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DATA RECONCILIATION FOR PROCESS FLOW

J. RAGOT, D. MAQUIN, G. BLOCH

Centre de Recherche en Automatique de Nancy
Rue du doyen Marcel Roubault
BP 40 - 54501 Vandoeuvre Cedex - France

SUMMARY

Before improving the control of a plant, we must make sure of information cohéssoey from instrument lines or sensors. In fact, this
information can be corrupted by errors and can also deviate from the optimum functioning range. Various methodstémtitre and
location of gross errors in process data have been proposed in recent years including the parity space amgpapaeidittezl least square
residuals approach and the standardized imbalance residuals approach.

In this survey, the authors try to summarize the various aspledtsta reconciliation, to point out the main difficulties and to present th
state of the art in this field. The authors present the steps of the data reconciliation problem in the following order : tetluaigues
reconciliation, classification of the data by the observability concept, gross error detection and localisation ofaneaseement error
estimation andensor positioning. The whole presentation is applied to linear systems nevertheless some extensions are given
linear systems.
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INTRODUCTION If the measurement errors are normally distributed with zero mee
and known diagonal variance matrix V, the probabitignsity
The validation okignals is a technique which integrates informa function of the measurements Z can be written as :

tion from redundant and from functionallgiverse sensors to

provide highly reliableinformation to operating crews and to

automatic controllers. Signal validatiagenerally performed by
like-sensor comparisons (direct redundangyfen the increase of
sensors is impossible, we prefer to use analytiedlindancy ;

analytical redundancy refers the physical relationships, such as

conservation of mass or conservatigrenergy, that exist among
the many variables being measured in a system.

1- DATA RECONCILIATION
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The maximum likelihood estimatofﬁ, @) of the true values

(X*, 6*) maximises the probability densiiynction P, subject to
the model constraints.

The difficulty in solving this problem is closely related ttee
structure and the dimension of modejuations as well as to the
number of observations. In tiease of linear constraints and mea

Thedata reconciliation problem can be formulated in very simplesurement equations, analytical solutions cafobed. In the other
terms.A set of measurements does not check process functioningases, one must use techniqoéshierarchical calculus, of linea

equations. How may one correct (or recondi®) measurements in

orderto force them to verify this set of equations which are

supposed to be exact ?

In practisethe formulation of the problem is not so easy. Indeed

one is faced with the choice of hypothesis altbatstatistical dis
tribution of the measurement errors, the system dimeisionber

of variables and constraints), the nature of the constréstatic
or not, linear or not), the process stateady or not), and incom
plete or imperfecknowledge of the model structure or of the
parameters.

Reconciliation techniquebave been applied in various fields,
including chemical processes (elair (1975), Holly (1989)) and
mineralurgy (Cutting (1976)).

1.1 - Problem formulation
Generally, the systems in question can be described ipams.

The first is the set of static constrair@ed the second is the
measurement equation :
FX", 85 =0 (1.1)

Z=H(X") +¢ (1.2)

rization, of variable substitution or even approximate solutions.

1.2 - Linear models case

The linear models case can seem to be very restritlizeerthe
less, industrial applications frequently cldl this class of sys
tems, which representystems described physically by balance
equations intotal material or energy flows. Moreover, an
approximate solution to problems describédyg multilinear
equations can biund, using linear formulation, by decoupling
multilinear equations in linear equatioridenerally, a process is
made up ofnterconnected subsets and can be represented by
orientedgraph, where the v streams represent the flows and the
nodes processing units or junction poiotsseveral streams. Each
node is associated to a balance equation, drawn from th
conservation laws of material or energ@ius, the complete set of
the balance equations can be written as :

MX* =b (1.4)

where M is the (n.v) incidence matrix, associated to the system.

If the variables are measured with linear devices, the measureme
equation is simply :

Z=HX" +¢ (1.5)
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technique leads to the unbiased estimator :

L=px=(1-cIMT(MmclmNhylm) x (1.7)

Gl=HV1IH + MTM (1.8)

In practise, for low dimension and well-conditionggstems, the
computation ok by equation (1.7) does npbse any numerical
difficulty. For large scale systems (for instanmere than hundred
nodes), others techniques museeployed, including constraints
elimination, recursive estimatiomlecentralized calculus, sparse
matrices techniquesrthogonal transformations... For instance,
the search for the minimum of a function subjectonstraints can
be replaced by the search for the minimum of a funetamnsubject
to constraints, by reducing the number \@riables. Another
technique consists of progressivaigorporating the constraints.
The measurements are projected in the fiststraint subspace ;
the estimation obtained ishen projected in the first two
constraints subspace ...

1.3 - Bilinear models case

In this case, the system is defined by an incidena&ix M and
two kinds ofvalues X and \F’f (i =1, ..., nc) to be estimated (for
instance, in mineralurgical processesterial flow rates and cen
centrations or contents, respectively, linksd total and partial
material balance equations) :

M X* (1.9a)

M X * Y7 i=1,..nc (1.9b)
where the symbol * denotes the Hadamard prodube jth com
ponent of the vector X*Y is the product of the jth componehts

and Y.

The validation problem consists of seekithg minimum with
respect tof and’Y (i =1, ...,nc) of the probability density
function in X and Y.

Several methods cdre used to solve this optimisation problem :
an approximate suboptimaiethod which neglects the coupling
between balance equationsnathod based on the linearization of
balance equations, a method using estimatiorelaxation. In the

caseof multistage operations, the constraint equations take th

form of a tridiagonal matriand this particular sparse form is used
to reduce the number of equations to be solved simultaneoussty in
iterative procedure. We note that thiéinear formulation can be
extented to multilineacases. But even in the bilinear case, the
linearized systems become rapidly of large sceée, for
multilinear systems, one is waltlvised to solve the optimisation
problem by a hierarchical decompositiontbé& calculations, for
instance by variabléype. The resulting direct iterative scheme,
which is rathedifficult to present with conciseness, can be found
in Ragot (1990).

2- OBSERVABILITY

2.1 - Introduction

The different techniques which halween previously presented can
be applied to systems described by algebraic lineaoar linear

equations when all the variables are measufedhnological and
economical constraints generally prevent tieasurement of all

the variables. The fragmentary character of information prohibits
the immediate usag#d the previous methods. It is then necessary

to do a preliminary quantitative analysiall the available infor
mation in order to determine, befaBy calculus, those which can
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Figure 1 : a simple network

In this commonplace example, we easily find that variable®, 4
and 5 are bound by a redundancy equatione@umtion with only
measured variables). Thegariables are said to be overdetermined
and will becorrected by the previous techniques. On the contrary
variable 7 couldhot be estimated. Variables 3 and 6 can be easil)
deduced from equation nbdes | and Il for the first one and Il for
the second ondhe lack of information prohibits any estimation
of variables 8 and 9. In fact, there is ordpe equation to
determine two unknown quantities.

In general the variables can be classified intoesgential catego
ries (i) the observable variables : thimup contains the measured
and the deducible variables, (the unobservable variables : the
lack of information prevents their estimation.

Observability

We consider a linear system under steady-state condition défined
equations (1.4and (1.5). This system is said to be globally
observable if the knowledge of the measuremen@nd of the
model constraints allow one to find a single estimafiovhene =

0. This system of equations has a single solution only if :

H
rank QM @: dim(X") =v

If all the variables are natbservable, it is necessary to determine
the observablesubsystem to which data reconciliation can be
applied.

(2.1)

Redundancy
The linear systerdescribed by (1.4) and (1.5) is said to be redun
dant whenthe data exceeds the minimum necessary for a singl

determination of the system state .XThis definition canbe
translated by annequality on the dimensions of the different
matrices. The system is redundant if n +nv and its degree of
redundancy ris equalton +m - v.

Practical method of decomposition
Several methodsan be used to perform this decomposition
Darouach1986) singular values decomposition, reduction of the
cidence matrix t@an echelon form etc... This last method is the
simplest and the most efficient because it ues particular
structure of the incidence matrices which contain @nly and 0
elements (Maquin, 1987). After some elementary row @hagmn
operations, the incidence matrix can be written as :

m r vV-m-r
< <l
— <+t —
Ap ! 0 0 L Deduction equatic
r -
A2 0 | B
n-r My 0 0 0 - Redundancy equatic
L I 1 I T
Observab Non observak
variables variables

The examination of this matrix shows :
sailniAl, Ares AAamsAarilaAsaAl LA A

redundancy equation:s
ot HAAamsAarilaA~aA Lavr FHla A
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to null columns ofM, and cannot be corrected), unmeasured andq 1.y X1 + (O MalIX Y = 2.8b
deducible variables (these variables are deduced from tioe (@M1EYm2) Xma + (Q MsbXm3) Yma =Q & ( )
previous classesjnmeasured and non estimable variables : thesgyjith R, a regular matrix defined by : R QVE 0, thesystem (2.8)
variables do not appear in the deduction equatis cannot be may be transformed to :

corrected ; further measurements arecessary to make these

variables observable.
QM1 Xm1 = Qdp (2.93)

2.2 - Thebilinear case (RQMOYm1) Xm1 = RQ o (2.9b)

In the case of only one component, the bilinear systmmbe des
cribed byequations (1.9) with i=1. Equation (1.9b) can also be
written as :

Four steps are then necessary to study the observability :

a) System (2.9) enables one to extract the observable pagijof X
MX*Y =(MOX)Y = (MOY)X

b) Using the already known observable part gfpXequation (2.8)
where the[l operator is applied between a matrix andeator in allows the determination of the observable part gfiY

order to form a matrix in which théne k is obtained by muki

plying each of the terms of the line k of the makhyxeach term of . .
the vector. c) Theobservable part of p§2 is obtained from the knowledge of

. ) observable parts ofg{1 and Y1, and equation (2.4a).
The two measurement vectors X awMdcan be partitioned into

measured and unmeasured parts : d) Similarly, equation (2.4h% used to extract the observable part
X = Y = (2.2) Croweet al. (1986) have developed a quite similar approach f«
Xm Ym solve this problem. They propos#ite construction of two pro

- o ] jection matrices in order to decompose pheblem into subpro
These decompositions allow tldassification of the variables hlems to be solved isequence. The first matrix eliminates alt un

into four distinct groups. According to the above partif@r?),  measuredomponent flow rates and concentrations from the -equa
the incidence matrix M is partitioned as well : tions ; the second then removes the unmeasured totatdtes. To
solve this problem, Romagnoli et al. (1980) introduaestructural
M=[M1 M M M] (2.3) representation of the system. Using the propeofigke structural
matrices, which onlyake into account the occurrences of a varia
The system (1.9) can then be written as : ble in the equations, they proposedlassification of the varia
bles. Their analysis uses the generic ranthe structural matrices
M1 X1 + Mo Xm2 = - (M3 Xm1 + Mg Xm2) = dp (2.4a) and amalgorithm to assign one equation to any unmeasured- variz

bles. Itis important to note that these previous works require the

composition of each stream be either completely measured or
M1 Xm1*Y m1+ M2 Xm2*Y m2 + M3 Xm1*Y m1 = not measured at all.

M4 Xm2*Y m2=d (2.4b)

More recently, Kretsovalist al. (1988) presented a classification
or in matrix notation : algorithm which does not imposay restriction on the number
and the localization of measuremenihey included in their
treatment chemical reactions, flow splitters ande energy flows.

Xm2 They make use of graph theoreticancepts and proceed in a
Xm1 dq layered approach through the various graphs derived from the
O(Xm,Ym) = i (2.5) process graph.
m2 * Ym2
Ym1i 3- GROSSERROR DETECTION
with
Mo M1 fe) o) This part of the paper presents methods of detection and locatic
OXm,Ym) :E E (2.6) of measurement failures which are atsdled gross or large errors.
mm O M10Ym1 M2 M30Xm1 Some of the techniques presented use linear models bubsbars

can be applietb non-linear models. We assume that all variables
The system will be observable if : are measured (redundant system). The general procefiuzeror
detection is divided into two parts :

‘ Xm the generation of so-called residuals, which are functions o
rank QXY ) = dim 2.7) measurements that are accentuated by the errors,
Ym the detection, the isolation and the estimation of the error.

In the following, we present the balanesiduals analysis (known
as method of pseudonodes), the parity space approaandhesis
¢ of residuals (known as method of measurement testiarigysis
of the sum of squaregeviations. Most of the methods which have
been developed fogross error detection involve the use of
- . statistical tests based on tagsumption that the measurement
For the studyof the observability of ¥, let us introduce two  errorsare gaussian. After generating the set of residuals, tests fi
matrices Q and R which allow thdimination of the unmeasured outliers areapplied ; any measurement for which the residual fails

terms Xwo andYmo in equation (2.4). Let us consider O, an the testis considered to contain a gross error.

If the system is not globally observable, a decomposition is
necessary. We will show that the studyb&ervability of bilinear
systems can be reducéa a sequential study of observability o
linear systems (Maquin, 1987).



With the previous hypothesis of a gaussian distributibrthe
measurement errors, one shows thatvector R follows a normal
distribution with zero mean and covariancg WR = M V MT. In
order to compare the components of the R vectoydedefine a
normalized imbalanced vectorpRwhose component (i) is
defined by :

R())
VVRG.i)

Each component i) hasa normal distribution with a zero mean

and unity variance. Then, simple statistical test criterion of data
inconsistency cahe used. From a cumulative normal distribution
tablethe probability of R(i) being, for example, in the interval
of 1.96 to 1.96 is read to be 0.95. Therefore, wh fRL.96, we

might say that thenconsistency is significant with a probability
of 0.95.

R () = fori=1,..,n (3.1)

If R\(i) exceeds the critical value, thienotes that node i is a bad

w! P
w1 (3.4)
When the kth sensor is faulty, then gagity vector P follows the
direction ofthe kth column of W which is the greatest projection
of P on the axis. Then after the detection of one or sefaled
sensorswe locate those with the greatest projection. Next, we
delete the suspect sensor and calculate the detecticaftersthe
deletion of each sensor. We stop the procedinen the magnitude
of the parity vector P corresponding to the remaining sensors r
longer satisfies the detection test.

3.3 - Standardized least squareresiduals analysis
The so-called measurement test is basedstatistical tests for
outliersapplied to the residuals between measurement and estim

tions. The different steps are :

Stepl. Apply the reconciliation procedure to the data of the pro

node.If we assume the presence of only one gross error whichhess and compute the estimate ve&othe least squanesiduals

affects only one stream of the procesbais been established that
the node which contains this strelas the bigger residual. Then,
a simple examination of the components of R shthessuspect
stream.

When several gross errors gresent, their location is more com
plicated. It has been proposed (M&B82) to apply the preceding

test to each node and ateothe aggregates of two or more nodes,

vector E and their variance matrixV
Step 2Compute the standardized least square residuals by :
En = diag()L E (3.5)

Under the hypothesis th#te measured values contain no gross

which are called pseudonodes. Note that the main assumptiogrror, By has a unit variance matrix.

underlying the method is that the gross erriorswo or more
measurements do not cancel each other. The locatitwe cfuspect

Step 3.Detect and locate the failed measurement : as foretbie

stream necessitatéise fusion of not necessarily linear equations. duals ofthe imbalance, eachyfi) is compared with a critical test
Notice thatthese fusions, which correspond to the elimination of 5, (defined by the overall probability of typerror). If at least

one variable between two equations, arvet easy from an

analyticalpoint of view and, what is more, these fusions can not

always be achieved, nor are they unique. Sedz (1990) for an
example.

3.2 - Parity space approach

In the absence of gross errors, the measurements depérel tare
values following the linear relatio(iL.5). The so-called parity
space is orthogonal to the space taken fiteencolumns of H. The
parity vector is related to the measuremeattor Z through a
projection matrix W (Potter and Sumat977) of dimension n.v
(n=v-m) :
P=wWz (3.2)

From (1.5), writterwith direct measurement (H=I), the expression
(3.2) yields :
We (3.3)
Consequently, the parity vector is independdrthe measurement
vector and contains only the errors due to faelts. As an

extension it is possible to consider the constrained wésee the
true values are constrained by the linear model.

Equation (3.3) shows that for normal functioning, the magnitfide
parity vector is small (presenoé measurement noise). If a failure
occurs in only one of the sensors, thenghity vector may grow
in a fixed direction associated with the failed sensor.

Moreover the components thfe parity vector have the same pro
bability distribution as theneasurement errors which are indepen
dent gaussian wita zero mean value. As the variabfe < P'P is
the sum of the square of (v-m) normally distributed varialildss

a chi-square probability distribution witt-m) degrees of freedom
and may be compared to the threshql%&oNhereclga is the value

one component of & is out of the confidence intervathis

denotes the presence obad stream. Locating the failed sensor
one proves that corresponds to the greatest standardized leas
square residual.

For the linear case, instead of (3. 5amhane (1982) has shown
that for a non diagonal covariance matrix Wegtor of test statis
tics with the maximal power for detecting a singless error is

obtained by premultiplying R by . The power of theest (the
probability of correctly detecting and identifying gross errors
when they are present in the process datapéeas established and
discusseddy lordache (1985) under different conditions (various
networks, position of the error, variangaues ...) using a Monte
Carlo simulation. Note that Jongenelen (1988) poirget the

case where the variance V depends on an unknown scaled@ctor

Some of the preceding results can #&eplied for non linear
systems.

3.4 - Residual criterion analysis

In 1988, Croweg(1988) identified the gross errors (in the linear
case) by examinating the objective function. A recuralgerithm
has beemproposed which results from the deletion of suspect
measurements. It is shown that if the deletion ofsiagle
measurement decreases the objective function (in respeat to
statistical test), this measurement corresponds to a gross error.

As was pointed out by Reilly (1963), the quantity = ETviEe
has a chi-square distribution with the numbkedegrees of freedom
equal to the rank ok M. Thus the imbalancas be globally tested
against tabulated values of chi2.

A difficulty with this globaltest is that while it indicates well the
presence of gross errors it is not able to identify the sourtesé

errors. However, the usa a sequential procedure allows one to
locate thectreame which contain a Aarnce error Rinne (10R/92°



Rosenberg(1987) which also proposes two composite testsfying which of the measurable parameters have to be measure

(extended measurement test, dynamic measurement test).

A comparison of the differemhethods and with several others can
be found in Serth (1986). Another approach has been formiated
Yamamura (1988) alsasing a serial elimination ; a new criterion
test has been tested whishbased on the Akaike's information
function andin order to minimize the amount of computation a
branch-and-bound algorithm is used.

4-ESTIMATION OF MEASUREMENT VARIANCE

Most of the reconciliation techniquase based on the assumption
that the measurement errors are random variatleging a known
statistical distribution. Almostvithout exception the techniques
start with a given known covariance matixmeasurement errors.
Almasy (1984) has proposed a methafdestimating this matrix
which makes use of available data and takes into activeimecon
ciliation point of view. Recently, Ragg§i1990) proposed also a
method which allows simultaneously the estimation of the

Another objective is to seleah optimal measurement structure to
enhance estimation accuracy.

More recently, Kretsovalis (1987) developachew approach for
steady-statesystems with measurement noise only. This work
point out the problem on the accuracy of éisémates obtained by
data reconciliation. Quantitative relations haeen developed for
the effects of adding angémoving a single measurement on the
estimation accuracyThese relationships have been utilized in
developing evolutionary strategies for selecting an optinealsu
rement structure. For theake of brevity, all these different
approaches cannot be covered. We restricted ourséivethe
presentation of an originahethod which can be used for the
placement of sensors in systems described by liaear; by
extension, bilinear equations.

5.1 - Thelinear case

Two distinct questions caibe formulated (i) knowing that

variancematrix and the reconciliation of the data on several timedifferent system measurement points exist and sbate streams

intervals.

This given procedure is referred as a direct method dtieetdact
that the covariance matrix and the reconciliation of da¢aest

mated at the same time. For a series of p steady state ﬁaint X

*

Xij :XJ +€ij ji=1,...,p i=1, M (4.1)
Mx’j* =0 i=1,..,p (4.2)
p
m= s
1

The maximisatiorof the likelihood function of the measurements
gives the optimality equations :

1 P mj T
=mdiag (2.2 &%) & %)) (4.3)
m:
- ]
QJ = (IV - VMT(MVMT) 1M)%j izz]_ Xij i=1,...,p (4.4)

A hierarchical solution for estimating V ar%ii has been proposed
(Ragot 1990) : it uses a structure with two levels of hierarchy :

- The first level calculateﬁj by taking V to be known (evalued in
the second level of calculation).

- The second level calculates V as a function of the estimﬁiion
transmitted by the first level.

The two levels of calculation are repeated until dstimations
converge.

5- SENSOR POSITIONING

Data validation, as previously described, is considereghaana
lysis stage and it gives the user cohemdatistical information.
Additionally, the abovanay be completed by a more ambitious
study introducing modifications ofhe instrumental scheme.
Firstly, it is necessary to analyse the lackndbrmation and to
make the user aware of timstrumental inadequacy of certain parts
of the process. Secondly, in order to m#ide process information
fuller, an understanding of its deficieneypables the satisfactory
localization of sensors. However, in practice, the introduation
such supplementary sourcesmfbrmation must take into account
economic and technical constraints.

are unmeasurable, is possible to attain total observability by
adding further sensors ? ar{d) fixing a cost function that
attributes to eachtreams a given weight, which group of streams
then must be measured to obtain total observabilityioymizing

the measurement cost ?

The first problem is easily solved lixing boolean constraints
which specify absolutelwhether or not measurements can be
made. The second one requires the introductiorcasftinuous
constraints.

The vector of true values Xis decomposed intiliree distinct cate
* *
gories : Xn: vector of measured streams; Xvector of unmeasured

*
but measurable streams (freieeam), Xn : vector of unmeasured
and unmeasurable streams.

We try to solve the following problem : is the knowledgethe

measurements éﬁ sufficientto obtain total observability of the
process ? Elsewhere, can this observaliityobtained in placing

supplementary sensors on streams defined?b? X

According to the X decompositionthe incidence matrix of the
network may also be decomposed as :

M=(Mm | M | Mm)

The basic ideaMaquin, 1986) is to apply the transformation
described in the second paftthis paper independently tofMnd

(5.1)

to Mm. After extracting regular parts from gyland applyinga
suitable transformation to the resultorder to obtain an identity
matrix, the incidence matrix can be written as :

im A1f |O Aim ||
M=| Aom A2 |1 O |O (5.2)
3m 0 [O O (O
This matrix canbe read in the following manner. Remembering

that the subscripts m, f ard indicaterespectively the measured
streams, the free one and the unmeasurable one, lind'3cofres
ponds to the redundancy equations. Line 2 deésontain unmea
sured variables. Therefore it is sufficient to fix thevariables in
tervening inthe second column, to make the variable in the third
column deducible. Line two ihen only composed by deduction
equation. Thenthe first line only contains unmeasurable varia

hlec - if the matriv A = avicte there ic nnnccihle dediiction The



5.2 - Thebilinear case

The optimal location of measurements in linear systsnisased
on the counting of equations which contain more than two
unknown quantities ; according to the nature of thesknown
quantities (measurable or not measurable), supplemesgasors
can be placed to render the system observable.

The bilinear case can bweated according to this principle.
However, this is more complicated in practi@eause of the inter
action of X and Y. Thisneans that the observability of X or Y
variables are simultaneously modified by the addition séasor
for X or Y variables. This interaction between the different varia
bles can be summarized by the following three rules :

1- An equation whictcontains only one unknown X quantity is
observable. The X unknown quantity is directly dedufredch a
linear equation.

2- An equation which contains only oneknown Y quantity (with
all the X variables known) igbservable. The unknown Y quantity
can be deduced from a bilinear equation.

3- An equation with althe X variables known except two of them
and all theY variables known is observable. The two unknown
quantities can be deduced from the eétlinear and bilinear
equation.

The principle of the location of measuremeistdirectly derived
from this analysis. The addition of a new sensor is cagigdin
order to obtain one of the three previous situations. Aadb#ion

of a sensor modifies the observability of tlsgstem, this
procedure had to be repeated until total observability is obtained.
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