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DATA RECONCILIATION FOR PROCESS FLOW

J. RAGOT, D. MAQUIN, G. BLOCH

Centre de Recherche en Automatique de Nancy
Rue du doyen Marcel Roubault

BP 40 - 54501 Vandoeuvre Cedex - France

SUMMARY

Before improving the control of a plant, we must make sure of information coherency issued from instrument lines or sensors. In fact, this
information can be corrupted by errors and can also deviate from the optimum functioning range. Various methods for the detection and
location of gross errors in process data have been proposed in recent years including the parity space approach, the standardized least square
residuals approach and the standardized imbalance residuals approach.

In this survey, the authors try to summarize the various aspects of data reconciliation, to point out the main difficulties and to present the
state of the art in this field. The authors present the steps of the data reconciliation problem in the following order : techniques of data
reconciliation, classification of the data by the observability concept, gross error detection and localisation, variance of measurement error
estimation and sensor positioning. The whole presentation is applied to linear systems nevertheless some extensions are given for non
linear systems.
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INTRODUCTION If the measurement errors are normally distributed with zero mean
and known diagonal variance matrix V, the probability density
function of the measurements Z can be written as :The validation of signals is a technique which integrates informa-

tion from redundant and from functionally diverse sensors to
provide highly reliable information to operating crews and to
automatic controllers. Signal validation is generally performed by
like-sensor comparisons (direct redundancy). When the increase of
sensors is impossible, we prefer to use analytical redundancy ;
analytical redundancy refers to the physical relationships, such as
conservation of mass or conservation of energy, that exist among
the many variables being measured in a system.

P(Z)  =  
1

(2π)m/2 |V|1/2 exp( - 
1
2 || Z - H(X* ) ||

2

V-1)  (1.3)

The maximum likelihood estimator (X̂, θ̂) of the true values

(X* , θ* ) maximises the probability density function P, subject to
the model constraints.

The difficulty in solving this problem is closely related to the
structure and the dimension of model equations as well as to the
number of observations. In the case of linear constraints and mea-
surement equations, analytical solutions can be found. In the other
cases, one must use techniques of hierarchical calculus, of linea-
rization, of variable substitution or even approximate solutions.

1 - DATA RECONCILIATION

The data reconciliation problem can be formulated in very simple
terms. A set of measurements does not check process functioning
equations. How may one correct (or reconcile) the measurements in
order to force them to verify this set of equations which are
supposed to be exact ?

1.2 - Linear models case
In practise, the formulation of the problem is not so easy. Indeed
one is faced with the choice of hypothesis about the statistical dis-
tribution of the measurement errors, the system dimension (number
of variables and constraints), the nature of the constraints (static
or not, linear or not), the process state (steady or not), and incom-
plete or imperfect knowledge of the model structure or of the
parameters.

The linear models case can seem to be very restrictive. Neverthe-
less, industrial applications frequently call for this class of sys-
tems, which represents systems described physically by balance
equations in total material or energy flows. Moreover, an
approximate solution to problems described by multilinear
equations can be found, using linear formulation, by decoupling
multilinear equations in linear equations. Generally, a process is
made up of interconnected subsets and can be represented by an
oriented graph, where the v streams represent the flows and the n
nodes processing units or junction points or several streams. Each
node is associated to a balance equation, drawn from the
conservation laws of material or energy. Thus, the complete set of
the balance equations can be written as :

Reconciliation techniques have been applied in various fields,
including chemical processes (see Clair (1975), Holly (1989)) and
mineralurgy (Cutting (1976)).

1.1 - Problem formulation

Generally, the systems in question can be described in two parts.
The first is the set of static constraints and the second is the
measurement equation :

M X*  = b (1.4)

where M is the (n.v) incidence matrix, associated to the system.

F(X* , θ* ) = 0 (1.1) If the variables are measured with linear devices, the measurement
equation is simply :

Z = H(X* ) + ε (1.2)
Z = H X*  + ε (1.5)

* θ*
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A global resolution of problem (1.6) by the Lagrange multipliers
technique leads to the unbiased estimator :

X̂ = P X = ( I - G-1 MT (M G-1 MT)-1 M )  X (1.7)

Figure 1 : a simple network
G-1= HTV-1H + MTM (1.8)

In this commonplace example, we easily find that variables 1, 2, 4
and 5 are bound by a redundancy equation (an equation with only
measured variables). These variables are said to be overdetermined
and will be corrected by the previous techniques. On the contrary,
variable 7 could not be estimated. Variables 3 and 6 can be easily
deduced from equation of nodes I and II for the first one and III for
the second one. The lack of information prohibits any estimation
of variables 8 and 9. In fact, there is only one equation to
determine two unknown quantities.

In practise, for low dimension and well-conditioned systems, the
computation of X̂ by equation (1.7) does not pose any numerical
difficulty. For large scale systems (for instance, more than hundred
nodes), others techniques must be employed, including constraints
elimination, recursive estimation, decentralized calculus, sparse
matrices techniques, orthogonal transformations... For instance,
the search for the minimum of a function subject to constraints can
be replaced by the search for the minimum of a function not subject
to constraints, by reducing the number of variables. Another
technique consists of progressively incorporating the constraints.
The measurements are projected in the first constraint subspace ;
the estimation obtained is then projected in the first two
constraints subspace ...

In general the variables can be classified into two essential catego-
ries (i) the observable variables : this group contains the measured
and the deducible variables, (ii) the unobservable variables : the
lack of information prevents their estimation.

Observability
We consider a linear system under steady-state condition defined by
equations (1.4) and (1.5). This system is said to be globally
observable if the knowledge of the measurements Z and of the
model constraints allow one to find a single estimation X̂ when ε =
0. This system of equations has a single solution only if :

1.3 - Bilinear models case

In this case, the system is defined by an incidence matrix M and
two kinds of values X*  and Y*i  (i = 1, ..., nc) to be estimated (for
instance, in mineralurgical processes, material flow rates and con-
centrations or contents, respectively, linked by total and partial
material balance equations) :

rank 



H

M
 = dim(X* ) = v (2.1)

M X* = 0 (1.9a)

If all the variables are not observable, it is necessary to determine
the observable subsystem to which data reconciliation can be
applied.

M X*  * Y*i = 0       i = 1, ..., nc (1.9b)

where the symbol * denotes the Hadamard product : the jth com-
ponent of the vector X*Y is the product of the jth components of X
and Y. Redundancy

The linear system described by (1.4) and (1.5) is said to be redun-
dant when the data exceeds the minimum necessary for a single
determination of the system state X* . This definition can be
translated by an inequality on the dimensions of the different
matrices. The system is redundant if n + m > v and its degree of
redundancy r is equal to n + m - v.

The validation problem consists of seeking the minimum with
respect to X̂ and Ŷi  (i = 1, ..., nc) of the probability density
function in X and Y.

Several methods can be used to solve this optimisation problem :
an approximate suboptimal method which neglects the coupling
between balance equations, a method based on the linearization of
balance equations, a method using estimation by relaxation. In the
case of multistage operations, the constraint equations take the
form of a tridiagonal matrix and this particular sparse form is used
to reduce the number of equations to be solved simultaneously in an
iterative procedure. We note that the bilinear formulation can be
extented to multilinear cases. But even in the bilinear case, the
linearized systems become rapidly of large scale. So, for
multilinear systems, one is well advised to solve the optimisation
problem by a hierarchical decomposition of the calculations, for
instance by variable type. The resulting direct iterative scheme,
which is rather difficult to present with conciseness, can be found
in Ragot (1990).

Practical method of decomposition
Several methods can be used to perform this decomposition
(Darouach, 1986) singular values decomposition, reduction of the
incidence matrix to an echelon form etc... This last method is the
simplest and the most efficient because it uses the particular
structure of the incidence matrices which contain only ± 1 and 0
elements (Maquin, 1987). After some elementary row and column
operations, the incidence matrix can be written as :

A I 0 0

A 0 I B

M 0 0 0

r

n - r

m r v-m-r
r r1 2

r

1

2

Deduction equations

Redundancy equations

Observable
variables

Non observable
variables

2 - OBSERVABILITY

2.1 - Introduction

The different techniques which have been previously presented can
be applied to systems described by algebraic linear or non linear
equations when all the variables are measured. Technological and
economical constraints generally prevent the measurement of all
the variables. The fragmentary character of information prohibits
the immediate usage of the previous methods. It is then necessary
to do a preliminary quantitative analysis of all the available infor-
mation in order to determine, before any calculus, those which can
be corrected or deduced.

The examination of this matrix shows : redundancy equations
which are described by Mr, deduction equations described by the



to null columns of Mr and cannot be corrected), unmeasured and
deducible variables (these variables are deduced from those of the
previous classes), unmeasured and non estimable variables : these
variables do not appear in the deduction equations and cannot be
corrected ; further measurements are necessary to make these
variables observable.

(Q M1⊗ Ym1) Xm
_

1 + (Q M3⊗ Xm1) Ym
_

1 = Q d2 (2.8b)

With R, a regular matrix defined by : R Q M3  =  0, the system (2.8)
may be transformed to :

Q M1 Xm
_

1  =  Q d1 (2.9a)

(R Q M1⊗ Ym1) Xm
_

1  =  R Q d2 (2.9b)2.2 - The bilinear case

In the case of only one component, the bilinear system can be des-
cribed by equations (1.9) with i=1. Equation (1.9b) can also be
written as :

Four steps are then necessary to study the observability :

a) System (2.9) enables one to extract the observable part of Xm
_

1.

M X * Y  =  (M ⊗ X) Y  =  (M ⊗  Y) X
b) Using the already known observable part of Xm

_
1, equation (2.8)

allows the determination of the observable part of Ym
_

1.where the ⊗  operator is applied between a matrix and a vector in
order to form a matrix in which the line k is obtained by multi-
plying each of the terms of the line k of the matrix by each term of
the vector. c) The observable part of Xm

_
2 is obtained from the knowledge of

observable parts of Xm
_

1 and Ym
_

1, and equation (2.4a).
The two measurement vectors X and Y can be partitioned into
measured and unmeasured parts : d) Similarly, equation (2.4b) is used to extract the observable part

of Ym
_

2.

X  =  






 Xm 

 Xm
_
 

Y  =  






 Ym 

 Ym
_
 

(2.2) Crowe et al. (1986) have developed a quite similar approach to
solve this problem. They proposed the construction of two pro-
jection matrices in order to decompose the problem into subpro-
blems to be solved in sequence. The first matrix eliminates all un-
measured component flow rates and concentrations from the equa-
tions ; the second then removes the unmeasured total flow rates. To
solve this problem, Romagnoli et al. (1980) introduced a structural
representation of the system. Using the properties of the structural
matrices, which only take into account the occurrences of a varia-
ble in the equations, they proposed a classification of the varia-
bles. Their analysis uses the generic rank of the structural matrices
and an algorithm to assign one equation to any unmeasured varia-
bles. It is important to note that these previous works require the
composition of each stream to be either completely measured or
not measured at all.

These decompositions allow the classification of the variables
into four distinct groups. According to the above partition (2.2),
the incidence matrix M is partitioned as well :

M  =  [ M1      M2      M3      M4 ] (2.3)

The system (1.9) can then be written as :

M1 Xm
_

1 + M2 Xm
_

2 = - (M3 Xm1 + M4 Xm2 ) = d1 (2.4a)

M1 Xm
_

1*Y m1 + M2 Xm
_

2*Y m2 + M3 Xm1*Y m
_

1 =
 -M4 Xm2*Y m2 = d2 (2.4b)

More recently, Kretsovalis et al. (1988) presented a classification
algorithm which does not impose any restriction on the number
and the localization of measurements. They included in their
treatment chemical reactions, flow splitters and pure energy flows.
They make use of graph theoretical concepts and proceed in a
layered approach through the various graphs derived from the
process graph.

or in matrix notation :

O(Xm,Ym)   









 Xm

_
2 

 Xm
_
1 

Xm
_
2 * Ym

_
2

 Ym
_
1 

  =  



 d1 

 d2 
(2.5)

3 - GROSS ERROR DETECTION
with

This part of the paper presents methods of detection and location
of measurement failures which are also called gross or large errors.
Some of the techniques presented use linear models but some others
can be applied to non-linear models. We assume that all variables
are measured (redundant system). The general procedure of error
detection is divided into two parts :

O(Xm,Ym) = 



 M2  M1  0  0 

 0 M1⊗ Ym1  M2 M3⊗ Xm1
(2.6)

The system will be observable if :

rank O(Xm,Ym) = dim  







 Xm

_
 

 Ym
_
 

(2.7)
the generation of so-called residuals, which are functions of

measurements that are accentuated by the errors,
the detection, the isolation and the estimation of the error.

In the following, we present the balance residuals analysis (known
as method of pseudonodes), the parity space approach, the analysis
of residuals (known as method of measurement test), the analysis
of the sum of squares deviations. Most of the methods which have
been developed for gross error detection involve the use of
statistical tests based on the assumption that the measurement
errors are gaussian. After generating the set of residuals, tests for
outliers are applied ; any measurement for which the residual fails
the test is considered to contain a gross error.

If the system is not globally observable, a decomposition is
necessary. We will show that the study of observability of bilinear
systems can be reduced to a sequential study of observability of
linear systems (Maquin, 1987).

For the study of the observability of Xm
_

1, let us introduce two
matrices Q and R which allow the elimination of the unmeasured

terms Xm
_

2 and Ym
_

2 in equation (2.4). Let us consider Q, an



With the previous hypothesis of a gaussian distribution of the
measurement errors, one shows that the vector R follows a normal
distribution with zero mean and covariance VR : VR = M V MT. In
order to compare the components of the R vector, let us define a
normalized imbalanced vector RN whose component RN(i) is
defined by :

Pj  = 
Wj

T P

|| Wj ||
(3.4)

When the kth sensor is faulty, then the parity vector P follows the
direction of the kth column of W which is the greatest projection
of P on the axis. Then after the detection of one or several failed
sensors, we locate those with the greatest projection. Next, we
delete the suspect sensor and calculate the detection test after the
deletion of each sensor. We stop the procedure when the magnitude
of the parity vector P corresponding to the remaining sensors no
longer satisfies the detection test.

RN(i) = 
R(i)

VR(i,i)
   for i = 1, ..., n (3.1)

Each component RN(i) has a normal distribution with a zero mean
and unity variance. Then, a simple statistical test criterion of data
inconsistency can be used. From a cumulative normal distribution
table the probability of RN(i) being, for example, in the interval
of 1.96 to 1.96 is read to be 0.95. Therefore, when |RN | > 1.96, we
might say that the inconsistency is significant with a probability
of 0.95.

3.3 - Standardized least square residuals analysis

The so-called measurement test is based on statistical tests for
outliers applied to the residuals between measurement and estima-
tions. The different steps are :

If RN(i) exceeds the critical value, this denotes that node i is a bad
node. If we assume the presence of only one gross error which
affects only one stream of the process, it has been established that
the node which contains this stream has the bigger residual. Then,
a simple examination of the components of R shows the suspect
stream.

Step 1. Apply the reconciliation procedure to the data of the pro-

cess and compute the estimate vector X̂, the least square residuals
vector E and their variance matrix VE .

Step 2. Compute the standardized least square residuals by :

EN = diag(VE)-1 E (3.5)When several gross errors are present, their location is more com-
plicated. It has been proposed (Mah, 1982) to apply the preceding
test to each node and also to the aggregates of two or more nodes,
which are called pseudonodes. Note that the main assumption
underlying the method is that the gross errors in two or more
measurements do not cancel each other. The location of the suspect
stream necessitates the fusion of not necessarily linear equations.
Notice that these fusions, which correspond to the elimination of
one variable between two equations, are not easy from an
analytical point of view and, what is more, these fusions can not
always be achieved, nor are they unique. See Kratz (1990) for an
example.

Under the hypothesis that the measured values contain no gross
error, EN has a unit variance matrix.

Step 3. Detect and locate the failed measurement : as for the resi-
duals of the imbalance, each EN(i) is compared with a critical test
value (defined by the overall probability of type I error). If at least
one component of EN is out of the confidence interval, this
denotes the presence of a bad stream. Locating the failed sensor
one proves that it corresponds to the greatest standardized least
square residual.

For the linear case, instead of (3.5), Tamhane (1982) has shown
that for a non diagonal covariance matrix V, a vector of test statis-
tics with the maximal power for detecting a single gross error is
obtained by premultiplying R by V-1. The power of the test (the
probability of correctly detecting and identifying gross errors
when they are present in the process data) has been established and
discussed by Iordache (1985) under different conditions (various
networks, position of the error, variance values ...) using a Monte
Carlo simulation. Note that Jongenelen (1988) pointed out the
case where the variance V depends on an unknown scale factor σ2.

3.2 - Parity space approach

In the absence of gross errors, the measurements depend on the true
values following the linear relation (1.5). The so-called parity
space is orthogonal to the space taken from the columns of H. The
parity vector is related to the measurement vector Z through a
projection matrix W (Potter and Suman, 1977) of dimension n.v
(n=v-m) :

P = W Z (3.2)

From (1.5), written with direct measurement (H=I), the expression
(3.2) yields :

Some of the preceding results can be applied for non linear
systems.

P = W ε (3.3)
3.4 - Residual criterion analysis

Consequently, the parity vector is independent of the measurement
vector and contains only the errors due to the faults. As an
extension it is possible to consider the constrained case, where the
true values are constrained by the linear model.

In 1988, Crowe (1988) identified the gross errors (in the linear
case) by examinating the objective function. A recursive algorithm
has been proposed which results from the deletion of suspect
measurements. It is shown that if the deletion of a single
measurement decreases the objective function (in respect to a
statistical test), this measurement corresponds to a gross error.

Equation (3.3) shows that for normal functioning, the magnitude of
parity vector is small (presence of measurement noise). If a failure
occurs in only one of the sensors, then the parity vector may grow
in a fixed direction associated with the failed sensor. As was pointed out by Reilly (1963), the quantity Φr = ET V-1 E

has a chi-square distribution with the number of degrees of freedom
equal to the rank ok M. Thus the imbalances can be globally tested
against tabulated values of chi2.

Moreover the components of the parity vector have the same pro-
bability distribution as the measurement errors which are indepen-

dent gaussian with a zero mean value. As the variable c2 = PTP is
the sum of the square of (v-m) normally distributed variables, it has
a chi-square probability distribution with (v-m) degrees of freedom
and may be compared to the threshold c2

1-α  where c 2
1-α  is the value

A difficulty with this global test is that while it indicates well the
presence of gross errors it is not able to identify the source of these
errors. However, the use of a sequential procedure allows one to
locate the streams which contain a gross error. Ripps (1962)



Rosenberg (1987) which also proposes two composite tests
(extended measurement test, dynamic measurement test).

fying which of the measurable parameters have to be measured.
Another objective is to select an optimal measurement structure to
enhance estimation accuracy.

A comparison of the different methods and with several others can
be found in Serth (1986). Another approach has been formulated by
Yamamura (1988) also using a serial elimination ; a new criterion
test has been tested which is based on the Akaike's information
function and in order to minimize the amount of computation a
branch-and-bound algorithm is used.

More recently, Kretsovalis (1987) developed a new approach for
steady-state systems with measurement noise only. This work
point out the problem on the accuracy of the estimates obtained by
data reconciliation. Quantitative relations have been developed for
the effects of adding and removing a single measurement on the
estimation accuracy. These relationships have been utilized in
developing evolutionary strategies for selecting an optimal measu-
rement structure. For the sake of brevity, all these different
approaches cannot be covered. We restricted ourselves to the
presentation of an original method which can be used for the
placement of sensors in systems described by linear and, by
extension, bilinear equations.

4 - ESTIMATION OF MEASUREMENT VARIANCE

Most of the reconciliation techniques are based on the assumption
that the measurement errors are random variables obeying a known
statistical distribution. Almost without exception the techniques
start with a given known covariance matrix of measurement errors.
Almasy (1984) has proposed a method of estimating this matrix
which makes use of available data and takes into account the recon-
ciliation point of view. Recently, Ragot (1990) proposed also a
method which allows simultaneously the estimation of the
variance matrix and the reconciliation of the data on several time
intervals.

5.1 - The linear case

Two distinct questions can be formulated : (i) knowing that
different system measurement points exist and that some streams
are unmeasurable, is it possible to attain total observability by
adding further sensors ? and (ii) fixing a cost function that
attributes to each streams a given weight, which group of streams
then must be measured to obtain total observability by minimizing
the measurement cost ?

This given procedure is referred as a direct method due to the fact
that the covariance matrix and the reconciliation of data are esti-
mated at the same time. For a series of p steady state point X*

j  :

The first problem is easily solved by fixing boolean constraints
which specify absolutely whether or not measurements can be
made. The second one requires the introduction of continuous
constraints.

Xij  = X*
j  + εij j = 1, ..., p       i = 1, ..., mj (4.1)

M X*
j  = 0 j = 1, ..., p (4.2)

m = Σ
p

j=1
 mj

The vector of true values X*  is decomposed into three distinct cate-

gories : X*
m: vector of measured streams, X*

f  : vector of unmeasured

but measurable streams (free stream), X*m
_

 : vector of unmeasured
and unmeasurable streams.The maximisation of the likelihood function of the measurements

gives the optimality equations :
We try to solve the following problem : is the knowledge of the

measurements X*m sufficient to obtain total observability of the
process ? Elsewhere, can this observability be obtained in placing

supplementary sensors on streams defined by X*
f  ?

V = 
1
m diag ( Σ

p

j=1
 Σ
mj

i=1
 (X̂j  - Xij ) (X̂j  - Xij )T) (4.3)

X̂j  = (Iv - VMT(MVMT)-1M) 
1
mj

  Σ
mj

i=1
 Xij        j = 1, ..., p (4.4)

According to the X*  decomposition, the incidence matrix of the
network may also be decomposed as :

 A hierarchical solution for estimating V and X̂j has been proposed
(Ragot 1990) : it uses a structure with two levels of hierarchy : M = ( Mm   |  Mf   |  Mm

_ ) (5.1)

The basic idea (Maquin, 1986) is to apply the transformation
described in the second part of this paper independently to Mf and

to Mm
_. After extracting regular parts from Mm

_ and applying a
suitable transformation to the result, in order to obtain an identity
matrix, the incidence matrix can be written as :

- The first level calculates X̂j  by taking V to be known (evalued in
the second level of calculation).

- The second level calculates V as a function of the estimation X̂j
transmitted by the first level.

The two levels of calculation are repeated until the estimations
converge.

M' = 







A1m A1f  0  A1m

_  I

A2m A2f  I  0  0

A3m 0  0  0  0

(5.2)
5 - SENSOR POSITIONING

Data validation, as previously described, is considered as an ana-
lysis stage and it gives the user coherent statistical information.
Additionally, the above may be completed by a more ambitious
study introducing modifications of the instrumental scheme.
Firstly, it is necessary to analyse the lack of information and to
make the user aware of the instrumental inadequacy of certain parts
of the process. Secondly, in order to make the process information
fuller, an understanding of its deficiency enables the satisfactory
localization of sensors. However, in practice, the introduction of
such supplementary sources of information must take into account
economic and technical constraints.

This matrix can be read in the following manner. Remembering

that the subscripts m, f and m
_

 indicate respectively the measured
streams, the free one and the unmeasurable one, line 3 of M' corres-
ponds to the redundancy equations. Line 2 does not contain unmea-
sured variables. Therefore it is sufficient to fix the "f" variables in-
tervening in the second column, to make the variable in the third
column deducible. Line two is then only composed by deduction
equation. Then, the first line only contains unmeasurable varia-

bles ; if the matrix A1m
_ exists, there is no possible deduction. The



5.2 - The bilinear case [KRET 87] A. KRETSOVALIS, R.S.H. MAH, "Observability and
redundancy classification in multicomponent process networks",
AIChE J., vol. 33, n° 1, p. 70-82, 1987.The optimal location of measurements in linear systems is based

on the counting of equations which contain more than two
unknown quantities ; according to the nature of these unknown
quantities (measurable or not measurable), supplementary sensors
can be placed to render the system observable.

[KRET 88] A. KRETSOVALIS, R.S.H. MAH, "Observability and
redundancy classification in generalized process networks, 1 :
theorems, 2 : algorithms", Comp. Chem. Eng., vol. 12, n° 7, p.
671-703, 1988.

The bilinear case can be treated according to this principle.
However, this is more complicated in practise because of the inter-
action of X and Y. This means that the observability of X or Y
variables are simultaneously modified by the addition of a sensor
for X or Y variables. This interaction between the different varia-
bles can be summarized by the following three rules :

[MACD 88] R.J. MACDONALD, C.S. HOWAT, "Data Reconcilia-
tion and Parameter Estimation in Plant Performance Analysis",
AIChE J., vol. 34, n°1 p. 1-9, 1988.

[MAH 82] R.S.H. MAH, A.C TAMHANE, "Detection of gross
errors in process data", AIChE J., vol. 28, n° 5, p. 828-830, 1982.

1- An equation which contains only one unknown X quantity is
observable. The X unknown quantity is directly deduced from a
linear equation.

[MAQU 86] D. MAQUIN, J. FAYOLLE, M. DAROUACH, J.
RAGOT, "Le positionnement de capteurs dans les systèmes indus-
triels de grande dimension", Proc. of IMACS cong., Villeneuve
d'Ascq, 1986.2- An equation which contains only one unknown Y quantity (with

all the X variables known) is observable. The unknown Y quantity
can be deduced from a bilinear equation. [MAQU 87] D. MAQUIN, "Observabilité, diagnostic et validation

de données des procédés industriels", Thèse de l'Université de
Nancy I, novembre 1987.3- An equation with all the X variables known except two of them

and all the Y variables known is observable. The two unknown
quantities can be deduced from the set of linear and bilinear
equation.

[NARA 87] S. NARASIMHAN, R.S.H. MAH, "Generalized like-
lihood ratio method for gross error identification", AIChE J., vol.
33, n° 9, p. 1514-1521, 1987.

The principle of the location of measurements is directly derived
from this analysis. The addition of a new sensor is carried out in
order to obtain one of the three previous situations. As the addition
of a sensor modifies the observability of the system, this
procedure had to be repeated until total observability is obtained.

[NOGI 72] S. NOGITA, "Statistical test and adjustment of
process data", Ind. Eng. Chem. Proc. Des. Dev.,  vol. 11, n° 2, p.
197-200, 1972.

[PATT 89] R.J. PATTON, P.M. FRANK, R.N. CLARK, "Fault
diagnosis in dynamic systems : theory and application". Prentice
Hall, 1989.REFERENCES

[POTT 77] J.E. POTTER, M.C. SUMAN, "Thresholds redundancy
management with arrays of skewed instruments". Electronic Flight
Control systems, AGARDOGRAPH 224, p. 2115-21, 1977.

[ALMA 84] G.A. ALMASY, R.S.H. MAH, "Estimation of measu-
rement error variances from process data", Ind. Eng. Chem. Proc.
Des. Dev., vol. 23, p. 779-784, 1984.

[RAGO 90] J. RAGOT, M. DAROUACH, D. MAQUIN, G. BLOCH,
Validation de données et diagnostic. Traité des nouvelles techno-
logies, série diagnostic et maintenance, Hermès, 431 p., 1990.

[CLAI  75] R. CLAIR, F. LEBOURGEOIS, J.P. CAUJOLLE, G.
BORNARD, "Measurement data set improvment through material
balance calculation. Application to an industrial chemical plant",
IFAC congress, Boston 1975.

[RAGO 90] J. RAGOT, D. MAQUIN, H. CHAFOUK, A.
AITOUCHE, "Data reconciliation with unknown variance", 7th
intern. symp. IMEKO on techn. diagnostics, Helsinki, 1990.

[CROW 86] C.M. CROWE, "Reconciliation of process flow rates
by matrix projection, part 2 : the non linear case", AIChE J., vol.
32, n° 4, p. 616-623, 1986.

[REIL 63] P.M. REILLY, R.E. CARPANI, "Application of
statistical theory of adjustment to material balances", 13th cana-
dian chemical engineering conference, Montreal, October 1963.

[CROW 88] C.M. CROWE, "Recursive identification of gross
error in linear data reconciliation", AIChE J., vol. 34, n° 4, p. 541-
550, 1988.

[RIPP 62] D.L. RIPPS, "Adjustment of experimental data",
Chem. Eng. Prog., vol. 58, n° 10, p. 120, 1962.[CUTT 76] G.W. CUTTING, "Estimation of interlocking mass

balances on complex mineral beneficiation plants", Intern. J. of
Min. Proces., vol. 3, n° 3, p. 207-218, 1976. [ROMA 80] J.A. ROMAGNOLI, G. STEPHANOPOULOS, "On the

rectification of measurement errors for complex chemical plants,
steady-state analysis", Chem. Eng. Sc., vol. 35, n° 5, p. 1067-
1081, 1980.

[DARO 86] M. DAROUACH, "Observabilité et validation des
données des systèmes de grande dimension, application à l'équili-
brage de bilans de mesures", Thèse de doctorat d'Etat, Nancy, 1987.

[ROSE 87] J. ROSENBERG, R.S.H. MAH, C. IORDACHE, "Eva-
luation of schemes for detecting and identifying gross errors in
process data", Ind. Eng. Chem. Res., vol. 26, n° 3, p. 555-564,
1987.

[HOLL 89] W. HOLLY, R. COOK, C.M. CROWE, "Reconcilia-
tion of mass flow rate measurement in a chemical extraction
plant", Can. J. Chem. Eng., vol. 67, August, p. 595-601, 1989.

[SERT 86] J.E. SERTH, W.A. HEENAN, "Gross error detection
and data reconciliation in steam-metering system". AIChE J., vol.
32, n° 5, p.733-742, 1986.

[IORD 85] C. IORDACHE, R.S.H. MAH, A.C. TAMHANE, "Per-
formance studies of the measurement test for detection of gross er-
rors in process data". AIChE J., vol. 31, n° 7, p. 1187-1200,
1985.

[TAMH 82] A.C. TAMHANE, "A note on the use of residuals for
detecting an outlier in linear regression", Biometrika, vol. 69, n°
2, p. 488-489, 1982.

[JONG 88] E.M. JONGENELEN, C.D. HEVER, G.A. VAN ZEE,
"Detection of gross errors in process data using studentized
residuals", Comp. Chem. Eng., vol. 12, n° 8, p. 845-847, 1988.


