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Abstract. A new filtering technique for sequential data as- Most sequential data assimilation techniques basically
similation, the merging particle filter (MPF), is proposed. consider a probability density function (PDF) of a state of
The MPF is devised to avoid the degeneration problema dynamic system. An assimilation process is based on a
which is inevitable in the particle filter (PF), without pro- prior PDF of the current state which is obtained using past
hibitive computational cost. In addition, it is applicable to data and a system model. This prior PDF is then updated to
cases in which a nonlinear relationship exists between a statebtain the posterior PDF of the state by incorporating con-
and observed data where the application of the ensemblstraints based on observation. The procedure used to obtain
Kalman filter (EnKF) is not effectual. In the MPF, the filter- the posterior PDF is called “filtering”. The filtering proce-
ing procedure is performed based on sampling of a forecasture provides a PDF of the current state considering current
ensemble as in the PF. However, unlike the PF, each memand past observations, which should be a basis for accurate
ber of a filtered ensemble is generated by merging multipleprediction of future states.
samples from the forecast ensemble such that the mean and If a PDF of a state is Gaussian and the dynamics of the
covariance of the filtered distribution are approximately pre-system is linear, then a filtering process can be described by
served. This merging of multiple samples allows the degen+the algorithm of the Kalman filter. However, since geophys-
eration problem to be avoided. In the present study, the newlycal systems usually contain inherent nonlinearity, it is rare
proposed MPF technique is introduced, and its performancehat the Kalman filter can be applied. The Kalman filter al-
is demonstrated experimentally. gorithm is sometimes extended by modifying the calculation
of covariances of a state by linearizing a system model, and
this extended algorithm is called the extended Kalman filter
(EKF). However, for models with high nonlinearity, the EKF
1 Introduction can make errors diverge (e.g., Evensen, 1992). Moreover, for
a model with a large number of variables, the EKF requires
Data assimilation is performed to obtain the best estimatest high computational cost. Although the computational cost
of a state of a dynamic system or the evolution of a systencould be reduced by using a variant of the EKF, the singu-
by incorporating observation into a model of the system andar evolutive extended Kalman (SEEK) filter (Pham et al.,
is used as an important tool for modeling and prediction 0f1998b), the SEEK filter also requires the linearization of a
geophysical processes. Data assimilation methods are clasystem model and it can provide an unstable result for cases
sified into two categories: variational data assimilation andwith high nonlinearity.
sequential data assimilation. While variational data assimi- In order to apply data assimilation to a system with non-
lation is performed by fitting a dynamic model to all of the linear dynamics, it is practical to approximate a PDF of a
available observations during a period of interest, sequentiagtate by an ensemble consisting of many realizations called
data assimilation is an on-line approach that updates the es$particles”. The ensemble Kalman filter (EnKF) (Evensen,
timation of a state at each observation time. In the presen1994; Burgers et al., 1998) is one of such methods, and sev-

study, we focus on sequential data assimilation. eral variants of this algorithm have also been proposed (e.g.,
Anderson, 2001; Whitaker and Hamill, 2002). The EnKF
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Kalman gain calculated from the mean and the covariancesional cost if the dimension of a state vector is large. In most
of the prior ensemble. However, the EnKF basically assumegpractical cases, factorization of the covariance matrix with
a linear relationship between a state and observed data in cathe dimension of a state vector is not realistic.
culating a Kalman gain. Therefore, the EnKF does not pro- There is another way to avoid degeneration which is a vari-
vide good estimates of a state for cases in which linear apant of the PF referred to as the kernel filteriifzeler and
proximation of the relationship between a state and observe&iinsch, 1998; Anderson and Anderson, 1999) or the regu-
data is invalid. In addition, the computational cost of eachlarized particle filter (Musso et al., 2001). This technique
filtering step in the EnKF is large due to repetitive multipli- approximates the filtered PDF by a sum of Gaussian func-
cations and additions of matrices. Pham et al. (1998a) havéons with small standard deviations centered at the particle
proposed another ensemble-based filtering method, the sirlecations, and members of a filtered ensemble is drawn from
gular evolutive interpolated Kalman (SEIK) filter, which is the sum of Gaussian functions. However, in applying this
derived as a variant of the SEEK filter. Although the SEIK technique to high-dimensional models, there is difficulty in
filter can work more efficiently than the EnKF (Nerger et al., designing a covariance matrix for each of the Gaussian func-
2005), it is not applicable to cases with nonlinear observatiortions. Although a covariance matrix could be made on the
as well. basis of the covariance matrix of an ensemble representing
The particle filter (PF) (Gordon et al., 1993; Kitagawa, a prior or posterior PDF, this bring the same problem as the
1993, 1996; Kitagawa and Gersch, 1996; Higuchi and Kita-GPF; that is, the factorization of the covariance matrix is re-
gawa, 2000; van Leeuwen, 2003), which is sometimes required and the computational cost would become prohibitive
ferred to as the sequential importance resampling (SIR) filin cases that a state vector is high-dimensional.
ter, is another method that is based on ensemble approxima- Thus, there exists no practical method to allow sequential
tion of a PDF. In the PF, an estimation of a posterior PDFdata assimilation with acceptable computational cost, except
is obtained by resampling with replacement from a prior en-some methods such as the EnKF and the SEIK filter which
semble. As the PF does not require assumptions of linearitylso have a disadvantage in that it is not necessarily appli-
or Gaussianness, it is applicable to general nonlinear probeable to cases with nonlinear observations. To overcome
lems. In particular, the PF can be applied to cases in whichhis problem, another technique, the merging particle filter
the relationship between a state and observed data is nonlifMPF), is devised. The MPF is an improved algorithm of the
ear, to which the application of the ensemble Kalman filter PF, in which filtering is performed by merging several parti-
(EnKF) is not appropriate. However, the PF often encountersles of a prior ensemble, which is rather similar to the genetic
aproblem called “degeneration”, which does not occur in thealgorithm (e.g., Goldberg, 1989). This merging procedure al-
EnKF. Since resampling procedures are applied recursivelyjows the degeneration problem to be avoided and requires far
most of the particles are replaced by particles that fit the obfewer particles than the PF. The primary advantage of the PF
served data better, and the posterior PDF is eventually repever the EnKF is inherited; that is, the MPF is applicable
resented by only a few of the particles among the membergven to cases in which the relationship between a state and
of the initial ensemble. This reduces the validity of ensembleobserved data is nonlinear. Moreover, since the MPF does
approximation. This problem could be avoided by increasingnot require the calculation of an inverse matrix, the compu-
the number of particles in the ensemble. However, in order taational cost at each filtering step is lower than that of the
increase the number of particles, a prohibitive computationaEnKF. The PF algorithm, which the proposed algorithm is
cost is often required at each forecast step. based on, is reviewed in Sect. 2, and the MPF algorithm is
One potential way to avoid the degeneration problem isintroduced in Sect. 3. In order to evaluate the performance
to approximate a posterior distribution as a Gaussian distriof the MPF, the results of a number of experiments are de-
bution. This approach has been proposed by Kotecha andcribed in Sect. 4. Finally, the effectiveness of the MPF is
Djuri¢ (2003) under the name of the Gaussian particle filterdiscussed and summarized in Sect. 5.
(GPF), and a similar algorithm was also presented by Ander-
son and Anderson (1999). In this technique, from an ensem-
ble that represents a filtered posterior distribution, the mear2 Particle filter
and covariances are calculated to obtain a Gaussian distribu-
tion for approximating the filtered distribution. By drawing The following state space model is considered:
random samples from this Gaussian distribution, a filtered
ensemble is newly generated. In the GPF, although the actk = Fk(Xk—1, vk) (1a)
curacy of an approximation of a filtered distribution is worse y, = Hy (xx) + wy (1b)
than in the PF because of the assumption of Gaussianness,
no duplicate particles are contained in the ensemble and dewhere the vectors; andy, indicate the state of a system and
generation does not occur. However, in generating Gaussiaobserved data at a discrete tirffie=t, (k=1, ...), respec-
random vectors to make a Gaussian ensemble, we must fatively, and the vectors; andw; denote system noise and
torize the covariance matrix, which requires a high computa-observation noise, respectively. The operaiprepresents
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the temporal evolution of a state from time 1 to timer;, ac-
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contain multiple copies of:kk , belonging to the forecast

cording to the system model based on the simulation, whileensemble, and the number of copiesbecomes

H,. projects the state vectar, to the observation space.
The PF considers a PDF of a statg, and the PDF is

approximated by an ensemble consisting of a large num-
For example, %or eache )

ber of discrete samples called ‘particles’.
filtered distribution at timel'=t;_1, p(xr—1|y14-1), IS ap-

1 2
proximated by parhcle{Sx,E )llk l,x,(( )1|k TR ,x,((_)l‘k_l
as

1
P(Xk—1]y1:k-1) ﬁz (xk 1- xk 1k— 1) (2)

i=1

where § is Dirac’'s delta function, andvV is the num-
ber of particles in the ensemble.
p(xi—1ly1, -+, yk—1) asp(xy_1|y1x—1). From this ensem-
ble approximation op (x;_1|y1.x—1), we obtain an ensemble

Here we expressed

m; ~ Nw;

(Zm; =N; m; > 0)

Klk—1- From Egs. (4) and (6), we obtain an approx-
imation Ofp(xk|y1;k) using uniformly weighted particles, as
follows:
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approximation of the forecast distribution of the state at the
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Each particle of the forecast ensemhigifl is given by

Fy (x,(j)llk 1 vk)) Wherev,({) is a realization of the system
noise. This procedure is called the forecast step.

From the forecast distributiop(x,|y1.x—1) and observed
datay;, we obtain a filtered PDp (x| y1.x) by using Bayes’
theorem, as follows:

P(xXk|yLk)
_ P(Xkly1k—1) p(Yilxr)
J p(xrly1k—1) p(yilxi)dxy

1 ul ;
) X5 p (elxil) )Zl p (vebelfia) 8 (v = i)
k& k-1
:ZwiS (x'k xl(cl|3< l)
i=1
(4)

wherep(ylx{;,_y) is the likelihood ofe}() _,

yi and the welghtu is defined as

given the data

P(Yk |x]((l|;< 1)

—_— (5)
Z P(yk|xk|k 1)

This is called the filtering step.
Equation (4) shows that(x|y1.x) is approximated using
particles weighted bw;. Based on Eq. (4), we obtain a new

ensemble{x,ﬁ,)c, e xk‘k)} which appI’OXImate$7(xk|y1k)
(N)
}

\k 1 X k-1
The new ensemble may

by resampling the forecast ensemlj
with a weight ofw; for eachi.
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Thus, the newly generated ensemble approximates the fil-
tered PDFp(x|y1x).- Equation (7) has the same form as
Eq. (2), which allows us to recursively repeat the above pro-
cedure from Eq. (2) to Eq. (7). By repeating the procedure,
a sequence of observed data is incorporated into the system
model.

3 Merging particle filter

In the PF, a filtered ensemble generated through the resam-
pling procedure contains multiple copies of particles with
high likelihoods, and particles with low likelihoods are re-
moved from the ensemble. Therefore, after repeating resam-
pling several times, the diversity of the ensemble decreases
and eventually becomes insufficient for validly representing
a PDF. This problem can be avoided by increasing the num-
ber of particles. However, due to limited computational re-
sources, it is often impossible to use a sufficient number of
particles to repeat resampling several times. The MPF, which
we propose in this section, allows us to remake a filtered en-
semble while restraining the reduction of its diversity.

The MPF is a modification of the PF. In the MPF, a filtered
ensemble is constructed based on samples from a forecast en-
semble as in the PF. However, each particle of a filtered en-
semble is generated as an amalgamation of multiple particles
from the forecast ensemble, which is rather similar to the ge-
netic algorithm. Although this does not ensure that the shape
of the filtered PDF is preserved, the mean and covariance of
the filtered PDF are approximately preserved (asymptotically
preserved as the number of particles approaches infinity) in
generating a filtered ensemble.

A filtered ensemble is obtained as follows. When the
number of particles to be merged is assumed tonbe
we drawnx N samples from the forecast ensemble with
weights of w; in Eqg. (5), and we thus obtain an ensem-

ble: (&, - &0, &Y, & 0V). A subset
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{;2,((’";{1{ . ,fc,((’l',’(N)} from then x N samples forms an en- variances given by the new ensemble become
semble approximating the filtered PDF, which satisfies

1N '
T ()
_ — =33 — d
L ” /(xk Rl (X ke — Ikik) N iE:l (xk xk|k> Xk
Py ~ & > (xk - f;(('f}f)) 8 o .
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Z| =
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because it consists gf samples drawn from the forecast
ensemble with weights ab;, as was the case in obtaining
the filtered ensemble in the previous section. Next, we make
anew ensemble consistingprarticles{x,ﬁ}(, e, x,(fl\,?} to 1
approximatep(xx|y1.x). Each particle in the new ensemble —

is generated as a weighted summa$amples from the x N

WAL 22,1
Z AjXpe —Mklk Z @jpX g — ik
j1=1 j2=1
~ (1. ~(Jo,i
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N 2.2 (xk|k —l‘klk> (xk|k —ﬂk\k)
i=1j=1
. n .. n N
@) _ D) 1 G
i = Zajxldk . 9) :Zajz'/(xk_”l’ﬂk)(xk_ﬂklk)Tﬁ 23 (xk—x,(f‘kl)) dxi
=t j=1 i1

%/(xk—ltuk)(xk—ﬂuk)TP(xklylzk) dx =Xk
In order to ensure that the newly generated ensemble pre-

serves the mean and covariances of the filtered PDF for (12)

N , the merging weighta ; are set to satis . . .
e ging gnia; fy whereX, is the covariance matrix gf (xx|y1.x). Here, we

used an approximation as

n
aj=1 10a) 1N (i o
j; ! (102) N Z(x;(ﬁ’l) - Mk|k)(x;(<]|;2{l) — )" A0 (i j1 # o),
i-1
n
Y af=1 (10b)  which is justified because the two sets of samples
= {ff/(cﬁ’l)’ .. 7,21((.@!1\’)} and{fc,?l,i’l), . ,g,ﬁ@m} are obtained

through independent random sampling and would not corre-
where each; is a real number. When the merging weights late with each other. Therefore, the ensemble obtained using
j .

satisfy Eq. (10a), the mean of the PDF approximated by the=d- (9) affords an approximation qf(x«|yxx) preserving
the mean and covariances as

new ensemblex,ﬂ,l, e ,x,(f‘\,’()} becomes N
1 .
pleilyu ~ 8 (xi = x{fh) - (13)
1N _ i=1
Xp — 28 (xk - x,%) dxy .
N & \ The number of merged particlescan be chosen almost
= arbitrarily. However, in order that the merging procedure
I3 ) Ly ¥ k b | han 3.nk1
_ Zx(z) _ = Z V) makes sense;, must be equal to or greater than 3.nk1,
N & Mk N = I klk the weighto1 must be 1 in order to satisfy both Egs. (10a)

. LN and (1gb), whichfis obviously eqhuivalent ttc)) the no:jmﬁl PF.hIf
_ A 2 (D) 11 n=2, then one of merging weights must be 1, and the other
- Z‘; [a] /xkﬁ ;8 (x" = Xl ) dxk] - must be 0, so as to satisfy both Egs. (10a) and (10b). This
J= 1= . . . .
" setting is also equivalent to the normal PF, which means that
~ Zo‘f /xk p(xxlyix) dxi the merging procedure does not make sense. Although there
=1 is no upper limit form, it is not necessary to setto be large.
As shown in the next section, if none of the merging weights
= /Xk PXkly1k) dxi = Rk are zero, we would greatly benefit by the merging procedure
even whem is as small as 3.
Whenn is equal to or greater than 3, there are infinite
where py . is the mean of the filtered PDB(x|y1.4). In allowable sets of the merging weightéxs, - - , ;). Al-
addition, if the merging weights; satisfy Eq. (10b), the co- though there is no definitive way to determine the values of
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Fig. 1. PF scheme. The value of a statés on the horizontal axis assuming that the siate scalar.

the weights, it would be preferable to set them such thad Numerical experiments
no two weights are equal to each other and that none of
the weights become zero in order to reinforce the diversity4.1 Lorenz 63 model

of the filtered ensemble. Under this setting, two duplicate

particles in the filtered ensemb[ac,(ﬁ, o ’x](cz‘\]/()} can be We performed a numerical experiment to test the MPF. Al-

generated only from two identical sets efmerged parti- though th!s met_hod is actually dey|sed for data assimilation
les drawn from the forecast ensempt&) ... . x™ for high-dimensional models, we first used a simple model,
¢ k=1 = > Tklk—1D the Lorenz 63 model (Lorenz, 1963), to investigate the be-

if duplicate particles are not contained in the forecast €N+ aviors of the method. The Lorenz 63 model is described by
semble. When the probability that partio.té’li_l is drawn o following equations:

from the forecast ensembleis (0<w; <1), the probability

; Y I (M d
j[hat a sequence af particles{x; "4, -+, x;;_4} isdrawn  dx —s(x— ) (14a)
is ]’[;?=1 Wi Slnce]’[;f=1 w;; <(maxw;)", the number of  dt
duplicate particles contained in the filtered ensemble is, at?y —rx —y—xz (14b)
most, approximatelyV x (maxw;)" for the MPF, while it is dt
. d
N x maxw; for the PF. z_ Xy — bz, (14c)

Figuresl and 2 show schematically the respective proce- dr

dures of the PF and the MPF when the number of mergingln the conventional parameter setting, the three parameters
rticles i . In the PF, afilter nsemble is sim- ' i
particles is set to be 3. In the PF, a filtered ensemble is s are set as followss=10, r=28, andb=8/3. One time step

ply obtained by resampling. In the MPF with 3 merging par- in integrating the system equation was set to 4.0

ticles, after 3V particles are sampled from the forecast en- o ;
Initially, we ran this model to generate a sequence of mea-

semble, the & particles are divided intav combinations t data for this test. The dat ted 20
of 3 patrticles, and the 3 particles in each combination argourementaataforthis test. The data were generated every

merged to obtain a new particle. Even from combinations oftlme Sctjetf] V\t/m;l erfrt%rs ofa standatrd ??}’ |at|tor: @ Atwas aZ'
the same 3 particles, different particles can be made with gir>umed atallorthe components ot the state "em' an
ferent sets of weights. Thus, the filtered ensemble obtained’ could be obser_ved._ In this _5|tuat_|0n, the observation vector

with the MPF contains diverse particles in comparison with at each observation time resides in the same vector space as

that obtained with the PF. the state vector. o .
The generated data were assimilated into the model using

the PF and the MPF. In this and the following experiments,
we assume additive system noise, and thus Egs. (1a) and (1b)
are rewritten as follows.

xp = F(xp—1) + v (15a)
Y= H(xp) + wy (15b)
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Fig. 2. Scheme of the MPF, in which the number of merging particles is set to be 3. The value ofxaistatethe horizontal axis assuming
that the state is scalar.

where the subscript in F;, and H; is omitted because the diag0.01, 0.01, 0.01). Particles of the forecast ensemble at
system and observation models considered here are timehe initial time step {=t1) were generated from a Gaussian
independent. In applying the MPF, the number of mergeddistribution where the mean was given by the value of the
particles was set to=3, and the weighta; were set as fol-  data at the same time step and the standard deviation.@as 4

lows: for each component.
3 Figure 3 shows the x-component of the state veejoas
“=7 (16a)  estimated by the MPF, where the number of particles was set
Ji3+1 to N=64, and Fig. 4 shows that estimated by the PF, where
a=———- (16b)  the number of particles was also sefMe-64. Here, the esti-
8 mate was given by the average over the ensemble members.
a3 = _‘/1_3_ 1 (16¢) In each figure, the black squares indicate the test data that
8 were assimilated into the model, and the red line indicates

which satisfies Egs. (10a) and (10b). In both the PF and thdhe true trajectory of the state. Finally, the blue line indi-
MPF, we need to calculate the likelihogel y;|x;) where cates the state estimated through data assimilation. As seen

yi is the observation vectar?, y?, z2), andx; is the state in these figures, the MPF successfully estimated the state,
vector (xx, i, z) at timeT=r,. Assuming that observation while the estimate py the PF Iargely_deviated from the true
noisew; obeys a Gaussian distribution with zero mean andStaté after around time step 6360. Figures 5 and 6 show the

a diagonal covariance as diad, o2, o-2), the likelihood be- ~ S&me data as shown in Figs. 3 and 4, respectively, but are fo-
COMes Y cused on the period from time step 6000 to time step 7000.

While the true state began to decrease after time step 6360,
1 llyx — xkll2 the estimate by the PF began to increase, and the PF failed
POklxe) = N exp [_T] to trace the true trajectory thereafter. Estimates by the MPF
also increased after time step 6360. However, this result was
where we seb=3. The system noise was assumed to be aimproved by the filtering at time step 6380, after which the
Gaussian noise with zero mean and a diagonal covariance a4PF again successfully traced again the true state.

17
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Fig. 3. Result of the experiment of data assimilation by the MPF Fig. 5. Result of the experiment of data assimilation by the MPF
for the Lorenz 63 model. The number of particles was satte64. for the Lorenz 63 model from time step 6000 to time step 7000 for
The black squares indicate the test data that were assimilated intthe x-component.

the model. The red line indicates the true state ,0and the blue

line indicates the estimation efas a result of the data assimilation.
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Fig. 6. Result of the experiment of data assimilation by the PF for
the Lorenz 63 model from time step 6000 to time step 7000 for the

Fig. 4. Result of the experiment of data assimilation by the PF for X-component.
the Lorenz 63 model. The number of particles was s@Vte64.
The black squares indicate the test data that were assimilated into
the model. The red line indicates the true state ahd the blue line
indicates the estimation afas a result of the data assimilation. We conducted experiments with various numbers of parti-
cles using the PF and the MPF. Table 1 shows the root-mean-
In order to clarify why the PF failed to trace the true tra- square of deviations from the true state over 50 000 time steps
jectory, histograms of the ensemble foraround time step  for all of the components for each experiment. In this table,
6360 are shown in Fig. 7. At time step 6340, a gap appearethe results obtained using the EnKF (Evensen, 1994; Burg-
around—1<x <0 in the filtered ensemble in the result by the ers et al., 1998), which is widely used for data assimilation,
PF. This gap expanded remarkably at the next forecast ste@re also displayed for reference. Even if the number of par-
resulting in a large gap in the forecast ensemble at time steficles was increased into 128, the PF provided a worse es-
6360. While thexr value of the true state was0.125 at this  timation than the MPF. When the number of particles was
time step, as indicated by the dashed line in each panel, neet to N=256, the estimates by the PF became as good as
members of the ensemble were distributed around the tru¢hose by the MPF. AlthougKivman (2003) has pointed out
state. In contrast, no distinct gap appeared in the filtered enthat the PF tends to provide better estimations than the EnKF,
semble at time step 6340 in the result obtained by the MPFthis table shows that the EnKF yields lower errors when the
Thus, there were only small gaps in the forecast ensemble atumber of particles is small. However, even in such cases,
the next time step. the MPF gives better estimations than the EnKF.

www.nonlin-processes-geophys.net/14/395/2007/ Nonlin. Processes Geophys., 14, 395-408, 2007
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PF filtered (¢ = 6340) MPF filtered (¢ = 6340)
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Fig. 7. Histograms of the distribution of in the ensemble around time step 6360. The left-hand panels show the distributions for the results
obtained by the PF, and the right-hand panels show the distributions for the results obtained by the MPF. The upper panels show the filtered
distributions at time step 6340. The middle panels show the forecast distributions at time step 6360. The lower panels show the filtered
distribution at time step 6360. In the middle and lower panels, for reference, the true stasamdicated with dashed lines.

4.2 Lorenz 96 model ing the Lorenz 96 model (Lorenz and Emanuel, 1998), which
is described by the following equations:

In order to evaluate the performance of the MPF for modelsdxj
on higher dimension, we performed another experiment us— - = (xj+1 —xj-2)xj—1—xj + f (18)

Nonlin. Processes Geophys., 14, 395-408, 2007 www.nonlin-processes-geophys.net/14/395/2007/



S. Nakano et al.: Filtering for data assimilation 403

Table 1. Root-mean-square deviations from the true state over

50000 time steps for an experiment using the Lorenz 63 model. /\/\
AA N AN AN
4 \/ \Vd \'4 \Z \'/

3000
PF MPF EnKF

N=64 455 100 134 /\m /\/\/\ JAVA /\
V v =

N=128 387 091 129 4000
N=256 Q87 092 129

N=512 Q86 091 129 /\/\/\/\/\:/\ A~"\A
V

5000 —/ v V4

Table 2. Root-mean-square deviations from the true state from time g 6000 V v v VA VA
step 3000 to time step 20000 for an experiment using the Lorenz E
96 model. Since the result has converged to the limit, we omitted §
to calculate the deviations fav>8192 for the EnKF and those for & 7000 \/\ /\ /\J\V/\\O/W /\ /
N=>65536 for the MPF.
NA_N A\~
PF MPF | EnKF 8000 K= v/ 7 v

N=128 347 174 091 A /\

N=256 310 103 088 0000 /\v UNSWAN JASN J\‘/\

N=512 294 090 087 v v

N=1024 226 084 087
N=2048 160 083 086 10000 F\ /\AM N

N=4096 129 081 086 V

N=8192 108 081 086
N=16384 096 080 - . . .
N=32768 084 080 - 0 10 2 0 ©
N=65536 083 080 -
N=131072 079 - -
N=262144 077 - =

Fig. 8. Result of the experiment of data assimilation by the MPF for
the Lorenz 96 model for every 1000 times step from 3000 to 10 000.
In this experiment, the number of particles was seVte512. The

red and blue lines indicate the true state and the estimate by the
for j=1,...,J. Here,x_1=xy_1, xo=xy, andx;11=x1. In MPF, respectively.

this study,J was set to be 40; that is, the dimension of a state

vector is 40. The forcing ternf was set to be 8. One time

step was set to be.@05. In order to generate data for the

experiment, we ran this model from the initial condition as

. 2
xj =80 (for j # 20) (19a) llyx — Hxgl|
pPYklXK) = —exp| —————— (20)
xj =8.008 (for j = 20). (19h) Varo 202
After we iterated the model through 2000 time steps to al-where y; is the observation vectofyiy, ..., y20x) and

low fluctuations in the system to develop sufficiently, the o was set to be 3. The operatéf extracts the observ-
data were generated every 10 time steps with errors havable components from the state veciqr. Since we as-

ing a standard deviation of.3. It was assumed that we sume that we can obserwg for an even number of,

can observe;; if j is an even numbefj=2, ..., 40); that Hxp=(x2 X4k - .. Xa0k)"

is, if half of the state variables are observed. In assimilat- Figures 8 and 9 show the estimation by the MPF and that
ing these test data, the system noise was assumed to bebg the PF, respectively. In the experiments shown in these
Gaussian noise with zero mean and a diagonal covariance dgures, the number of particles was setMe-512. The ab-
diag(0.25, ..., 0.25). Particles of the forecast ensemble at scissa indicateg, and the value o%; for eachj for every

the initial time step T'=z1) were generated from a Gaussian 1000 time step from 3000 to 10000 is shown in these fig-
distribution with mean ® and variance .B for each com- ures. As shown in Fig. 9, the PF often deviates from the true
ponent. Again, in applying the MPF, the number of mergedstate (e.g., at time step 9000). On the other hand, the MPF
particles was set te=3, and the weights; were set accord-  successfully estimates the state over the period shown here.
ing to Eq. (16). The likelihood was calculated as follows: Table 2 shows the root-mean-square of the deviations from
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result using the PF is gradually improved, and the root-mean-
square of the deviations for the PF seems to converge to a

/\/\ M N\ /\ J\ J\ A slightly better value than that for the MPF, probably because
14 A4 \4 = \

the MPF does not preserve the shape of the PDF while the

3000

PF can faithfully preserve the shape of the filtered PDF with
4000 M A /\\ %\/\ abundant particles. For cases thais larger than 262 144,
v we did not perform experiments because they need too much
computational resources, and we could not confirm the value
5000 W/MVA\V \/7/\ /\M\/\ which the root-mean-square deviation for the PF converged
v to. Thus, the result of the PF with a further large ensemble
size possibly converges to a further good value than that for
. 6000 w\[‘/\//\y/\ f\vM j\\w/é\ N=262144. However, the use of such an enormous number
§ M of particles is not realistic, and it seems to provide only minor
£ improvement of the estimation accuracy even if it were possi-
& 7000 %\//\ /\bdm A\v ble. For practical applications to high-dimensional systems,
the use of the MPF or the EnKF with much fewer particles
o NAA N o /\/\ would be effectual.
\4 Y
m/\ M Mﬂ 4.3 Lorenz 96 model with nonlinear observation
9000 4 = \ Another experiment was performed to examine whether the

10000

MPF works for the Lorenz 96 model with nonlinear obser-
7\ MWA /\ M vations. In this experiment, we assumed that we can ob-
v \/’\/

serve only an absolute valye;| if j is an even number

(j=2, ..., 40). The data were generated every 10 time steps
. . ! by taking the absolute values of containing errors with a
0 10 20 3 40 standard deviation of.%. As in the previous experiment, the
Jj system noise was assumed to be a Gaussian noise with zero

mean and a diagonal covariance as iezp, . . ., 0.25), and
Fig. 9. Result of the experiment of data assimilation by the PF for particles of the forecast ensemble at the initial time step
the Lorenz 96 model for every 1000 time steps from 3000 to 10000(7 =t;) were generated from a Gaussian distribution with
In this experiment, the number of particles was seVte512. The mean 20 and variance .B for each component. The num-
red and blue lines indicate the true state and the estimate by the Pher and the weights of the merged particles in applying the
respectively. MPF were also the same as in the previous experiment. The
likelihood was calculated as follows:

_ [y — Hxoll? 1
the true state from time step 3000 to time step 20 000 forp(y”x") " V7o eXp| — 262 (21)
various numbers of particles. Again, for reference purposes,
the results using the EnKF are also shown in this table. Weyhere i (x;)=(|x 4| Ixaxl ... lxaoxD? ando=3.
omitted the calculation of the deviations fir=8192 for the Figures 10 and 11 show the estimation by the MPF and

EnKF and those folv>65 536 for the MPF which requires a1 py the PF, respectively. In the experiments shown in
much computational resources and cost, because the valygese figures, the number of particles was seNte1024.
of the root—mean—square deV|at_|on has converged to the !'m'tl'he abscissa indicatgs and, again, the value af; for each
and the estimate would not be improved any more evéh if  ; for every 1000 time step from 3000 to 10 000 is shown. As
increased. shown in Fig. 10, the MPF successfully estimates the state.
WhenN is small, the MPF fails to estimate the state, while On the other hand, the PF failed to estimate the state. Table 3
the EnKF achieves a robust estimation of the state. Howevershows the root-mean-square of deviations from the true state
the estimation accuracy of the MPF is remarkably improvedfrom time step 3000 to time step 20 000 for various numbers
when N=256, and it becomes better than that of the EnKFof particles. The results using the EnKF are also shown in
when N>1024. In comparison with the PF, the MPF pro- this table again. Here, it should be noted that the algorithm of
vides good estimates without requiring a large number of parthe EnKF must be modified to apply to cases with nonlinear
ticles. In this experiment, the MPF requires only 1024 parti- observations because the EnKF basically assumes a linear
cles to obtain as good accuracy as the PF with 32 768 partirelationship between a state and observed data. In applying
cles. As the number of ensemble memh¥réncreases, the the EnKF to this particular experiment, according to Evensen
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/\/\VJ\/\A AVAN FAWAVN AN A A AN Ay

3000 3000 — Ay v
/\m/\ﬂ\/”/\,ﬂ NAN /\MWAW/\/\M/\
5000 ym /\VP‘/\VD/\\//\fJ\/\,/ 5000 M\//\ ~N\ F/AV\/\/QAA\ a
6000\ﬂJ\A AV WAV GOOO\/\MM% INA
5 V = VY 5 7 v Vo
£ WM AAN A A § oA A N

8000\/\/ |V \/ 8000\/\/
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Fig. 10. Result of the experiment of data assimilation by the MPF Fig. 11. Result of the experiment of data assimilation by the PF
for the Lorenz 96 model with nonlinear observations for every 1000for the Lorenz 96 model with nonlinear observations for every 1000
time steps from 3000 to 10 000. In this experiment, the number oftime steps from 3000 to 10 000. In this experiment, the number of
particles was set t&/=1024. The red and blue lines indicate the particles was set t&/=1024. The red and blue lines indicate the
true state and the estimate by the MPF, respectively. true state and the estimate by the PF, respectively.

(2003), we define a new state vectdy=[x] , (H (xi))" 1" d thust’ extractsH from th .
such that the observation model becomes linear, and the stal3€ Same agy, and thusH’ extractsH (xy) from the vector

space model in Egs. (15a) and (15b) is accordingly rewrittengk' Th?hEnKF Ilf t?]en applied to tjhlts ?EW l_stq'ie space .?:O(;jfl'
into a new state space model as follows: Ince the results have converged to the fimit, we omitted to

calculate the deviations fa¥ >8192 for the EnKF and those

X, = F'(x},_q, ) (22a)  for N>65536 for the MPF.
yi = H'x, + wy. (22b) As shown in this table, if an enormous number of particles
are not allowed, the MPF provides much better results than
Here the operatorg’ and H' are defined as: the PF. The MPF requires only 1024 particles to achieve bet-
ter accuracy than the PF with 32 768 particles, as well as the
F'(x)_1.v1) = F'(x4—1, H(x;_1), %) previous experiment. With an enormous number of particles,
F(xp_1) + vk (23a) the PF apparently provides better results than the MPF. In
- <H(F(xk1) + .,k)) this experiment in which only absolute values are allowed to

be observed, the filtered PDF may often have multiple modes

and moments of higher order than the second moment could
H' = (Odimy; Idimy,) (23b)  thenbe significant. This situation would limit the accuracy of

the MPF, which preserves only the first two moments, even
where Odimy, iS a zero matrix whose dimension is the sameif infinite ensemble members are used. However, the PF
asxy and Igimy, is an identity matrix whose dimension is requires more than at least 65536 particles to obtain better
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Table 3. Root-mean-square deviations from the true state from time

4000

Time step

~
o
o
o

step 3000 to time step 20 000 for an experiment using the Lorenz 96 K/\AV‘\
model with nonlinear observation. Since the result has converged to 3000 v/\\ /\/\ /\_//\
the limit, we omitted to calculate the deviations f6r-8192 for the v v
EnKF and those foN >65 536 for the MPF.
AATA A AP /\V/\
PF MPF EnkF v
N=128 417 356 175 AN A A A ALAN
A Y V4
N=512 366 150 193
N=1024 370 120 198
N=2048 315 119 199 6000 \ﬂvJ\/\//‘/\f\ A ALAN
N=8192 207 114 199 \“/\\/\/M
N=16384 180 113 - > /\M/\\T VAN
N=32768 123 113 -
- - 8000
N=262144 100 - -
9000 /\//\/\\/\*/\ /\ /\"Mﬁvﬁ\
accuracy than the MPF. Thus, as far as the number of parti- A MJ\ /\A
cles is not allowed to increased to more than at least 65536, 10000 V
problem concerning high order moments of the MPF in this
experiment. In comparison between the MPF and the EnKF, 0 10 2 0 0
whenN is small, the EnKF provides better estimations again,
N=>512, the estimation accuracy of the MPF is remarkably
improved to be much better than that of the EnKF. Actually, Fig. 12. Result of the experiment of data assimilation by the EnKF
the EnKF does not effectively work in this experiment. Fig- for the Lorenz 96 model with nonlinear observations for every 1000
of particles was set t&/ =1024. It is indicated that the esti- particles was set t&/=1024. The red and blue lines indicate the
mates by the EnKF often significantly deviate from the true true state and the estimate by the EnKF, respectively.
state which means that the EnKF fails to capture the varia-

N=256 401 247 194 5000
N=4096 265 114 199
VI AAA i Ao
the degeneration problem of the PF is more serious than the
although estimations by the EnKF are not so good. When
ure12 shows the estimation by the EnKF, where the numbettime steps from 3000 to 10 000. In this experiment, the number of
tion of the true state. Thus, for this experiment, the use of thegeneration, and therefore the PF should fail to approximate

MPF would be the most effectual. the filtered PDF. Indeed, as illustrated in Sect. 4.2, the PF
provides a worse estimation of the state than the MPF for the
5 Summary and discussion Lorenz 96 model, until the number of particles in the ensem-

ble was increased to at least 65536. Since usual geophysical
We proposed a new algorithm, the MPF, for realizing prac-models are of much higher dimension than the Lorenz 96
tical sequential data assimilation. The MPF provides anmodel, although they could be less nonlinear, a hopelessly
ensemble-based approximation of the filtered PDF such thaarge number of particles would be required in order to use
the mean and covariance are approximately preserved. Thé&e PF. The MPF requires far fewer particles than the PF and
MPF allows the problem of degeneration, which occurs inthus would be a more effectual algorithm.
the PF, to be avoided. It must be noted that the MPF does In addition, the MPF is applicable to cases in which the re-
not preserve the shape of the filtered PDF while the PF camationship between a state and observed data is nonlinear. For
faithfully preserve the shape of the filtered PDF with abun- cases with nonlinear observations, the EnKF does not neces-
dant particles. Therefore, if a sufficient number of particlessarily provide a good estimation of the state. As illustrated
is used, the PF should provide a better estimation than thén Sect.4.3, even if the number of particles is increased, the
MPF. In particular, in cases that the filtered PDF is signifi- estimation by the EnKF is not improved, whereas that by the
cantly non-Gaussian, the MPF possibly provides a rather bad/lPF is remarkably improved. Therefore, the MPF would be
estimate. In application to a high-dimensional system, how-the best method of sequential data assimilation with nonlin-
ever, it is not realistic to use a sufficient particles to avoid de-ear observations.
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Table 4. Comparison among the algorithms for sequential data assimilation with a high-dimensional nonlinear system.

PF MPF EnKF
Nonlinear observation OK OK Ineffectual for some cases
Necessary number of particles  Exceedingly many  Medium Relatively few
Cost of filtering Low Low High

For cases in which the relationship between a state in thé&dited by: O. Talagrand
system and observed data is linear, the EnKF basically proReviewed by: P. J. van Leeuwen and two other anonymous referees
vides a good estimation without a large number of particles.

However, the EnKF tends to require a higher computational
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