contained in the filtered ensemble is, at
most, approximatelyN×(maxwi)

n for the MPF, while it is
N× maxwi for the PF.

Figures1 and 2 show schematically the respective proce-
dures of the PF and the MPF when the number of merging
particles is set to be 3. In the PF, a filtered ensemble is sim-
ply obtained by resampling. In the MPF with 3 merging par-
ticles, after 3N particles are sampled from the forecast en-
semble, the 3N particles are divided intoN combinations
of 3 particles, and the 3 particles in each combination are
merged to obtain a new particle. Even from combinations of
the same 3 particles, different particles can be made with dif-
ferent sets of weights. Thus, the filtered ensemble obtained
with the MPF contains diverse particles in comparison with
that obtained with the PF.

4 Numerical experiments

4.1 Lorenz 63 model

We performed a numerical experiment to test the MPF. Al-
though this method is actually devised for data assimilation
for high-dimensional models, we first used a simple model,
the Lorenz 63 model (Lorenz, 1963), to investigate the be-
haviors of the method. The Lorenz 63 model is described by
the following equations:

dx

dt
= −s(x − y) (14a)

dy

dt
= rx − y − xz (14b)

dz

dt
= xy − bz. (14c)

In the conventional parameter setting, the three parameters
are set as follows:s=10, r=28, andb=8/3. One time step
in integrating the system equation was set to be 0.01.

Initially, we ran this model to generate a sequence of mea-
surement data for this test. The data were generated every 20
time step with errors of a standard deviation of 2.0. It was as-
sumed that all of the components of the state vector,x, y, and
z, could be observed. In this situation, the observation vector
at each observation time resides in the same vector space as
the state vector.

The generated data were assimilated into the model using
the PF and the MPF. In this and the following experiments,
we assume additive system noise, and thus Eqs. (1a) and (1b)
are rewritten as follows.

xk = F(xk−1) + vk (15a)

yk = H(xk) + wk (15b)

www.nonlin-processes-geophys.net/14/395/2007/ Nonlin. Processes Geophys., 14, 395–408, 2007



400 S. Nakano et al.: Filtering for data assimilation

M
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Resampling (3N  particles)

Forecast ensemble (N particles)

Forecast ensemble (N particles)

State  x

Fig. 2. Scheme of the MPF, in which the number of merging particles is set to be 3. The value of a statex is on the horizontal axis assuming
that the statex is scalar.

where the subscriptk in Fk andHk is omitted because the
system and observation models considered here are time-
independent. In applying the MPF, the number of merged
particles was set ton=3, and the weightsαj were set as fol-
lows:

α1 = 3

4
(16a)

α2 =
√

13+ 1

8
(16b)

α3 = −
√

13− 1

8
(16c)

which satisfies Eqs. (10a) and (10b). In both the PF and the
MPF, we need to calculate the likelihoodp(yk|xk) where
yk is the observation vector(xo

k , yo
k , zo

k), andxk is the state
vector(xk, yk, zk) at timeT =tk. Assuming that observation
noisewk obeys a Gaussian distribution with zero mean and
a diagonal covariance as diag(σ 2, σ 2, σ 2), the likelihood be-
comes

p(yk|xk) = 1√
2πσ

exp

[

−||yk − xk||2
2σ 2

]

(17)

where we setσ=3. The system noise was assumed to be a
Gaussian noise with zero mean and a diagonal covariance as

diag(0.01, 0.01, 0.01). Particles of the forecast ensemble at
the initial time step (T =t1) were generated from a Gaussian
distribution where the mean was given by the value of the
data at the same time step and the standard deviation was 4.0
for each component.

Figure 3 shows the x-component of the state vectorxk as
estimated by the MPF, where the number of particles was set
to N=64, and Fig. 4 shows that estimated by the PF, where
the number of particles was also set toN=64. Here, the esti-
mate was given by the average over the ensemble members.
In each figure, the black squares indicate the test data that
were assimilated into the model, and the red line indicates
the true trajectory of the state. Finally, the blue line indi-
cates the state estimated through data assimilation. As seen
in these figures, the MPF successfully estimated the state,
while the estimate by the PF largely deviated from the true
state after around time step 6360. Figures 5 and 6 show the
same data as shown in Figs. 3 and 4, respectively, but are fo-
cused on the period from time step 6000 to time step 7000.
While the true state began to decrease after time step 6360,
the estimate by the PF began to increase, and the PF failed
to trace the true trajectory thereafter. Estimates by the MPF
also increased after time step 6360. However, this result was
improved by the filtering at time step 6380, after which the
MPF again successfully traced again the true state.
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Fig. 3. Result of the experiment of data assimilation by the MPF
for the Lorenz 63 model. The number of particles was set toN=64.
The black squares indicate the test data that were assimilated into
the model. The red line indicates the true state ofx, and the blue
line indicates the estimation ofx as a result of the data assimilation.
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Fig. 4. Result of the experiment of data assimilation by the PF for
the Lorenz 63 model. The number of particles was set toN=64.
The black squares indicate the test data that were assimilated into
the model. The red line indicates the true state ofx and the blue line
indicates the estimation ofx as a result of the data assimilation.

In order to clarify why the PF failed to trace the true tra-
jectory, histograms of the ensemble forx around time step
6360 are shown in Fig. 7. At time step 6340, a gap appeared
around−1<x<0 in the filtered ensemble in the result by the
PF. This gap expanded remarkably at the next forecast step,
resulting in a large gap in the forecast ensemble at time step
6360. While thex value of the true state was−0.125 at this
time step, as indicated by the dashed line in each panel, no
members of the ensemble were distributed around the true
state. In contrast, no distinct gap appeared in the filtered en-
semble at time step 6340 in the result obtained by the MPF.
Thus, there were only small gaps in the forecast ensemble at
the next time step.
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Fig. 5. Result of the experiment of data assimilation by the MPF
for the Lorenz 63 model from time step 6000 to time step 7000 for
the x-component.
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Fig. 6. Result of the experiment of data assimilation by the PF for
the Lorenz 63 model from time step 6000 to time step 7000 for the
x-component.

We conducted experiments with various numbers of parti-
cles using the PF and the MPF. Table 1 shows the root-mean-
square of deviations from the true state over 50 000 time steps
for all of the components for each experiment. In this table,
the results obtained using the EnKF (Evensen, 1994; Burg-
ers et al., 1998), which is widely used for data assimilation,
are also displayed for reference. Even if the number of par-
ticles was increased into 128, the PF provided a worse es-
timation than the MPF. When the number of particles was
set toN=256, the estimates by the PF became as good as
those by the MPF. AlthoughKivman (2003) has pointed out
that the PF tends to provide better estimations than the EnKF,
this table shows that the EnKF yields lower errors when the
number of particles is small. However, even in such cases,
the MPF gives better estimations than the EnKF.
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Fig. 7. Histograms of the distribution ofx in the ensemble around time step 6360. The left-hand panels show the distributions for the results
obtained by the PF, and the right-hand panels show the distributions for the results obtained by the MPF. The upper panels show the filtered
distributions at time step 6340. The middle panels show the forecast distributions at time step 6360. The lower panels show the filtered
distribution at time step 6360. In the middle and lower panels, for reference, the true state ofx is indicated with dashed lines.

4.2 Lorenz 96 model

In order to evaluate the performance of the MPF for models
on higher dimension, we performed another experiment us-

ing the Lorenz 96 model (Lorenz and Emanuel, 1998), which
is described by the following equations:

dxj

dt
= (xj+1 − xj−2)xj−1 − xj + f (18)
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Table 1. Root-mean-square deviations from the true state over
50 000 time steps for an experiment using the Lorenz 63 model.

PF MPF EnKF

N=64 4.55 1.00 1.34
N=128 3.87 0.91 1.29
N=256 0.87 0.92 1.29
N=512 0.86 0.91 1.29

Table 2. Root-mean-square deviations from the true state from time
step 3000 to time step 20 000 for an experiment using the Lorenz
96 model. Since the result has converged to the limit, we omitted
to calculate the deviations forN>8192 for the EnKF and those for
N>65 536 for the MPF.

PF MPF EnKF

N=128 3.47 1.74 0.91
N=256 3.10 1.03 0.88
N=512 2.94 0.90 0.87
N=1024 2.26 0.84 0.87
N=2048 1.60 0.83 0.86
N=4096 1.29 0.81 0.86
N=8192 1.08 0.81 0.86

N=16 384 0.96 0.80 –
N=32 768 0.84 0.80 –
N=65 536 0.83 0.80 –
N=131 072 0.79 – –
N=262 144 0.77 – –

for j=1, . . . , J . Here,x−1=xJ−1, x0=xJ , andxJ+1=x1. In
this study,J was set to be 40; that is, the dimension of a state
vector is 40. The forcing termf was set to be 8. One time
step was set to be 0.005. In order to generate data for the
experiment, we ran this model from the initial condition as

xj = 8.0 (for j 6= 20) (19a)

xj = 8.008 (for j = 20). (19b)

After we iterated the model through 2000 time steps to al-
low fluctuations in the system to develop sufficiently, the
data were generated every 10 time steps with errors hav-
ing a standard deviation of 1.5. It was assumed that we
can observexj if j is an even number(j=2, . . . , 40); that
is, if half of the state variables are observed. In assimilat-
ing these test data, the system noise was assumed to be a
Gaussian noise with zero mean and a diagonal covariance as
diag(0.25, . . . , 0.25). Particles of the forecast ensemble at
the initial time step (T =t1) were generated from a Gaussian
distribution with mean 2.0 and variance 2.0 for each com-
ponent. Again, in applying the MPF, the number of merged
particles was set ton=3, and the weightsαj were set accord-
ing to Eq. (16). The likelihood was calculated as follows:
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Fig. 8. Result of the experiment of data assimilation by the MPF for
the Lorenz 96 model for every 1000 times step from 3000 to 10 000.
In this experiment, the number of particles was set toN=512. The
red and blue lines indicate the true state and the estimate by the
MPF, respectively.

p(yk|xk) = 1√
2πσ

exp

[

−||yk − Hxk||2
2σ 2

]

(20)

where yk is the observation vector(y1,k, . . . , y20,k) and
σ was set to be 3. The operatorH extracts the observ-
able components from the state vectorxk. Since we as-
sume that we can observexj for an even number ofj ,
Hxk=(x2,kx4,k . . . x40,k)

T .
Figures 8 and 9 show the estimation by the MPF and that

by the PF, respectively. In the experiments shown in these
figures, the number of particles was set toN=512. The ab-
scissa indicatesj , and the value ofxj for eachj for every
1000 time step from 3000 to 10 000 is shown in these fig-
ures. As shown in Fig. 9, the PF often deviates from the true
state (e.g., at time step 9000). On the other hand, the MPF
successfully estimates the state over the period shown here.
Table 2 shows the root-mean-square of the deviations from
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Fig. 9. Result of the experiment of data assimilation by the PF for
the Lorenz 96 model for every 1000 time steps from 3000 to 10 000.
In this experiment, the number of particles was set toN=512. The
red and blue lines indicate the true state and the estimate by the PF,
respectively.

the true state from time step 3000 to time step 20 000 for
various numbers of particles. Again, for reference purposes,
the results using the EnKF are also shown in this table. We
omitted the calculation of the deviations forN>8192 for the
EnKF and those forN>65 536 for the MPF which requires
much computational resources and cost, because the value
of the root-mean-square deviation has converged to the limit
and the estimate would not be improved any more even ifN

increased.

WhenN is small, the MPF fails to estimate the state, while
the EnKF achieves a robust estimation of the state. However,
the estimation accuracy of the MPF is remarkably improved
whenN=256, and it becomes better than that of the EnKF
whenN≥1024. In comparison with the PF, the MPF pro-
vides good estimates without requiring a large number of par-
ticles. In this experiment, the MPF requires only 1024 parti-
cles to obtain as good accuracy as the PF with 32 768 parti-
cles. As the number of ensemble membersN increases, the

result using the PF is gradually improved, and the root-mean-
square of the deviations for the PF seems to converge to a
slightly better value than that for the MPF, probably because
the MPF does not preserve the shape of the PDF while the
PF can faithfully preserve the shape of the filtered PDF with
abundant particles. For cases thatN is larger than 262 144,
we did not perform experiments because they need too much
computational resources, and we could not confirm the value
which the root-mean-square deviation for the PF converged
to. Thus, the result of the PF with a further large ensemble
size possibly converges to a further good value than that for
N=262 144. However, the use of such an enormous number
of particles is not realistic, and it seems to provide only minor
improvement of the estimation accuracy even if it were possi-
ble. For practical applications to high-dimensional systems,
the use of the MPF or the EnKF with much fewer particles
would be effectual.

4.3 Lorenz 96 model with nonlinear observation

Another experiment was performed to examine whether the
MPF works for the Lorenz 96 model with nonlinear obser-
vations. In this experiment, we assumed that we can ob-
serve only an absolute value|xj | if j is an even number
(j=2, . . . , 40). The data were generated every 10 time steps
by taking the absolute values ofxj containing errors with a
standard deviation of 1.5. As in the previous experiment, the
system noise was assumed to be a Gaussian noise with zero
mean and a diagonal covariance as diag(0.25, . . . , 0.25), and
particles of the forecast ensemble at the initial time step
(T =t1) were generated from a Gaussian distribution with
mean 2.0 and variance 2.0 for each component. The num-
ber and the weights of the merged particles in applying the
MPF were also the same as in the previous experiment. The
likelihood was calculated as follows:

p(yk|xk) = 1√
2πσ

exp

[

−||yk − H(xk)||2
2σ 2

]

(21)

whereH(xk)=(|x2,k| |x4,k| . . . |x40,k|)T andσ=3.
Figures 10 and 11 show the estimation by the MPF and

that by the PF, respectively. In the experiments shown in
these figures, the number of particles was set toN=1024.
The abscissa indicatesj , and, again, the value ofxj for each
j for every 1000 time step from 3000 to 10 000 is shown. As
shown in Fig. 10, the MPF successfully estimates the state.
On the other hand, the PF failed to estimate the state. Table 3
shows the root-mean-square of deviations from the true state
from time step 3000 to time step 20 000 for various numbers
of particles. The results using the EnKF are also shown in
this table again. Here, it should be noted that the algorithm of
the EnKF must be modified to apply to cases with nonlinear
observations because the EnKF basically assumes a linear
relationship between a state and observed data. In applying
the EnKF to this particular experiment, according to Evensen
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Fig. 10. Result of the experiment of data assimilation by the MPF
for the Lorenz 96 model with nonlinear observations for every 1000
time steps from 3000 to 10 000. In this experiment, the number of
particles was set toN=1024. The red and blue lines indicate the
true state and the estimate by the MPF, respectively.

(2003), we define a new state vectorx′
k=[xT

k , (H(xk))
T ]T

such that the observation model becomes linear, and the state
space model in Eqs. (15a) and (15b) is accordingly rewritten
into a new state space model as follows:

x′
k = F ′(x′

k−1, vk) (22a)

yk = H ′x′
k + wk. (22b)

Here the operatorsF ′ andH ′ are defined as:

F ′(x′
k−1, vk) = F ′(xk−1, H(xk−1), vk

)

=
(

F(xk−1) + vk

H
(

F(xk−1) + vk

)

)

(23a)

H ′ = (Odimxk
Idimyk

) (23b)

whereOdimxk
is a zero matrix whose dimension is the same

asxk and Idimyk
is an identity matrix whose dimension is
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Fig. 11. Result of the experiment of data assimilation by the PF
for the Lorenz 96 model with nonlinear observations for every 1000
time steps from 3000 to 10 000. In this experiment, the number of
particles was set toN=1024. The red and blue lines indicate the
true state and the estimate by the PF, respectively.

the same asyk, and thusH ′ extractsH(xk) from the vector
x′

k. The EnKF is then applied to this new state space model.
Since the results have converged to the limit, we omitted to
calculate the deviations forN>8192 for the EnKF and those
for N>65 536 for the MPF.

As shown in this table, if an enormous number of particles
are not allowed, the MPF provides much better results than
the PF. The MPF requires only 1024 particles to achieve bet-
ter accuracy than the PF with 32 768 particles, as well as the
previous experiment. With an enormous number of particles,
the PF apparently provides better results than the MPF. In
this experiment in which only absolute values are allowed to
be observed, the filtered PDF may often have multiple modes
and moments of higher order than the second moment could
then be significant. This situation would limit the accuracy of
the MPF, which preserves only the first two moments, even
if infinite ensemble members are used. However, the PF
requires more than at least 65 536 particles to obtain better
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Table 3. Root-mean-square deviations from the true state from time
step 3000 to time step 20 000 for an experiment using the Lorenz 96
model with nonlinear observation. Since the result has converged to
the limit, we omitted to calculate the deviations forN>8192 for the
EnKF and those forN>65 536 for the MPF.

PF MPF EnKF

N=128 4.17 3.56 1.75
N=256 4.01 2.47 1.94
N=512 3.66 1.50 1.93
N=1024 3.70 1.20 1.98
N=2048 3.15 1.19 1.99
N=4096 2.65 1.14 1.99
N=8192 2.07 1.14 1.99

N=16 384 1.80 1.13 –
N=32 768 1.23 1.13 –
N=65 536 1.19 1.13 –
N=131 072 1.04 – –
N=262 144 1.00 – –

accuracy than the MPF. Thus, as far as the number of parti-
cles is not allowed to increased to more than at least 65 536,
the degeneration problem of the PF is more serious than the
problem concerning high order moments of the MPF in this
experiment. In comparison between the MPF and the EnKF,
whenN is small, the EnKF provides better estimations again,
although estimations by the EnKF are not so good. When
N≥512, the estimation accuracy of the MPF is remarkably
improved to be much better than that of the EnKF. Actually,
the EnKF does not effectively work in this experiment. Fig-
ure12 shows the estimation by the EnKF, where the number
of particles was set toN=1024. It is indicated that the esti-
mates by the EnKF often significantly deviate from the true
state which means that the EnKF fails to capture the varia-
tion of the true state. Thus, for this experiment, the use of the
MPF would be the most effectual.

5 Summary and discussion

We proposed a new algorithm, the MPF, for realizing prac-
tical sequential data assimilation. The MPF provides an
ensemble-based approximation of the filtered PDF such that
the mean and covariance are approximately preserved. The
MPF allows the problem of degeneration, which occurs in
the PF, to be avoided. It must be noted that the MPF does
not preserve the shape of the filtered PDF while the PF can
faithfully preserve the shape of the filtered PDF with abun-
dant particles. Therefore, if a sufficient number of particles
is used, the PF should provide a better estimation than the
MPF. In particular, in cases that the filtered PDF is signifi-
cantly non-Gaussian, the MPF possibly provides a rather bad
estimate. In application to a high-dimensional system, how-
ever, it is not realistic to use a sufficient particles to avoid de-
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Fig. 12. Result of the experiment of data assimilation by the EnKF
for the Lorenz 96 model with nonlinear observations for every 1000
time steps from 3000 to 10 000. In this experiment, the number of
particles was set toN=1024. The red and blue lines indicate the
true state and the estimate by the EnKF, respectively.

generation, and therefore the PF should fail to approximate
the filtered PDF. Indeed, as illustrated in Sect. 4.2, the PF
provides a worse estimation of the state than the MPF for the
Lorenz 96 model, until the number of particles in the ensem-
ble was increased to at least 65 536. Since usual geophysical
models are of much higher dimension than the Lorenz 96
model, although they could be less nonlinear, a hopelessly
large number of particles would be required in order to use
the PF. The MPF requires far fewer particles than the PF and
thus would be a more effectual algorithm.

In addition, the MPF is applicable to cases in which the re-
lationship between a state and observed data is nonlinear. For
cases with nonlinear observations, the EnKF does not neces-
sarily provide a good estimation of the state. As illustrated
in Sect.4.3, even if the number of particles is increased, the
estimation by the EnKF is not improved, whereas that by the
MPF is remarkably improved. Therefore, the MPF would be
the best method of sequential data assimilation with nonlin-
ear observations.
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Table 4. Comparison among the algorithms for sequential data assimilation with a high-dimensional nonlinear system.

PF MPF EnKF

Nonlinear observation OK OK Ineffectual for some cases
Necessary number of particles Exceedingly many Medium Relatively few

Cost of filtering Low Low High

For cases in which the relationship between a state in the
system and observed data is linear, the EnKF basically pro-
vides a good estimation without a large number of particles.
However, the EnKF tends to require a higher computational
cost at each filtering step in applying to a high-dimensional
model, because it involves many multiplications and addi-
tions between matrices. In addition, even if the number
of particles is taken to be small, estimates using the EnKF
can be affected by spurious correlations between distant lo-
cations, and thus localization on the covariance matrix (Ott
et al., 2004) might be required to avoid this problem. On the
other hand, a computational cost at each filtering step is not
serious in the MPF, because neither iterative calculations of
inverse matrices nor numerous multiplications between ma-
trices are required. Therefore, for cases in which a system
model does not require a great deal of computational time,
the MPF may perform better than the EnKF.

Table 4 summarizes the characteristics of the algorithms
of the PF, the MPF, and the EnKF. In the cases of a nonlin-
ear relationship between a state and observed data, the EnKF
does not necessarily work, whereas the PF or the MPF can
be applied. The PF requires an exceedingly large number
of particles, which imposes prohibitive computational cost at
each forecast step. The MPF requires far fewer particles than
the PF, although the EnKF requires fewer particles than the
MPF. As for the computational cost at each filtering step, the
EnKF requires a larger computational cost than the PF and
the MPF. The high computational cost at each filtering step
would become serious in the case that the number of assim-
ilated data is large. On the other hand, the increase in the
number of particles causes a high computational cost at each
forecasting step, which becomes serious for the case in which
a system model requires a great deal of computational time.
Therefore, for the case in which only linear observations are
used, the choice between the MPF and the EnKF should be
made based on the considerations of the dimension of the ob-
servation vector and the computational cost required by the
system model.
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